Oceanic and Offshore Operations Support Group

Arrival Procedures- From Standard to Tailored Arrivals

Presented to: LAX /Community Noise Roundtable By: Steve Pinkerton, FAA Date: 10 July 2013

Arrival Procedures

- Historically, arrival procedures designed with constraints related to traffic and aircraft capabilities
 - Consider major traffic flows for both arriving and departing aircraft. Often have restrictions associated with traffic or procedural requirements
 - Environmental impact considered
 - Designed to ensure that a variety of aircraft can fly procedure, from basically equipped to the most modern equipped
 - Result has been safe arrival procedures but maybe not the most efficient from various standpoints

Standard Terminal Arrival (STAR)

- Most common type of arrival procedure
- Has a defined lateral track
- Contains expected altitude and speed restrictions
- Generally, not designed as continuous descent procedure
- Can be flown by aircraft with various navigational capabilities

Example of a STAR

IOS ANGEIES

Ę

Continuous Descent Operations (CDO's)- Improved Arrival Procedures

- Modern navigational capabilities have made more efficient arrival procedures a possibility
- CDO is a generic term that encompasses several different types of procedures. These procedures designed to allow aircraft to descend continuously, with minimal thrust
 - Result is reduction in noise, fuel burn, and emissions

Optimized Profile Descent (OPD)

- OPD's are a descent profile normally associated with a published standard terminal arrival (STAR).
- Designed to allow maximum practical use of a CDO. Considers the following:
 - Airspace and ATC constraints
 - Traffic
 - Environment
 - Aircraft capabilities
 - Local airport issues
- Seeing more frequent implementation
 - Most modern aircraft equipped and able to fly
 - Used at numerous airports throughout country

RIIVR STAR

ILS 25 Left

Optimized Profile Descent (RNAV)

RNAV(RNP) Transition to SNA

Tailored Arrival

• Tailored Arrivals (TA)

- Similar concept to OPD, except a non-published, dynamic procedure
- "Tailored" for traffic, environment, time, etc.
 - In current practice, "static"
- Sent to aircraft from controller via Controller Pilot
 Data Link Communication (CPDLC)
- Currently in an operational trial phase for Oceanic flights arriving at SFO, LAX, and MIA
 - Trial at MIA suspended- training/airspace issues
 - At LAX, only arrivals routed over SXC

LAX Tailored Arrival

BUFIE STAR

NU 0 07 11 N 0040 L- 05 11 11 0040

Catalina 1 TA vs. BUFIE STAR

- Both fly along the same ground track
- Current airspace design necessitates use of altitude restrictions to ensure separation from other traffic
- At present, aircraft on either arrival essentially fly the same descent profile after SXC

LAX vs. SFO TA Use

- At SFO, approx. 33% of aircraft on a TA fly a full TA
- Arrivals assigned a TA arriving at LAX fly a partial TA
- SFO has opened trial to multiple airlines
- LAX trial limited to United, Air New Zealand, and Qantas

Benefits of TA's and OPD's

Noise Reduction

- Aircraft descending at optimal flight profile
- Pilot advised of speed to maintain in descent
 - Flight Management System compensates for speeds and adjusts descent accordingly
- Descent conducted at flight idle
 - Minimal power adjustments until final
- Bottom line- Optimal descent profile + minimal power adjustments= less noise

SFO TA Noise Contours

SFO TA Noise Contours (Boeing

Technology/Phantom Works)

Partial Tailored Arrival

Non Tailored Arrival

Tailored Arrival

Benefits of TA's and OPD's

• Fuel Savings

- Full tailored arrivals may save 2100+ lbs. (350+ gals.) of fuel per flight. Cost savings near \$1 mil. annually
- Partial TA's may save 660+ lbs. (110+ gals.) of fuel per flight. Cost savings of \$300k+ annually
 - Data from Boeing Research and Technology, 2009 and based on B777-200 and B747-400 aircraft
- OPD's may see savings of 300+ lbs. (50+ gals.) per flight. Cost savings of
 - One reason for difference between OPD's and TA's may be fleet mix
 - Different type aircraft and engines

SFO Non-Tailored Arrival QF73 SYD-SFO 17 May 2009

Non-Tailored Arrival

ZFW	Time from 32,500 ft (mins)	Fuel from 32,500 ft
230.2	26	1,680

ANTAS

Spirit of Australia

SFO Tailored Arrival QF73 SYD-SFO 20 May 2009

Tailored Arrival

Fuel Flow

(kg/hr) < 2500 2500-5000 5000-7500 >7500

ZFW ('000kg)	Time from 32,500 ft (mins)	Fuel from 32,500 ft (kg)
236.1	24	1,220

Benefits of TA's and OPD's

Greenhouse Gas Emissions

Type of Arrival	Annual CO2 Emissions Saved
Full TA	2,718,630 lbs.
Partial TA	854,867 lbs.
OPD	385,075 lbs.

Why aren't TA's and OPD's everywhere? • Equipment/Other

- Tailored arrivals require special equipment for aircraft (FANS 1/A, CPDLC)
 - Approx. 85% of flights from SoPac are equipped
 - Approx. 25% of flights in CEP equipped
- Domestic En Route facilities currently not able to do CPDLC, which is required for TA's
- Pilot requested procedure
 - If pilot doesn't request, they get BUFIE STAR to LAX

• Training

- Controller and pilot training
 - Current issue with controller phraseology being addressed

Why aren't TA's and OPD's everywhere?

- Airspace Design and Traffic Management Issues
 - Current airspace design in LA Basin presents significant challenge to full TA's and OPD's
 - Multiple confliction points for Basin departures and arrivals
 - Full TA to runway and OPD's require very specific airspace procedures and rules to work
 - Due to the dynamic nature of air traffic, continued development of procedures and controller tools, such as Time Based Metering (TBM), need to continue

•June 27, 2013 1300-2200z 6am-3pm Pacific All flights within 35nm of SXC

From	То	Color
0	40	
40	80	
80	120	
120	160	
160	180	

•Flights above FL180 are gray

Nautical Miles		
0	13	26

SX

•1826 flights

•June 27, 2013 1300-2200z 6am-3pm Pacific SXC LAX Arrivals LAX & SNA departures

↑ N •Yellow – LAX Dept •Blue – SNA Dept Red – LAX SXC Arvis

ĥτU

Nautical Miles 6.5 13

0

SXC

-667

lights

PDĂRS

•June 27, 2013
 1300-2200z
 6am-3pm
 Pacific
 SXC LAX
 Arrivals
 LAX & SNA
 departures

•Yellow – LAX Dept Blue – SNA Dept Red – LAX SXC Arvis

Nautical Miles		
0	6.5	13

•667 flights

•June 27, 2013 0200-0600z 7pm-11pm Pacific SXC LAX Arrivals LAX & SNA Blue Red -Arvis

↑ N •Yellow – LAX Dept

ÌŦU

Blue – SNA Dept Red – LAX SXC

> Nautical Miles 6.5 13

0

SXC

•<mark>208</mark>

flights

PDĂRS

Future of TA's and OPD's at LAX

- Optimization of Airspace and Procedures in the Metroplex (OAPM)
 - Part of NextGen
 - FAA Modernization Program
 - Redesign of airspace and procedures
 - Goal is to improve efficiencies for arrivals and departures
 - Designed with OPD and TA procedures as integral pieces
 - Current timeline for implementation projected within next 2 to 3 years

Questions?

