Appendix D

LAX NORTHSIDE PLAN UPDATE

Noise Technical Report

May 2014

Prepared for:

Los Angeles World Airports One World Way Los Angeles, California 90045

Prepared by:

URS Corporation 915 Wilshire Boulevard, Suite 700 Los Angeles, California 90017 This Page Intentionally Left Blank

TABLE OF CONTENTS

	Study	
1.2 Fundamen	tals of Noise	2
1.2.1 1.2.2 1.3 Project Des	Noise Ground-Borne Vibration scription	4
	Overview LAX Master Plan Commitments and Project Design Features ting Framework	11 14
2.1.1 2.1.2 2.1.3 2.2 Existing Co	Federal State Local nditions	18 22
	Noise	44
3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.2 Significanc	On-Site Construction Noise Off-Site Roadway Noise (During Construction and Operation) On-Site Airport Noise Exposure (During Operation) Stationary Point-Source Noise (During Project Operations) Ground-Borne Vibration (During Construction) e Thresholds	45 45 46 46
0	pacts	
3.3.1 3.3.2 3.3.3 3.3.4	On-Site Construction Activities Off-Site Construction Trucks Construction Ground-borne Vibration Operations	69 69
3.3.5 3.3.6 3.3.7 3.3.8	On-Site Stationary Noise Sources Off-Site Traffic (Mobile Sources) Aircraft Noise Exposure Transfer Program	72 79 85
3.3.9 4.0 Mitigation Measur	Cumulative Impactses	
-	on	
4.2 Operations	5	
4.2.1 5.0 References	Level Of Significance after Mitigation	

LIST OF FIGURES

- 1 Regional Location
- 2 Proposed Project Land Use
- 3 Illustrative Site Plan
- 4 Noise Exposure Levels and Land Use Compatibility
- 5 Airport Land Use Compatibility Table
- 6 LAX CNEL Noise Contours
- 7 Sensitive Noise Receptors in Project Site Vicinity
- 8 Background Noise Monitoring Locations
- 9 Noise Monitoring Location and Setback Area 1
- 10 Noise Monitoring Locations, Setbacks and Surrounding Land Uses Area 2
- 11 Noise Monitoring Locations, Setbacks and Surrounding Land Uses Area 3
- 12 Noise Monitoring Locations, Setbacks and Surrounding Land Uses Area 11
- 13 Noise Monitoring Locations, Setbacks and Surrounding Land Uses Area 12
- 14 Noise Monitoring Locations, Setbacks and Surrounding Land Uses Area 13
- 15 Noise Monitoring Location and Setback Area 4 through Area 10
- 16 Existing LAX Noise Contours and Proposed Project Land Use

LIST OF TABLES

- 1 Representative Outdoor and Indoor Noise Levels
- 2 Land Use Compatibility Guidelines with Yearly Day-Night Average Sound
- 3 FTA Vibration Impact Criteria Typical Human Annoyance Levels
- 4 FTA Vibration Impact Criteria Typical Levels for Building Damage
- 5 Caltrans Vibration Thresholds for Typical Human Annoyance
- 6 Caltrans Vibration Criteria for Historic and Sensitive Buildings
- 7 City of Los Angeles Presumed Ambient Noise Levels
- 8 City of Los Angeles Land Use Compatibility Guidelines for Noise
- 9 Summary of Measured Existing (2012) Ambient Noise Levels
- 10 Existing Hourly Traffic Noise Levels
- 11 RCNM Construction Equipment Reference Noise Levels
- 12 Construction Equipment Noise Levels by Construction Phase
- 13 Construction Phase Maximum Noise Level
- 14 Change In Hourly Noise Level During Construction Activities
- 15 Area 2 Construction Noise Level Estimates
- 16 Area 3 Construction Noise Level Estimates
- 17 Area 11 North of W. 88th Street Construction Noise Level Estimates
- 18 Area 11 Residences with Line-of-Sight Construction Noise Level Estimates
- 19 Area 12A East North of West 88th Street Construction Noise Level Estimates
- 20 Area 12A East Visitation Catholic Church Construction Noise Level Estimates
- 21 Area 13 Apartments on Lincoln Boulevard Construction Noise Level Estimates
- 22 Area 13 First Flight Child Development Center Construction Noise Level Estimates
- 23 Construction Vibration Impacts
- 24 Comparison of Existing and Future Hourly Traffic Noise Levels AM Peak Hour
- 25 Comparison of Existing and Future Hourly Traffic Noise Levels PM Peak Hour
- 26 Proposed Project Land Use Aircraft Noise Exposure

LIST OF ATTACHMENTS

- A Acoustical Terminology
- B Noise Measurement Data
- C AM and PM Peak-hour Traffic Volumes
- D Construction Equipment Noise Predictions

1.0 Introduction

As the Lead Agency, Los Angeles World Airports (LAWA) proposes the LAX Northside Plan Update (the proposed Project) to set forth new regulations for future development occurring within the LAX Northside area (the Project site) of the LAX Specific Plan area (**Figure 1**). The Project site, which was once primarily single-family homes, was acquired by LAWA in part using Federal Aviation Administration (FAA) grants which require the conversion of the Project site to compatible land uses in close proximity to airport operations at LAX. In 1984, 4.5 million square feet of commercial development within the Project site was approved, however, the site remains mostly vacant. In 1989, the Design Plan and Development Guidelines for LAX Northside (Northside Design Guidelines) were prepared to provide additional guidance on development of the Project site. The 1984 entitlements and 1989 Northside Design Guidelines were subsequently incorporated into later planning documents, including the adopted LAX Specific Plan.

The proposed Project would allow up to 2,320,000 square feet of development on the approximately 340 acre Project site. In order to allow for flexibility of future development to respond to future market conditions, transfers and exchanges of uses and development rights will be allowed within limited areas of the Project site, not to exceed development, environmental, and design constraints, where specified. In order to implement the proposed Project, the LAX Specific Plan will be amended and the LAX Northside Design Guidelines will be updated, among other actions.

The proposed Project would bring the existing design standards up-to-date; respond to current market realities and stakeholder interests; comply with FAA requirements and regulations, including FAA grant requirements; allow the development of the Project site in line with current best-practices in urban design and sustainability; and maintain a sufficient buffer between the adjacent residential communities and LAX. The objectives of the proposed Project include: balancing the needs of neighborhoods and LAX; meeting rigorous environmental sustainability standards in design, construction, operation, and landscaping; managing vehicle traffic through smart engineering and trip reduction; achieving the best use of the property and fair market value; complying with all applicable zoning, land use, and air traffic regulations; and providing a foundation for other neighborhood improvements and services.

1.1 Purpose of Study

The purpose of this noise analysis is to evaluate the existing and projected future (2022) noise conditions at noise-sensitive locations in the vicinity of the Project site, assess potential operational and construction noise impacts due to the proposed Project, identify the level of significance of such impacts, and offer noise mitigation measures where such measures may be needed.

This study was prepared to develop information needed for assessment of noise impacts under the California Environmental Quality Act (CEQA) requirements, and includes:

- Identification of existing noise-sensitive land uses;
- Quantification of existing noise levels through onsite measurements;
- Prediction of noise levels for No Project and Project alternatives;

- Comparison of noise levels between the existing and future proposed Project conditions relative to established CEQA thresholds of significance; and
- Recommendation of noise mitigation measures for noise impacted areas during both construction and operation periods.

1.2 Fundamentals of Noise

1.2.1 Noise

Noise is typically defined as unwanted sound (See Attachment A- Acoustical Terminology). This definition implies that noise has an impact on people and their environment. Common effects of noise in the community environment are annoyance, communication interference, and sleep disturbance. The response of individuals to similar noise events is diverse and influenced by many factors, including the type of noise; the perceived importance of the noise and its appropriateness in the setting; the time of day and the type of activity during which the noise occurs; and individual sensitivity.

Noise is measured by decibels (dB), a logarithmic measure of sound pressure referenced to 20 micropascals (μ Pa). A sound level of zero dB is approximately the threshold of human hearing and is barely audible under extremely quiet listening conditions. This threshold is the reference level against which the amplitude of other sounds is compared. Normal speech has a sound level of approximately 60 dBA. Sound levels above about 120 dBA begin to be felt inside the human ear as discomfort and eventually, at still higher levels, pain. The minimum change in the sound level of individual events that an average human ear can detect is about 1.0 dB to 2.0 dB. A 3.0 dB to 5.0 dB change is readily perceived. A change in sound level of about 10 dB is usually perceived by the average person as a doubling (or halving) of the sound's loudness.

The human ear is less sensitive to low and high frequencies of sound than to medium frequencies. The A-weighted scale has been developed to discriminate frequencies in a manner similar to the human ear. These units are termed A-weighted decibels (dBA). A-weighting de-emphasizes lower frequency sounds below 1,000 Hertz (1.0 kilo Hertz [kHz]) and higher frequency sounds above 4.0 kHz. It emphasizes sounds between 1.0 kHz and 4.0 kHz. Most community noise standards utilize A-weighting as it provides a high degree of correlation with human response.

Sound can be generated from point sources (stationary equipment, speakers, or individual vehicles), line sources (roadways consisting of a number of point sources), and fast-moving point sources such as aircraft. Sound generated by a point source typically attenuates (diminishes) at a rate of 6.0 dBA for each doubling of distance from the source to the receptor at acoustically "hard" sites, and 7.5 dBA at acoustically "soft" sites. "Hard" sites, such as concrete or asphalt, reflect sound and do not provide any excess ground-effect attenuation. "Soft" sites, such as normal earth and most ground areas with vegetation, absorb sound. Sound levels can also be attenuated by man-made or natural barriers, such as solid walls, berms, and elevation differences. These barriers typically reduce point and line source noise levels by 5.0 dBA to 10 dBA. Noise levels are also reduced within buildings as sound passes through walls, floors, windows, ceilings, and doors, and outside as sound passes through buildings. For example, a first row of houses may attenuate sound by 1.5 dBA.

Environmental noise includes a mixture of noise from nearby and distant sources that creates an ebb and flow of sound, including some identifiable sources plus a relatively steady background noise in which no particular source is identifiable. Several metrics have been developed to address community noise levels, which take into consideration varying noise exposure over time. The Day-Night Average Sound Level (Ldn or DNL) represents the average sound level for a 24 hour day and is calculated by adding a 10 dB penalty to sound levels during the night (10:00 p.m. to 7:00 a.m.). The DNL divides the day into two time periods – a day (7:00 a.m. to 10:00 p.m.) and night (10:00 p.m. to 7:00 a.m.). The Ldn is the descriptor used by nearly all federal, state, and local agencies throughout the United States and is specified by the American National Standards Institute (ANSI) to define acceptable land use compatibility with respect to noise.

California law mandates use of the Community Noise Equivalent Level (CNEL) for assessing airport noise exposure. For aviation noise analysis, the FAA has determined that the cumulative noise energy exposure of individuals to noise resulting from aviation activities must be established in terms of yearly DNL as the FAA's primary metric. The FAA recognizes CNEL as an alternative metric to yearly DNL for airport improvement projects in the State of California.

CNEL is a 24-hour, time-weighted average noise metric, expressed in terms of dBA, which accounts for the noise levels of individual aircraft events, the number of times those events occur, and the time of day they occur. CNEL is calculated based on noise levels and operational activity occurring during three time periods: daytime (7:00 a.m. to 6:59 p.m.), evening (7:00 p.m. to 9:59 p.m.), and nighttime (10:00 p.m. to 6:59 a.m.). To represent the added intrusiveness of sounds during evening and nighttime hours, CNEL adds weights of 4.77 dBA and 10 dBA to events occurring during the evening and nighttime periods, respectively. CNEL is used in this EIR for the discussion of noise conditions related to operations at LAX. CNEL contours are graphical representations of the distribution of noise over the surrounding area from LAX's average annual daily aircraft operations.

Table 1 depicts the qualitative descriptions of common environments for noise ranging from 0.0dBA to 110 dBA.

Common Outdoor Activities	Noise Level dBA	Common Indoor Activities
	110	Rock Band
Jet Fly-over at 1000 ft		
	100	
Gas Lawn Mower at 3 ft		
	90	
Diesel Truck at 50 ft at 50 mph	80	Food Blender at 3ft Garbage Disposal at 3 ft
Noise Urban Area, Daytime Gas Lawn Mower, 100 ft Commercial Area	70	Vacuum Cleaner at 10 ft Normal Speech at 3 ft

Table 1

Representative Outdoor and Indoor Noise Levels (dBA)

Table 1

Representative Outdoor and Indoor Noise Levels (dBA)

Common Outdoor Activities	Noise Level dBA	Common Indoor Activities
Heavy Traffic at 300 ft	60	Large Buisness Office
Quiet Urban Daytime	50	Dishwasher Next Room
Quiet Urban Nightime Quiet Suburban Nightime	40	Theater, Large Conference Room (Background)
Quiet Rural Nightime	30	Library Bedroom at Night
	20	Broadcast/Recording Studio
	10	
Lowest Threshold of Human Hearing	0	Lowest Threshold of Human Hearing

Note:

dBA = A-weighted decibels

Source: Caltrans, Technical Noise Supplement, 1998.

Equivalent energy level (Leq) is the sound pressure level over a time interval that is equivalent to a perfectly constant sound pressure level containing the same acoustic energy over the same interval. Leq is the average sound level for a specified time period (e.g., 24 hours, 8 hours, 1 hour, etc.) and it includes all sporadic or transient events occurring during the given time period. In terms of community noise, the City of Los Angeles uses the Leq metric to describe ambient noise levels.

CNEL and DNL represent daily levels of noise exposure based on a time-weighted average on an annual or daily basis, while Leq represents the equivalent energy noise exposure for a shorter time period, typically one hour, and is not time-weighted.

1.2.2 Ground-Borne Vibration

Vibration is commonly defined as an oscillatory motion through a solid medium in which the motion's amplitude can be described in terms of displacement, velocity, or acceleration. The peak particle velocity (PPV) or the root-mean-square (RMS) velocity is commonly used to describe vibration amplitudes. PPV is defined as the maximum instantaneous peak of the vibration signal, while RMS is defined as the square-root of the average of the squared amplitude of the signal. PPV is typically used for evaluating potential building damage, whereas RMS is typically more suitable for evaluating human response to ground-borne vibration. The RMS vibration velocity level can be presented in inch per second or in VdB (referenced to 1 micro-inch per second). Ground-borne vibration generated by man-made activities (i.e. road traffic, construction operations) typically attenuates rapidly with distance from the source of the vibration.

1.3 **Project Description**

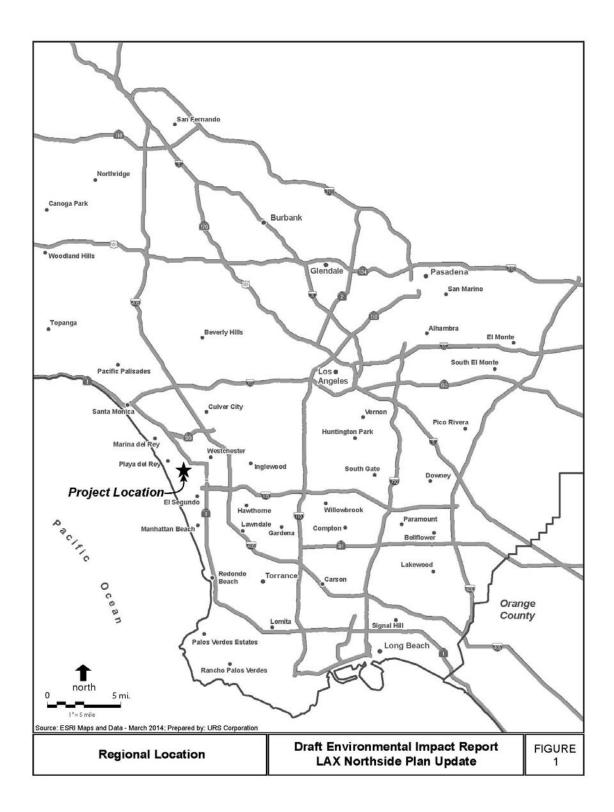
1.3.1 Overview

The proposed Project consists of 13 separate Areas, designated as Areas 1 through 13, arranged north and south along the length of Westchester Parkway between Sepulveda Boulevard and South Pershing Drive. The proposed Project consists of three primary planning regions: Areas located west of Lincoln Boulevard and north of Westchester Parkway (Areas 1, 2, and 3 collectively, "LAX Northside Campus District"); Areas located east of Lincoln Boulevard and north of Westchester Parkway (Areas 1, 12, and 13 collectively, "LAX Northside Center District"); and Areas located south of Westchester Parkway (Areas 4, 5, 6, 7, 8, 9, and 10 collectively, "Airport Support District"). Area 12 is further divided into sub-Areas 12A East, 12A West, and 12B.

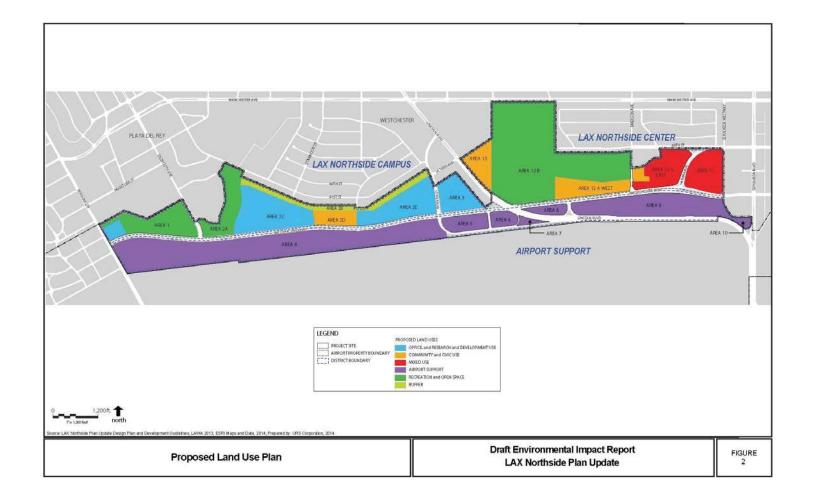
The LAX Northside Center District is located adjacent to existing retail and commercial development. Proposed land uses are intended as an extension of those that currently exist in the Westchester Business District. Proposed land uses for the LAX Northside Center District reflect a mix of moderate intensity commercial development including retail, shopping, dining, hotel, and office, including Airport-related administrative offices. The proposed LAX Northside Center District is envisioned as a pedestrian-oriented commercial setting on the east end intended to complement and enhance the Westchester Business District.

The LAX Northside Center District also includes the existing Westchester Recreational Center (Area 12B) and its 18-hole public golf course. Two community serving uses, the Los Angeles Fire Department (LAFD) Station Number 5 and the First Flight Childcare Center, are also currently located in Areas 12A East and 13, respectively, and the proposed Project would designate Area 12A West for additional community-serving and civic uses.

The LAX Northside Campus District is envisioned as a low intensity, low-rise, creative campus flanked by open space to the west and buffer space to the north. The creative campus is intended to attract research and development, higher education, technology, media, and/or other creative economy and office uses, including Airport-related administrative offices, and would be located within Areas 2 and 3. The northern portion of Area 2 would be planned as a 100 foot wide secured landscaped buffer to provide separation from the existing offsite residential uses to the north along 91st Street and the proposed Project. New recreational space, which can only be developed in conjunction with other commercial uses at the Project site, is proposed for the westernmost portions of the Project site, and would potentially include playing fields, a dog park, and open space.


The Airport Support District Areas are all located south of Westchester Parkway. Given their proximity to the LAX North Airfield and the existing airport radar equipment in Area 9, private commercial development is not proposed for these Areas under the proposed Project. Rather, land uses in Areas 4, 5, 6, 7, 8, 9, and 10 would include uses for airport support, such as maintenance shops, storage, parking, and temporary construction materials and staging. Aircraft engine testing would be prohibited in these Areas.

The Project site is accessed primarily via Westchester Parkway. Completed in 1993, Westchester Parkway was constructed with the capacity to serve the original 4.5 million square feet Northside Plan. Westchester Parkway currently includes bikeways, and the proposed Project anticipates an enhanced pedestrian environment along Westchester Parkway in order to promote connectivity between the proposed Project, the Westchester Business District to the east, and recreational uses to the west.


Adoption of the proposed Project could permit the development of up to 2,320,000 square feet, and areas for recreation, open space, and buffer space. Implementation of the proposed Project would also include vacation of Cum Laude Avenue and development or extension of existing supporting infrastructure, including new parking lots, drainage systems, sewer systems, and other infrastructure needed to support proposed development.

All future development within the Project site would be governed by the amended LAX Specific Plan and updated LAX Northside Design Guidelines. These documents would specify standards for all building heights, massing and setbacks, as well as the permitted intensities and land uses within each Area, and total permitted vehicle trips for the Project site. Project-wide regulations will also be established for lighting, pedestrian circulation, signage, and landscaping. The proposed Project would also provide limited flexibility to allow transfers and exchanges of development rights.

Figure 2 shows the proposed Project land uses, while Figure 3 depicts the illustrative site plan.

This Page Intentionally Left Blank

1.3.2 LAX Master Plan Commitments and Project Design Features

1.3.2.1 LAX Master Plan EIS/EIR Commitments

As part of the LAX Master Plan, LAWA adopted several mitigation measures and commitments pertaining to noise to avoid or reduce environmental impacts. Since the Project site is located within the LAX Master Plan boundaries, LAWA will also fulfill the commitments it has made in the LAX Master Plan for the proposed Project. The following commitments are applicable to the proposed Project and were considered in the noise analysis herein.

- Noise Mitigation Measure (MM-N)-7: Construction Noise Control Plan. A Construction Noise Control Plan will be prepared to provide feasible measures to reduce significant noise impacts throughout the construction period for all projects near noise sensitive uses. For example, noise control devices shall be used and maintained, such as equipment mufflers, enclosures, and barriers. Natural and artificial barriers such as ground elevation changes and existing buildings may be used to shield construction noise.
- **MM-N-8: Construction Staging**. Construction operations shall be staged as far from noise-sensitive uses as feasible.
- **MM-N-9: Equipment Replacement**. Noisy equipment shall be replaced with quieter equipment (for example, rubber tired equipment rather than track equipment) when technically and economically feasible.
- **MM-N-10: Construction Scheduling**. The timing and/or sequence of the nosiest on-site construction activities shall avoid sensitive times of the day, as feasible (9:00 p.m. to 7:00 a.m. Monday-Friday; 8:00 p.m. to 6:00 a.m. Saturday; anytime on Sunday or Holidays).
- Surface Transportation (ST)-16: Designated Haul Routes. Every effort will be made to ensure that haul routes are located away from sensitive noise receptors.

1.3.2.2 Project Design Features

Specific measures or requirements are incorporated into the proposed Project as Project Design Features. Project Design Features are features proposed by LAWA that are specifically intended and designed to reduce or avoid impacts. Project Design Features intended to reduce or avoid noise impacts are listed below:

- All heating, ventilation, and air conditioning (HVAC) and related rooftop mechanical equipment for the proposed Project shall be restricted to provide acoustic shielding. HVAC units will be shielded with parapets to minimize noise. Where feasible, HVAC and rooftop equipment with a limited noise profile shall be selected and installed.
- Existing soundwalls located along the northern property line of Area 11 and Area 12A East will be maintained in their current locations and configurations.
- Proposed land uses are designed to be compatible with neighboring airport uses and to provide a buffer between existing residences and airfield activity.
- Multi-story parking that extends beyond existing soundwall height will be shielded on the north side to eliminate noise and glare towards residential areas. This could be achieved through either a solid wall or baffling louvers.

- The Project site will be graded and/or developed so that sound propagating towards existing residential areas to the north will be attenuated.
- The proposed Project includes restrictions within which development can occur in each Area by establishing buffer areas and setbacks. These buffer areas and setbacks will influence the relationship of noise receptors to sources of noise. The following buffer areas and setbacks apply:
 - LAX Northside Campus District
 - Area 1
 - 80 feet (Adjacent to 20 feet landscape buffer)
 - 30 feet Falmouth Avenue
 - 38 feet Westchester Parkway
 - Area 2A
 - 15 feet St. Bernard/West 91st Street/South Cum Laude Avenue
 - 20 feet West Cum Laude Avenue and eastern edges
 - 30 feet Falmouth Avenue
 - 38 feet Westchester Parkway
 - Area 2C and Area 2D
 - 20 feet North, west, and east edges
 - 38 feet Westchester Parkway
 - Area 2E and Area 3
 - 15 feet Loyola Boulevard
 - 20 feet North and west edges
 - 38 feet Westchester Parkway
 - LAX Northside Center District
 - Areas 11
 - 50 feet Southern edge
 - 30 feet South La Tijera Avenue
 - 15 feet Sepulveda Avenue /La Tijera Avenue
 - Area 12A East
 - 30 feet West 88th Street
 - 18 feet Westchester Parkway
 - 15 feet La Tijera Avenue /West 88th Place
 - 20 feet on north and west edge of existing building
 - Area 12A West
 - 15 feet Westchester Parkway/Emerson Avenue
 - 20 feet West and north edges
 - Area 13
 - 15 feet Lincoln Boulevard
 - 20 feet North and east edges
 - LAX Northside Airport Support District
 - Area 4
 - 50 feet South Pershing Drive/Westchester Parkway
 - 20 feet Southern edge
 - 15 feet Northside Parkway

- Area 5 and Area 6
- Area 7
 - 15 feet Lincoln Boulevard/McClean Parkway
- Area 8
 - 15 feet All edges
- Area 9
 - 15 feet Westchester Parkway /South McConnell Avenue
- Roof mounted equipment shall be screened at a maximum of 6 feet in height, measured from finish grade, which will buffer associated noise.
- The proposed Project does not introduce any new streets, or open up existing streets that dead-end into the Project site adjacent to residential areas, thereby minimizing potential new traffic-related noise sources in existing residential areas.
- Vehicular access is prohibited from Lincoln Boulevard, Pershing Drive, and all the local streets along the north edge of the Northside area, including locations at Rayford Drive and Stanmoor Drive, excluding the existing golf course on Manchester Avenue.
- Primary access drives, allowing left turns, along Westchester Parkway shall be limited to enhance traffic flow and to reduce the disruption of the landscaping, pedestrian recreation paths, and Westchester Parkway medians.
- Reciprocal ingress and egress access with adjacent properties shall be provided for all properties. This requirement may be waived by due to extreme site constraints or unusual conditions.
- A 20-foot buffer area is required along the northern boundary of Area 1 and a 100-foot buffer area is required along the northern boundary of Area 2. No buildings or other permanent noise-producing uses are allowed in buffer areas.
- Buildings within Area 11 and Area 12A are required to be located adjacent to Westchester Parkway, La Tijera Boulevard, and Sepulveda Westway. Buildings within Area 2 are required to be located adjacent to Westchester Parkway. Buildings within Area 2C and Area 2E are required to be located with a minimum of 65 percent of the proposed Project square footage within 250 feet of the Westchester Parkway property line.
- Prior to the issuance of building permits for any proposed higher educational uses, the Project Applicant shall utilize an acoustical engineer to demonstrate to the City of Los Angeles that the 45 dBA interior noise standard and an outdoor to indoor Noise Level Reduction of at least 25 dB and 30 dB has been achieved. Outdoor areas associated with higher educational uses shall be designed to minimize noise exposure.
- Should the property owner of any land proposed for higher educational use be any entity other than LAWA, the property owner shall be required to grant LAWA a permanent and irrevocable avigation easement.

2.0 Environmental Setting

2.1 Regulatory Framework

To minimize the adverse effects of noise exposure, a number of federal, state and local agencies have enacted legislation and guidelines regarding environmental noise exposure.

2.1.1 Federal

2.1.1.1 Noise

2.1.1.1.1 <u>National Environmental Policy Act (42 U.S.C. 4321, et seq.)</u> (PL-91-190) (40 CFR § 1506.5)

The National Environmental Policy Act (NEPA) is the basic national charter for protection of the environment including the noise environment. NEPA establishes policy, sets goals, and provides means for carrying out the policy. NEPA also contains "action-forcing" provisions to ensure that federal agencies act according to the letter and spirit of the Act. The regulations that follow provide guidance to federal agencies regarding what they must do to comply with the procedures and achieve the goals of the Act.

2.1.1.1.2 Noise Control Act of 1972 (42 U.S.C 4910)

The Noise Control Act of 1972 establishes a national policy to promote an environment for all Americans free from noise that jeopardizes their health and welfare. To accomplish this, the Act establishes a means for the coordination of federal research and activities in noise control, authorizes the establishment of federal noise emissions standards for products distributed in commerce, and provides information to the public respecting the noise emission and noise reduction characteristics of such products.

2.1.1.1.3 Aviation Safety and Noise Abatement Act of 1979

The purpose of the Aviation Safety and Noise Abatement Act of 1979 (ANSA) is "to provide assistance to airport operators to prepare and carry out noise compatibility programs." The law establishes eligibility requirements for noise compatibility planning funding. However, ANSA does not require airports to develop noise compatibility programs. This decision is at the discretion of each individual airport proprietor.

2.1.1.1.4 <u>Federal Aviation Regulations Part 150 Airport Noise</u> <u>Compatibility Planning</u>

ANSA is implemented by the Federal Aviation Regulations (FAR) Part 150. These regulations, adopted by the FAA, establish voluntary programs that airports can utilize to conduct airport noise compatibility planning. FAR Part 150 sets the procedures, standards, and methodology for the development, submission, and review of airport noise exposure maps and airport noise compatibility programs. FAR Part 150 also establishes a system for measuring airport noise impacts and presents guidelines for identifying incompatible land uses.

FAA Part 150 analyses depict noise in terms of the average annual DNL contours around airports. FAR Part 150 considers all land uses with noise levels less than 65 DNL to be compatible with aircraft operations. In the State of California, the FAA allows use of CNEL contours to depict noise contours around airports. **Table 2** depicts the FAR Part 150 land use compatibility guidelines.

Landers	Yearly day-night average sound level (L _{dn}) in dec		decibels			
Land use	Below 65	65-70	70-75	75-80	80-85	Over 85
Residential		•		•	•	•
Residential, other than mobile homes and transient lodgings	Y	N ^a	N ^a	N	N	N
Mobile home parks	Y	N	N	N	N	N
Transient lodgings	Y	N ^a	N ^a	N ^a	N	N
Public Use	•	•		•		•
Schools	Y	N ^a	N ^a	N	N	N
Hospitals and nursing homes	Y	25	30	N	N	N
Churches, auditoriums, and concert halls	Y	25	30	N	N	N
Governmental services	Y	Y	25	30	N	N
Transportation	Y	Y	Yb	Y ^c	Y ^d	Y ^d
Parking	Y	Y	Yb	Y ^c	Y ^d	N
Commercial Use	L	1		1	1	1
Offices, business and professional	Y	Y	25	30	N	N
Wholesale and retail—building materials, hardware and farm equipment	Y	Y	Y ^b	Y ^c	Y ^d	N
Retail trade—general	Y	Y	25	30	N	N
Utilities	Y	Y	Yb	Y ^c	Y ^d	N
Communication	Y	Y	25	30	N	N
Manufacturing and Production	L	1		1		1
Manufacturing, general	Y	Y	Y ^b	Y ^c	Y ^d	N
Photographic and optical	Y	Y	25	30	N	N
Agriculture (except livestock) and forestry	Y	Y ^f	Y ^g	Y ^h	Y ^h	Y ^h
Livestock farming and breeding	Y	Y ^f	Y ^g	N	N	N
Mining and fishing, resource production and extraction	Y	Y	Y	Y	Y	Y

Land Use Compatibility Guidelines with Yearly Day-Night Average Sound

Table 2

Table 2

	Yearly day-night average sound level (L_{dn}) in					
Land use	Below 65 65-70		70-75	75-80	80-85	Over 85
Recreational			•	•	•	
Outdoor sports arenas and spectator sports	Y	Ye	Ye	N	N	N
Outdoor music shells, amphitheaters	Y	N	N	N	N	N
Nature exhibits and zoos	Y	Y	N	N	N	N
Amusements, parks, resorts and camps	Y	Y	Y	N	N	N
Golf courses, riding stables and water recreation	Y	Y	25	30	N	N

Land Use Compatibility Guidelines with Yearly Day-Night Average Sound

Notes:

^a Where the community determines that residential or school uses must be allowed, measures to achieve outdoor to indoor Noise Level Reduction (NLR) of at least 25 dB and 30 dB should be incorporated into building codes and be considered in individual approvals. Normal residential construction can be expected to provide a NLR of 20 dB, thus, the reduction requirements are often stated as 5, 10 or 15 dB over standard construction and normally assume mechanical ventilation and closed windows year round. However, the use of NLR criteria will not eliminate outdoor noise problems. ^b Measures to achieve NLR 25 dB must be incorporated into the design and construction of public portions of these buildings, office areas, noise sensitive areas or where the normal noise level is low. ^c Measures to achieve NLR of 30 dB must be incorporated into the design and construction of public

portions of these buildings, office areas, noise sensitive areas or where the normal noise level is low. ^d Measures to achieve NLR 35 dB must be incorporated into the design and construction of public portions of these buildings, office areas, noise sensitive areas or where the normal level is low.

^e Land use compatible provided special sound reinforcement systems are installed.

^fResidential buildings require an NLR of 25 dB.

⁹ Residential buildings require an NLR of 30 dB.

^hResidential buildings not permitted.

L_{dn} = Day-Night Average Sound Level

Y (Yes) = Land Use and related structures compatible without restrictions.

N (No) = Land Use and related structures are not compatible and should be prohibited.

NLR = Noise Level Reduction (outdoor to indoor) to be achieved through incorporation of noise attenuation into the design and construction of the structure.

25, 30, or 35 = Land use and related structures generally compatible; measures to achieve NLR of 25, 30, or 35 dB must be incorporated into design and construction of structure.

Source: CFR Title 14: Aeronautics and Space, Part 150- Airport Noise Compatibility Planning

The FAA defines 65 dB DNL/CNEL as the threshold of exterior noise compatibility for residential and other noise-sensitive land uses, such as schools, libraries, and religious facilities.

According to *Title 14 CFR Part 150, Airport Noise Compatibility Planning*, land use compatibility guidelines do not represent a federal determination that a specific land use is acceptable or unacceptable under federal, state, or local laws. The responsibility for determining acceptable land uses rests with local authorities through zoning laws and ordinances.

2.1.1.2 Ground-Borne Vibration

2.1.1.2.1 Federal Transit Administration Vibration Standards

The Federal Transit Administration's (FTA) "Transit Noise and Vibration Impacts Assessment" provides ground-borne vibration impact criteria for human annoyance and building damage during construction activities. Criteria for human annoyance impacts are provided by land use category. Criteria for potential building damage are provided by building category. **Table 3** and **Table 4** provide the vibration impact criteria by land use category and building category. As indicated therein, a vibration criterion of 0.20 inch per second should be considered for non-engineered timber and masonry buildings. Furthermore, structures or buildings constructed of reinforced concrete, steel, or timber, have vibration damage criteria of 0.50 inch per second.

Table 3

FTA Vibration Impact Criteria – Typical Human Annoyance Levels

Land Line Cotogony	Ground-Borne Vibration Impact VdB (referenced 1 micro-inch per second)				
Land Use Category	Frequent Events ^a	Occasional Events ^b	Infrequent Events ^c		
Category 1: Buildings where vibration would interfere with interior operations	65 VdB	65 VdB	65 VdB		
Category 2: Residences and buildings where people normally sleep	72 VdB	75 VdB	80 VdB		
Category 3: Institutional land uses with primarily daytime use	75 VdB	78 VdB	83 VdB		

Notes:

^a "Frequent Events" are defined as more than 70 vibration events of the same source per day.

^b "Occasional Events" are defined as between 30 and 70 vibration events of the same source per day. ^c "Infrequent Events" are defined as fewer than 30 vibration events of the same source per day. This criterion limit is based on the levels that are acceptable for most moderately sensitive equipment

This criterion limit is based on the levels that are acceptable for most moderately sensitive equipment such as optical microscopes. Source: FTA, 2006.

Table 4

FTA Vibration Impact Criteria – Typical Levels for Building Damage

Construction Vibration Da	amage Criteria
PPV (inch per second)	RMS (VdB)
0.5	102
0.3	98
0.2	94
0.12	90
	PPV (inch per second) 0.5 0.3 0.2

PPV = peak particle velocity VdB = 1 micro-inch per second Source: FTA, 2006.

2.1.2 State

2.1.2.1 Noise

2.1.2.1.1 State Aeronautics Act

Public Utilities Code (PUC) Section 21669 requires the State of California Department of Transportation (Caltrans) to adopt noise standards applicable to all airports operating under a state permit, to the extent that these standards are not prohibited by federal law.

2.1.2.1.2 California Airport Noise Regulations

California Code of Regulations (CCR, Title 21, Division 2.5, Chapter 6) Section 5000 et seq. promulgates standards in accordance with PUC Section 21669. Section 5006 establishes a CNEL value of 65 dBA as the acceptable noise level for a reasonable person residing in the vicinity of an airport. Section 5020 establishes procedures for the respective county board of supervisors to declare an airport to have a "noise problem". For "noise problem" designated airports, the noise impact area is the area within the airport's 65 CNEL contour composing of incompatible land uses. Incompatible land uses include residences of all types; public and private schools; hospitals and convalescent homes; and churches, synagogues, temples, and other places of worship. These uses, however, may be deemed compatible if certain mitigation actions have been taken, as listed in Section 5014, including avigation easements and acoustical insulation.

2.1.2.1.3 California Building Code

The California Building Code (Title 24 of the CCR) contains standards for allowable interior noise levels associated with exterior noise sources. These standards apply to new hotels, motels, dormitories, apartment houses, and dwellings, excluding detached single-family residences. The standards state that interior noise levels attributable to exterior sources shall not exceed 45 dBA in any habitable room, either by DNL or CNEL. Although CCR Title 24

excludes detached, single-family residences, the California Department of Transportation, Division of Aeronautics encourages communities to adopt the 45 CNEL interior noise level to these residences as well.

2.1.2.1.4 <u>State of California Department of Health Services.</u> <u>Environmental Health Division</u>

The State of California Department of Health Services Environmental Division publishes recommended guidelines for mobile source noise and land use compatibility. Local jurisdictions are required to consider these guidelines when developing their general plan noise elements and determining acceptable noise levels within communities. These guidelines establish an exterior noise level of 60 CNEL as an acceptable level for single-family, duplex, and mobile homes. These guidelines are depicted in **Figure 4** below.

Exterior noise levels up to 65 CNEL are considered acceptable for multi-family units and transient lodging. Between 65 CNEL and 70 CNEL, exterior noise levels are only considered acceptable if buildings include noise insulation features to ensure a maximum interior noise level of 45 CNEL. Noise levels below 70 CNEL are acceptable for office and commercial buildings, while levels up to 75 CNEL are acceptable for industrial uses.

Land Use Category		Com	nmunity No L _{dn} or Cl		ure		
	55	60	65	70	75	80	INTERPRETATION:
Residential - Low Density Single Family, Duplex, Mobile Homes							Normally Acceptable
Residential - Multi. Family				h			Specified land use is satisfactory, based upon the assumption that any buildings involved are of normal conventional construction, without any special noise insulation
Transient Lodging - Motels, Hotels		T.		÷.		4	requirements.
Schools, Libraries, Churches, Hospitals, Nursing Homes							Conditionally Acceptable New construction or development should be undertaken only after a detailed analysis of the noise reduction
Auditoriums, Concert falls, Amphitheaters							requirements is made and needed noise insulation features included in the design. Conventional construction, but with closed windows and fresh air supply systems or air conditioning
Sports Arena, Outdoor Spectator Sports							will normally suffice.
Playgrounds, Neighborhood Parks							Normally Unacceptable New construction or development should generally be discouraged. If new construction or development does
Golf Courses, Riding Stables, Water Recreation, Cemeteries							proceed, a detailed analysis of the noise reduction requirements must be made and needed noise insulation features included in the design.
Office Buildings, Business Commercial and Professional							Clearly Unacceptable
Industrial, Manufacturing, Utilities, Agriculture							New construction or development should generally not be undertaken.

Figure 4 – Noise Exposure Levels and Land Use Compatibility

Source: California Department of Health Services, <u>Guidelines for the Preparation and Content of the Noise Element of the General Plan</u>, 1990.

2.1.2.2 **Ground-Borne Vibration**

2.1.2.2.1 **Caltrans Vibration Standards**

Caltrans provides thresholds for typical vibration human annoyance and guidelines/recommendations to limit ground-borne vibration based on the age and/or physical condition of structures located in close proximity to construction activity. According to Caltrans, vibration velocity levels greater than 0.04 inch per second PPV for continuous/frequent intermittent sources are distinctly perceptible to humans. Table 5 lists the Caltrans typical vibration annoyance thresholds. With respect to buildings, damage depends on the age and physical condition of the structure. Table 6 provides Caltrans guidelines for vibration damage threshold criteria. As indicated therein, while modern industrial/commercial buildings can endure vibration levels up to a maximum of 0.5 inch per second PPV, historic structures have a much lower vibration tolerance of 0.25 inch per second PPV.

Table 5

Land Use Category	Vibration Impact Level for Frequent Events (VdB)	Vibration Impact Level for Infrequent Events (VdB)
Category 1: Buildings where low ambient vibration is essential for interior operations	65	65
Category 2: Residences and buildings where people normally sleep	72	80
Category 3: Institutional land uses with primarily daytime use	75	83

Caltrans Vibration Thresholds for Typical Human Annoyance

VdB = 1 micro-inch per second

"Frequent events" is defined as more than 70 events per day.

"Infrequent events" is defined as less than 70 events per day.

Source: Caltrans, 2004

Table 6

Caltrans Vibration Criteria for Historic and Sensitive Buildings

Frequency Range (Hz)	Transient Vibration PPV (in/sec)	Steady-State Vibration PPV (in/sec)
1-10	0.25	0.12
10-40	0.25-0.5	0.12-0.25
40-100	0.5	0.25
Note: PPV = peak particle veloc Source: Caltrans, 2004	bity	<u> </u>

2.1.3 Local

2.1.3.1 Noise

2.1.3.1.1 County of Los Angeles Airport Land Use Plan

The County of Los Angeles Airport Land Use Commission Airport Land Use Plan establishes policies relevant to projects within Airport Influence Areas. These policies relate to noise, safety, and land use compatibility. These policies are intended to minimize the public's exposure to excessive noise and safety hazards within areas around public use airports. The Airport Land Use Plan includes the following policies related to noise:

- **Noise (N)-1:** Use the Community Noise Equivalent Level (CNEL) method for measuring noise impacts near airports in determining suitability for various types of land uses.
- **N-2:** Require sound insulation to insure a maximum interior 45 CNEL in new residential, educational, and health-related uses in areas subject to exterior noise levels of 65 CNEL or greater.
- **N-3:** Utilize the Table Listing Land Use Compatibility for Airport Noise Environments in evaluating projects within the planning boundaries.
- N-4: Encourage local agencies to adopt procedures to ensure that prospective property owners in aircraft noise exposure areas above current or anticipated 60 dBA CNEL are informed of these noise levels and of any land use restrictions associated with high noise exposure.

The Land Use Compatibility Table, shown in **Figure 5**, lists where within CNEL noise contours various land uses are considered satisfactory, require noise insulation, or should be avoided.

Land Use Category Residential Educational Facilities Commercial	Com	60	/ Noise 65	e Expo 70	osure 75
Educational Facilities					
Facilities		2			
Commercial					
Sommercial					
Industrial			8.		
Agriculture			1 ²		
Recreation			8	*	

2.1.3.1.2 City of Los Angeles

General Plan Noise Element

The City of Los Angeles General Plan Noise Element establishes policy guidelines and land use criteria related to noise. Applicable policies include:

- Encouragement of the use of quieter machinery and equipment;
- Consideration of the noise environment in land use planning; and
- New structures such as hotels and motels to be located in noise-impacted areas are required to include noise attenuation considerations in their designs and construction.

City of Los Angeles Municipal Code

The City of Los Angeles Noise Regulation is provided in Chapter 11 of the Los Angeles Municipal Code (Municipal Code or LAMC). Chapter 11, Article 1, Section 111.02 of the Municipal Code provides procedures and criteria for the measurement of the sound level of "offending" noise sources. These procedures recognize and account for perceived differences in the nuisance level of different types of noise and/or noise sources. Specifically, the procedures provide for a penalty of 5.0 dBA for steady high-pitched noise or repeated impulsive noises to account for the nuisance nature of these types of noise. Conversely, the procedures provide a credit of 5.0 dBA for noise occurring less than 15 minutes in a period of 60 consecutive minutes during the day, as short-term noise events are typically less of a nuisance than sustained noise levels.

The Noise Regulation defines ambient noise as the measured noise level averaged over a period of at least 15 minutes ($L_{eq(15 minute)}$). In order to determine whether the Noise Regulation has been violated, the sound level measurements of an offending noise are averaged over a minimum 15-minute duration, and compared with the baseline ambient noise levels. The Municipal Code provides presumed ambient noise levels, where the actual measured ambient conditions are not known or are less than the presumed daytime (7:00 a.m. to 10:00 p.m.) and nighttime (10:00 p.m. to 7:00 a.m.) minimum ambient noise levels defined in Municipal Code Section 111.02. These presumed ambient noise levels are provided in **Table 7**.

Table 7

	Presumed Noise Levels (dBA, L _{eq})			
Land Use Zone	Daytime (7:00 a.m. to 10:00 p.m.)	Nighttime (10:00 p.m. to 7:00 a.m.)		
Residential	50	40		
Commercial	60	55		
Manufacturing	60	55		
Heavy Manufacturing	65	65		

City of Los Angeles Presumed Ambient Noise Levels

Notes:

dBA = A-weighted decibels

 L_{eq} = Equivalent energy level

Source: Los Angeles Municipal Code, Chapter 11, Section 111.03

LAMC Section 41.40 also limits noise from construction equipment located within 500 feet of a residential zone to 75 dBA measured at a distance of 50 feet from the source, unless compliance with this limitation is technically infeasible (i.e., said noise limitations cannot be complied with despite the use of mufflers, shields, sound barriers, and/or other noise reduction devices or techniques during the operation of the equipment). The Noise Regulation prohibits construction noise between the hours of 9:00 p.m. and 7:00 a.m. Monday through Friday, Saturday before 8:00 a.m. and after 6:00 p.m., and do not allow construction noise on Sunday.

City of Los Angeles CNEL Guidelines

The City of Los Angeles has adopted the community noise compatibility guidelines established by the State of California Department of Health Services (CDHS) for use in assessing the compatibility of various land use types with a range of noise levels. **Table 8** presents the general guidelines for environmental noise levels and land use compatibility. The guidelines in the City of Los Angeles General Plan Noise Element are expressed in terms of CNEL limits for specific land uses. Such limits are classified into four categories: (1) "normally acceptable," (2) "conditionally acceptable," (3) "normally unacceptable," and (4) "clearly unacceptable". A CNEL value of 70 dBA is considered the dividing line between a "conditionally acceptable" and "normally unacceptable" noise environment for noise-sensitive land uses, including single-family and multi-family residences and schools.

Table 8

Community Noise Exposure CNEL, dBA				
Land Use	Normally Acceptable	Conditionally Acceptable	Normally Unacceptable	Clearly Unacceptable
Single Family, Duplex, Mobile Homes	50 to 60	55 to 70	70 to 75	above 70
Multi-Family Homes	50 to 65	60 to 70	70 to 75	above 70
Schools, Libraries, Churches, Hospitals, Nursing Homes	50 to 70	60 to 70	70 to 80	above 80
Transient Lodging- Motels, Hotels	50 to 65	60 to 70	70 to 80	above 80
Auditoriums, Concert Halls, Amphitheaters	-	50 to 70	-	above 65
Sports Arena, Outdoor Spectator Sports	-	50 to 75	-	above 70
Playgrounds, Neighborhood Parks	50 to 70	-	67 to 75	above 72
Golf courses, Riding Stables, Water, Recreation, Cemeteries	50 to 75	-	70 to 80	above 80
Office Buildings, Business and Professional Commercial	50 to 70	67 to 77	above 75	-
Industrial, Manufacturing, Utilities, Agriculture	50 to 75	70 to 80	above 75	-

City of Los Angeles Land Use Compatibility Guidelines for Noise

Notes:

dBA = A-weighted decibels

CNEL = Community Noise Equivalent Level

Normally Acceptable: Specified land use is satisfactory, based upon the assumption that any buildings involved are of normal conventional construction without any special noise insulation requirements. Conditionally Acceptable: New construction or development should be undertaken only after a detailed analysis of the noise reduction requirements is made and needed noise insulation features included in the design. Conventional construction, but with closed windows and fresh air supply systems or air conditioning will normally suffice.

Normally Unacceptable: New construction or development should generally be discouraged. If new construction or development does proceed, a detailed analysis of the noise reduction requirements must be made and needed noise insulation features included in the design.

Clearly Unacceptable: New construction or development should generally not be undertaken. Source: L.A. City CEQA Thresholds Guide, 2006, California Department of Health Services (DHS).

Municipal Code Section 111.03 states, "Where the ambient noise level is less than the presumed ambient noise level designated in this section, the presumed ambient noise level in this section shall be deemed to be the minimum ambient noise level for purposes of this chapter."

In accordance with the Municipal Code, a noise level increase of 5.0 dBA over the existing average ambient noise level at an adjacent property line is considered a noise violation. This

standard applies to: (1) radios, televisions, and similar devices as defined in Municipal Code Section 112.01; (2) air conditioning, refrigeration, heating, pumping, filtering equipment as defined in Municipal Code Section 112.02; (3) powered equipment intended for repetitive use in residential areas and other machinery, equipment, and devices as defined in Municipal Code Section 112.04; and (4) motor vehicles driven on site as defined in Municipal Code Section 114.02.

Municipal Code Section 112.05 sets a maximum noise level for powered equipment of 75 dBA at a distance of 50 feet when operated within 500 feet of a residential zone. Compliance with this standard is only required where "technically feasible". Municipal Code Section 41.40 also prohibits construction between the hours of 9:00 p.m. and 7:00 a.m. Monday through Friday which would disturb people occupying sleeping quarters in any dwelling, hotel or apartment, or other place of residence. Additionally, construction is prohibited between 6:00 p.m. and 8:00 a.m. on Saturday, and at any time on Sunday within 500 feet of residential buildings. In general, the City of Los Angeles Department of Building and Safety enforces noise ordinance provisions related to equipment and the City of Los Angeles Police Department enforces provisions related to noise generated by people.

No specific noise thresholds are provided for "general noise," except for Article 6 of the Noise Regulation, which makes it "unlawful for any person to willfully make or continue, or cause to be made or continued, any loud, unnecessary, and unusual noise which disturbs the peace or quiet of any neighborhood or which causes discomfort or annoyance to any reasonable person of normal sensitiveness residing in the area." The Noise Regulation does not provide any definition of "loud" noise.

2.1.3.2 Ground-Borne Vibration

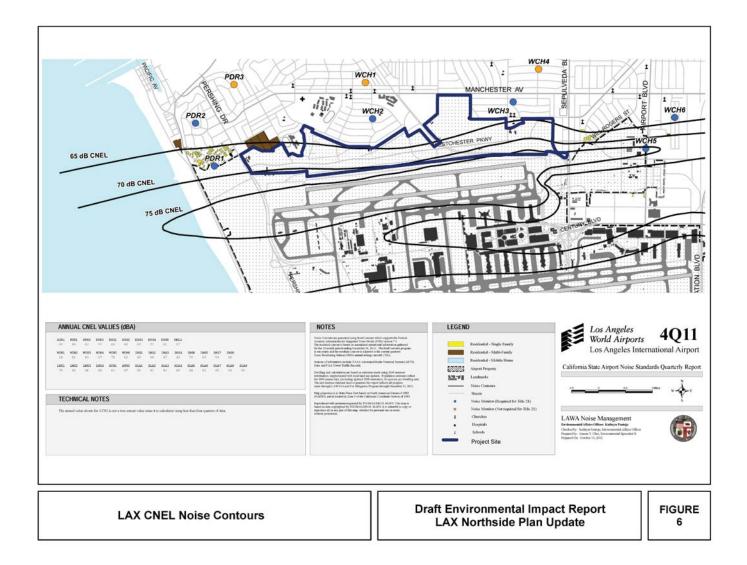
The City of Los Angeles does not currently have any adopted standards, guidelines, or thresholds relative to ground-borne vibration. As such, policies and guidelines from federal, state, and other local governmental agencies are utilized to assess impacts due to ground-borne vibration. In most circumstances common ground-induced vibrations related to roadway traffic and construction activities pose no threat to buildings or structures.

2.1.3.2.1 County of Los Angeles Vibration Standards

The Los Angeles County Noise Regulation (LACMC Section 12.08.350) provides a presumed perception threshold of 0.01 inch per second RMS. This threshold applies to ground-borne vibrations from long-term operational activities, such as traffic, and not to short-term activities, such as construction. Therefore, the 0.01 inch per second RMS vibration criteria is used in connection a project's operational related vibration impacts.

2.2 Existing Conditions

2.2.1 Noise


The existing noise environment at and around the Project site consists of noise from airportrelated activities including aircraft departing, landing, and taxiing on runways and connecting taxiways; noise from vehicular traffic movements on local roadways; and noise from other community sources, such as use of lawn mowers, barking dogs, etc.

2.2.1.1 On-Site Environment

The Project site is located directly north of the LAX North Airfield and along Westchester Parkway, a major roadway. Aircraft activity and local roadways are the dominant source of noise on, and in the vicinity of the Project site. The Project site consists mainly of vacant, previously disturbed land with minimal noise-producing uses as described below.

The dominant source of noise heard on the Project site is related to aircraft operations at LAX. LAWA maintains an aircraft noise monitoring system to monitor and manage aircraft noise in the communities surrounding LAX. This system, the Airport Noise and Operations Monitoring System (ANOMS), includes continuous airport noise monitoring at 38 noise monitoring locations and is used to develop existing CNEL contours resulting from aircraft operations at LAX. LAWA developed the CNEL contours using the FAA's Integrated Noise Model (INM) for noise levels in the vicinity of LAX that include 65, 70, and 75 dBA CNEL contours, superimposed over a land use map. The contours developed from the INM are adjusted at the 38 noise monitoring locations based on their annual noise levels to create LAX's guarterly noise contour maps. which are prepared by LAWA pursuant to California Airport Noise Standards (CCR, Title 21, §5000 et seq.).¹ These contours are established by modeling annual operations at the Airport and adjusting the levels based on actual noise measurement data for that time period. Each 4th Quarter map is based on calendar year information for the respective year. The contours shown are measured in CNEL (Community Noise Equivalent Level) for the 65, 70 and 75 dBA noise levels, LAX annualized CNEL contours are for the fourth guarter of 2011, the most recent available contours at the time of preparation of this analysis, and are depicted in Figure 6.

¹ California Department of Transportation, Division of Aeronautics website, http://www.dot.ca.gov/hq/planning/aeronaut/avnoise.html, accessed June 2012.

This Page Intentionally Left Blank

2.2.1.1.1 LAX Northside Center District

Noise sources at the LAX Northside Center District include roadway noise associated with Sepulveda Westway, 88th Street, Manchester Avenue, Lincoln Boulevard, Westchester Parkway, Emerson Avenue, and La Tijera Boulevard. Point (or stationary) sources of noise are associated with the existing Westchester Golf Course, First Flight Child Development Center, and City of Los Angeles Fire Department (LAFD) Station No. 5, and adjacent residential and commercial uses. Noises typically related to these uses include people talking, doors slamming, vehicle and truck noise, landscape equipment operations, domestic animals, and similar noises.

Based on the fourth quarter of 2011 LAX CNEL contours Area 11, Area 12A East, and Area 12 B within the LAX Northside Center District experience aircraft noise at and below 70 CNEL. Area 12A West experiences aircraft noise between 65 CNEL and 70 CNEL, and Area 13 experiences aircraft noise below 65 CNEL.

2.2.1.1.2 LAX Northside Campus District

Sources of noise heard on the LAX Northside Campus District include roadway noise associated with Loyola Boulevard, Westchester Parkway, Falmouth Avenue, and Pershing Drive. The vast majority of the LAX Northside Campus District is vacant and does not generate nose. Area 1 contains the Jet Pets animal quarantine facility. Noises typically related to this uses include people talking, doors slamming, vehicle and truck noise, landscape equipment operations, domestic animals, and similar noises.

Based on the fourth quarter of 2011 LAX CNEL contours Area 1, Area 2, and Area 3 within the LAX Northside Campus District experience aircraft noise between 65 CNEL and 70 CNEL. Some portions of Area 2 experience aircraft noise below 65 CNEL.

2.2.1.1.3 LAX Northside Airport Support District

Sources of noise heard on the LAX Northside Airport Support District include roadway noise associated with Westchester Parkway, Pershing Drive, Loyola Boulevard, Lincoln Boulevard, and Sepulveda Boulevard. The vast majority of the LAX Northside Airport Support District is vacant or used for outdoor storage and does not generate nose. Area 4 contains airport support bungalows. Noises typically related to this uses include people talking, doors slamming, vehicle and truck noise, landscape equipment operations, and similar noises.

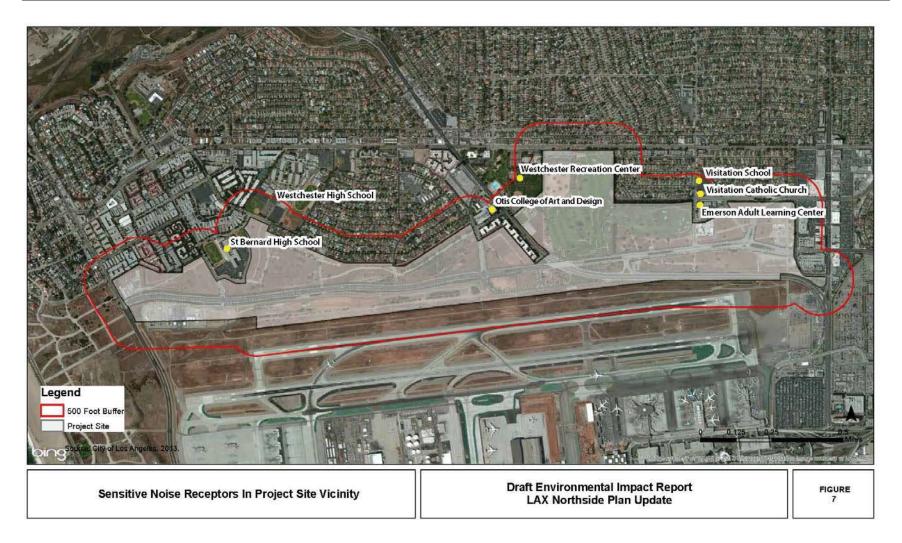
The LAX Northside Airport Support District is the closest of the proposed Project Districts to the LAX North Airfield and therefore experiences the highest aircraft related noise levels. Based on the fourth quarter of 2011 LAX CNEL contours Area 4, Area 5, Area 6, Area 7, Area 8, and Area 9 within the LAX Northside Airport Support District experience aircraft noise between 65 CNEL and 75 CNEL. A small portion of Area 9 and all of Area 10 experience aircraft noise above 75 CNEL.

2.2.1.2 Off-Site Environment

The characterization of the existing off-site noise environment includes a description of existing noise levels at representative off-site noise sensitive locations as measured through noise monitoring and existing exposure of noise-sensitive land uses to airport-related noise based on the current LAX CNEL contours.

The dominant noise sources affecting noise-sensitive uses in the immediate vicinity of the Project site are aircraft arrival and departure noise, and major arterial roadways, including Sepulveda Boulevard, Manchester Avenue, and Lincoln Boulevard. At more distant locations in the communities of Westchester and Playa Del Rey, local traffic noise also contributes to the overall noise environment.

2.2.1.2.1 <u>Noise-Sensitive Receptors</u>


Some land uses are considered more sensitive to intrusive noise than others based on the types of activities typically involved at the receptor location. The City of Los Angeles CEQA Thresholds Guide states that residences, schools, motels and hotels, libraries, religious institutions, hospitals, nursing homes, auditoriums, concert halls, amphitheaters, and parks are generally more sensitive to noise than commercial and industrial land uses.

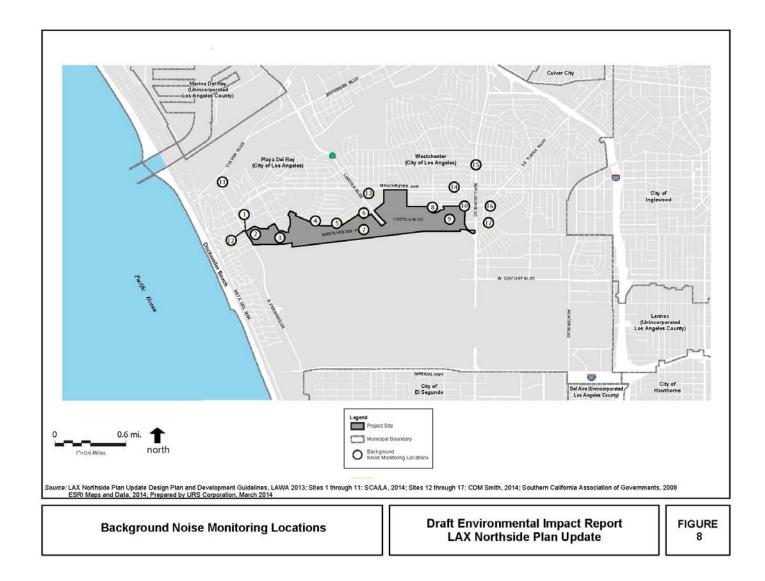
Noise-sensitive receptors in the vicinity of the Project site vicinity were identified based on the relative distance from the receptors to the Project site (within 500 feet), in accordance with the City of Los Angeles CEQA Thresholds Guide screening criteria (**Figure 7**). Existing noise receptors that represent sensitive uses within 500 feet of the Project site include:

- **Residential Uses.** There are single- and multi-family uses north of the Project site located in the communities of Westchester and Playa Del Rey;
- **Religious Institutions.** The Visitation Catholic Church, located at the corner of Emerson Avenue and West 88th Street;
- Schools. St. Bernard High School located at the corner of St. Bernard Street and Falmouth Avenue; Westchester High School Located at the corner of West 91st Street and Park Hill Drive; Otis College of Art and Design located at the corner of Lincoln Boulevard and Loyola Boulevard; Visitation School located at the corner of Emerson Avenue and West 87th Place; and Emerson Adult Learning Center Located at the corner of Emerson Avenue and West 88th Street;
- **Parks.** Westchester Recreation Center located at the corner of Lincoln Boulevard and West Manchester Avenue; and
- **Libraries.** Westchester-Loyola Branch Library located at the corner of Manchester Avenue and Lincoln Boulevard.

2.2.1.2.2 <u>Airport Noise Exposure</u>

The most recent LAX CNEL contours (**Figure 6**) indicate that the existing airport noise exposure at the nearest noise-sensitive areas in Westchester, north of the Project site range between 60 CNEL and 61 CNEL in areas south of Manchester Avenue (ANOMS monitoring locations WCH2 and WCH3). Airport noise exposure in areas of the community of Westchester north of Manchester Avenue (ANOMS monitoring locations WCH1 and WCH4) ranges between 54 to 57 CNEL. The noise-sensitive land uses in the community of Playa Del Rey closest to the Project site (represented by ANOMS monitoring location PDR1) are currently exposed to an airport noise level of 68 CNEL.

This Page Intentionally Left Blank


2.2.1.2.3 Ambient Noise Levels

Besides aircraft flight operations at LAX, vehicular traffic movements on local roadways is the other major source of noise in areas in the vicinity of the Project site. In fact, in some areas of the communities of Westchester and Playa Del Rey, along the major arterial streets, traffic noise is the dominant source of environmental noise.

Traffic noise exposure at community locations throughout the neighborhoods proximate to the Project site are characterized based on short-term noise monitoring data that were gathered previously by LAWA. In order to comprehensively quantify existing ambient noise levels throughout the Project site and adjoining noise-sensitive neighborhoods, additional background noise measurements were conducted at 11 other locations in the Project site vicinity in October and November 2012. **Table 9** summarizes the results of the noise measurements conducted at community locations. Complete measurement data is included in Attachment B- Noise Measurement Data. **Figure 8** shows the ambient noise monitoring locations. Airport ambient noise monitoring was conducted for approximately eight hours in each location, beginning between the hours of 8:20 a.m. and 10:00 a.m.

As shown in **Table 9**, the minimum measured L_{eq} , dBA in the Project site vicinity is 59.7 dBA L_{eq} , near 91st Street and Stanmoor Drive (receptor location 4). The maximum measured L_{eq} in the Project site vicinity is 75.4 dBA L_{eq} at Kentwood Avenue and Manchester Avenue (receptor location 14). Typical sources of noise included aircraft activity, cars, and trucks

This Page Intentionally Left Blank

This Page Intentionally Left Blank

Receptor Location	Land Use Type	Address	Measured L _{eq} , dBA
1	Residential	8828 Pershing Dr. (Pershing Dr. & Waterview St.)	69.8
2	Commercial/Vacant	Jet Pets Property	64.1
3	Vacant	Westchester Parkway & Falmouth Ave.	70.1
4	Residential	91 st St. & Stanmoor Dr.	59.7
5	Residential	91 st St. & Rayford Dr.	62.0
6	Residential/Institutional	Loyola & La Tijera Blvd.	63.9
7	Vacant	Westchester Pkwy. & Loyola Blvd.	70.7
8	Golf Course/Residential/ Church/Institutional	Emerson Ave. & 88 th St.	61.4
9	Vacant	La Tijera Blvd. & Westchester Pkwy.	68.1
10	Residential	La Tijera Blvd. & El Manor Ave.	69.3
11	Residential	8100 Pershing Dr. (Pershing & Cabora Dr.)	67.4
12	Residential	8880 Pershing Dr. (near Waterview St.), Playa Del Rey	69.1
13	Westchester-Loyola Branch Library	7114 West Manchester Ave., Westchester	69.3
14	Residential	8605 Kentwood Ave. (near W. Manchester Ave.), Westchester	75.4
15	Residential	8300 S. Sepulveda Blvd. (near 83 rd St.), Westchester	74.3
16	Wish Charter Elementary School	8740 La Tijera Blvd. (Near Sepulveda Eastway), Westchester	68.0
17	Residential	8957 Kittyhawk Ave. (at Westchester Parkway), Westchester	69.5

Summary of Measured Existing (2012) Ambient Noise Levels^a

Notes:

^a Includes multiple noise sources, based on measurements conducted February, October, and November 2012.

dBA = A-weighted decibels

 L_{eq} = equivalent energy level

Sources: Sites 1 through 11: SCA/LA, 2012; Sites 12 through 17: CDM Smith, 2012

2.2.1.2.4 Traffic Noise Levels

In addition to the ambient noise measurements conducted in the vicinity of the Project site, the existing traffic noise on local roadways in the surrounding areas near the Project site was calculated to quantify the hourly L_{eq} . The traffic data for the traffic noise evaluation were

obtained through the traffic study prepared for the proposed Project (Gibson Transportation, 2013). The traffic data for existing conditions were utilized in the FHWA Traffic Noise Model (TNM) to estimate peak-hour traffic noise levels at fixed distance from each roadway segment.

Table 10 provides the calculated hourly L_{eq} for the analyzed roadway segments based on existing AM and PM peak traffic volumes. As shown, the existing L_{eq} due to surface street traffic volumes ranges in the AM peak hour from a low of 56.6 dBA L_{eq} north of Manchester Avenue and west of Pershing Drive to a high of 68.2 dBA L_{eq} west of Lincoln Boulevard and north of Loyola Boulevard. In the PM peak hour existing Leq due to surface street traffic volumes ranges from a low of 56.9 dBA L_{eq} east of Loyola Boulevard and south of Westchester Parkway to a high of 68.4 dBA L_{eq} west of Lincoln Boulevard and north of Manchester Avenue.

Table 10

	Receiver	Hourly	L _{eq} , dBA
Roadway Segment	Location (Relative to Road) ¹	Existing (2012) AM Peak Hour	Existing (2012) PM Peak Hour
Manahastar Ava Fast of Lincoln Dlud	North	64.7	65.1
Manchester Ave., East of Lincoln Blvd.	South	64.4	65.0
Manahastar Ava, West of Lincoln Plyd	North	64.1	64.3
Manchester Ave., West of Lincoln Blvd.	South	64.6	64.2
Lincoln Plyd North of Manchaster Ava	West	67.7	68.4
Lincoln Blvd., North of Manchester Ave.	East	67.9	68.3
Lincoln Dlvd South of Manahastar Ava	West	67.3	67.8
Lincoln Blvd., South of Manchester Ave.	East	66.7	67.2
Manahastar Ava East of Darahing Dr	North	62.1	62.7
Manchester Ave., East of Pershing Dr.	South	61.2	63.5
Manahastar Ava West of Parahing Dr	North	56.6	62.2
Manchester Ave., West of Pershing Dr.	South	56.8	63.9
Derebing Dr. North of Manchaster Ava	West	63.2	61.3
Pershing Dr., North of Manchester Ave.	East	64.5	62.9
Parabiag Dr. South of Manahastar Ava	West	62.7	61.5
Pershing Dr., South of Manchester Ave.	East	62.9	61.6
Westshoster Diving Fast of Derships Dr	North	60.3	60.6
Westchester Pkwy., East of Pershing Dr.	South	60.4	60.5
Derahing Dr. North of Westshester Divers	West	63.0	63.1
Pershing Dr., North of Westchester Pkwy.	East	63.1	63.2

Existing Hourly Traffic Noise Levels

	Receiver	Hourly	L _{eq} , dBA
Roadway Segment	Location (Relative to Road) ¹	Existing (2012) AM Peak Hour	Existing (2012) PM Peak Hour
Densking Dr. Oeuth of Westehester Divers	West	63.4	63.2
Pershing Dr., South of Westchester Pkwy.	East	62.9	62.6
Manahastar Aug. East of Falmouth Aug	North	63.6	64.2
Manchester Ave., East of Falmouth Ave.	South	64.0	64.2
Menchanter Ave. Ment of Folgerith Ave	North	64.1	64.3
Manchester Ave., West of Falmouth Ave.	South	64.2	64.6
Folgeneith Ave. North of Monohootor Ave	West	57.5	58.1
Falmouth Ave., North of Manchester Ave.	East	57.1	57.7
Folgerigh Ave. South of Monchester Ave	West	61.2	59.4
Falmouth Ave., South of Manchester Ave.	East	61.8	59.6
Mostebaster Divery Fast of Falmouth Ave	North	66.5	65.3
Westchester Pkwy., East of Falmouth Ave.	South	67.1	65.1
Mastehaster Division Mast of Falmouth Ave	North	65.1	64.2
Westchester Pkwy., West of Falmouth Ave.	South	65.6	64.2
Folgerith Ave. porth of Westshooter Divers	West	64.4	60.4
Falmouth Ave., north of Westchester Pkwy.	East	63.6	60.2
Folmerster eeste of Westshester Divers	West	59.1	57.7
Falmouth, south of Westchester Pkwy.	East	59.1	58.0
Levels Divid West of Lincoln Divid	North	59.9	60.0
Loyola Blvd., West of Lincoln Blvd.	South	60.5	60.3
Lincoln Divid. North of Loviele Divid	West	67.9	68.2
Lincoln Blvd., North of Loyola Blvd.	East	68.2	67.8
Lincoln Dhud. Couth of Louisle Dhud	West	67.2	67.5
Lincoln Blvd., South of Loyola Blvd.	East	66.8	66.7
Westsheater Diving Fast of Louisia Divisi	North	64.0	62.4
Westchester Pkwy., East of Loyola Blvd.	South	63.5	61.9
Montohonton Digun, Montof Louisia Divisi	North	63.4	62.0
Westchester Pkwy., West of Loyola Blvd.	South	63.7	61.8

Existing Hourly Traffic Noise Levels

	Receiver	Hourly I	L _{eq} , dBA
Roadway Segment	Location (Relative to Road) ¹	Existing (2012) AM Peak Hour	Existing (2012) PM Peak Hour
Levels Divid month of Monthly of a Diving	West	60.5	59.2
Loyola Blvd., north of Westchester Pkwy.	East	60.8	59.2
Lougle Divid couth of Westshooter Diving	West	59.6	57.2
Loyola Blvd., south of Westchester Pkwy.	East	59.1	56.9
	North	66.2	65.7
Manchester Ave., East of Emerson	South	65.9	65.8
	North	66.0	65.5
Manchester Ave., West of Emerson	South	65.7	65.8
	West	62.2	61.2
Emerson Ave., north of Manchester	East	61.9	61.2
	West	62.0	61.6
Emerson Ave., south of Manchester	East	61.8	61.4
Westsheeter Division Fact of La Tilana Divis	North	61.9	60.0
Westchester Pkwy., East of La Tijera Blvd.	South	61.5	59.6
Westshaster Diverse West of La Tilana Dive	North	63.8	61.9
Westchester Pkwy., West of La Tijera Blvd.	South	63.5	61.8
Le Tiere Divid North of Mostehaster Division	West	60.8	58.9
La Tijera Blvd., North of Westchester Pkwy	East	60.1	58.4
Le Tilere Divel - Feet of Consultade Wasterser	North	61.8	61.9
La Tijera Blvd., East of Sepulveda Westway	South	61.3	61.6
Le Tilere Dhud Meet of Constructe Meetsurv	North	61.3	60.5
La Tijera Blvd., West of Sepulveda Westway	South	61.4	60.5

Existing Hourly Traffic Noise Levels

Existing Hourly Traffic Noise Levels

	Receiver	Hourly L _{eq} , dBA			
Roadway Segment	Location (Relative to Road) ¹	Existing (2012) AM Peak Hour	Existing (2012) PM Peak Hour		
Sonulyada Waatway, north of La Tijara Divd	West	57.6	60.2		
Sepulveda Westway, north of La Tijera Blvd.	East	57.8	60.3		
Convilvado Washvay, south of La Tijara Divid	West	57.8	59.1		
Sepulveda Westway, south of La Tijera Blvd.	East	57.5	59.3		

Notes:

¹ Receiver is at a reference distance of 100 feet from roadway centerline.

dBA = A-weighted decibels

 L_{eq} = equivalent energy level

Source: URS Corporation, 2012

2.2.1.2.5 Ground-borne Vibration

Based on field observations, currently the only source of substantial ground-borne vibration at the LAX Northside Center District, LAX Northside Campus District, and LAX Northside Airport Support District is vehicular travel (e.g., refuse trucks, delivery trucks, school buses, and transit buses on local roadways. Areas within the LAX Northside Airport Support District also experience vibration related to adjacent aircraft arrivals and departures on the LAX North Airfield. According to the FTA, typical road traffic induced vibration levels are unlikely to be perceptible by people. The FTA indicates that it is unusual for vibration of trucks and buses to be perceptible even in locations close to major roadways.² Therefore, based on FTA published vibration data, the existing ground vibration environment in the vicinity of the Project site would be below the level that is typically perceptible.

² FTA, *Transit Noise and Vibration Impact Assessment*, Chapter 7, 2006.

3.0 Impact Analysis

3.1 Methodology

The analysis of the noise environments (existing and future) in this section is based on locationspecific noise level monitoring, regularly collected data from the LAX ANOMS system, LAX's quarterly CNEL noise contour maps, technical reports, published reports, noise prediction modeling, empirical observations, and traffic volume data provided by the LAX Northside Plan Update traffic study. The analysis considers potential noise impacts related to construction and operation of the proposed Project.

3.1.1 On-Site Construction Noise

Construction noise impacts were evaluated by calculating the proposed Project-related construction noise levels at nearby sensitive receptor locations and comparing these construction-related noise levels to measured existing ambient noise levels (i.e., noise levels without construction noise). Construction equipment noise effects are evaluated using reference construction equipment noise level data and applying a "point" source distance attenuation of 6.0 dB per doubling of distance from the sources to noise-sensitive receivers. Construction noise levels are quantified at predetermined distances from each construction site using reference equipment noise levels, number of equipment utilized during a typical construction day within a given area, assumed equipment utilization rates, locations of construction activities, and locations of nearest noise-sensitive receptors to each construction area. Construction activities and equipment are estimated based on anticipated proposed Project building types. The anticipated proposed Project building types include investment quality office buildings (building type O1, O2, and O3), two-story research and development buildings (building type R1 and R2), retail and shopping buildings of two- to three-stories (building type S1 and S2), special purpose community buildings (building types C1, C2 and C3), and airport facility buildings for offices and storage areas with minimal HVAC requirements (building types F1 and F2). Reference construction equipment noise levels are obtained from established and commonly used sources, including data from the Federal Highway Administration (FHWA) Roadway Construction Noise Model (RCNM) and the United State Environmental Protection Agency (USEPA).

Since exact locations of construction activities during each phase of construction are not known, such locations are estimated to be centrally located within each Area during the grading, clear and grub, landscaping, and paving of the given Area. During the building foundation and superstructure construction, the assumed locations of construction are at the building setback closest to the nearest noise-sensitive receptors.

The noise analysis considers the attenuation provided by the terrain that would be achieved with the proposed Project. It is based on average distances and terrain elevations between the construction activities and the nearest sensitive receivers and represents average noise levels during each phase of construction.

To determine the level of significance of impacts from construction equipment noise at the noise-sensitive receptors, the predicted construction noise levels are compared to the measured existing daytime background noise levels in proximity to the given receptors. Increases in noise levels are then compared to the City of Los Angeles CEQA Thresholds Guide for construction to assess the level of significance.

3.1.2 Off-Site Roadway Noise (During Construction and Operation)

Potential construction traffic noise impacts are evaluated by estimating temporary changes in traffic noise exposure due to the addition of construction trucks and employee traffic for the proposed Project to existing traffic volumes on roadway segments in the vicinity of noise-sensitive areas adjoining the Project site.

The assessment of off-site noise levels focuses on how on-site activities and increased traffic levels would impact existing land uses adjacent to or near the Project site. This analysis specifically focuses on impacts to existing noise-sensitive uses, or those uses that would be most sensitive to an increase in noise levels. Noise sensitive uses include single- and multi-family residential uses, schools, churches, hospitals, government centers, senior citizen centers, and recreation centers. Representative noise-sensitive locations that were selected for analysis are identified in **Figure 7**. While other noise-sensitive locations are located in the vicinity of the Project site, these locations provide a conservative representative analysis of the noise conditions in the Project site vicinity.

Potential Project-related traffic noise impacts are evaluated by comparing the estimated traffic noise exposure due to traffic volumes on area roadways for existing conditions and future (2022) traffic noise levels without the proposed Project to future (2022) traffic noise levels with the proposed Project. These comparisons are performed for roadway segments in the vicinity of noise-sensitive areas adjoining the Project site. Predicted changes in traffic noise levels due to the proposed Project are then compared with the traffic noise significance thresholds to determine the level of significance of noise impacts.

The traffic data for the traffic noise evaluation for existing, future without proposed Project (2022), and future with proposed Project (2022) were obtained through the traffic study approved for the proposed Project (Gibson Transportation, 2013). Future conditions include all projected regional development (as projected by the Southern California Association of Governments) in the Study Area between 2010 and 2022, including related projects. The future with project condition is also the cumulative condition for purposes of the noise cumulative impacts analysis. The traffic data for existing, future (2022) without proposed Project, and future with the proposed Project were utilized in the FHWA Traffic Noise Model (TNM) to estimate peak-hour traffic noise levels at a fixed distance from each roadway segment. The AM and PM peak-hour traffic volumes used in the traffic noise evaluation are included in Attachment C- AM and PM Peak-hour Traffic Volumes.

3.1.3 On-Site Airport Noise Exposure (During Operation)

The analysis of on-site noise levels assesses the compatibility of the proposed on-site land uses with proposed on-site activities, adjacent off-site land uses and activities, and with roadway traffic noise that would occur proximate to the Project site. Potential proposed Project-related land use-noise incompatibility is assessed by evaluating the noise exposure across the Project site, and the proposed land uses within each noise exposure level.

Noise exposure, as measured by CNEL, was obtained by the quarterly LAX noise reports. These noise contours were overlain on the proposed Project land use map to determine potential future noise exposure levels for various land use types. The exposure levels were then compared to applicable noise standards to determine significance.

3.1.4 Stationary Point-Source Noise (During Project Operations)

Outdoor stationary noise impacts have been evaluated by first identifying the noise levels generated by outdoor stationary noise sources such as outdoor mounted mechanical equipment, on-site loading dock activities, and use of parking structures. Hourly L_{eq} noise levels from each noise source at the surrounding sensitive receptor locations were then calculated and compared to existing ambient noise levels. As part of this analysis, noise performance criteria have been specified to meet the City of Los Angeles' noise standards where detailed information for the aforementioned noise source was not available.

3.1.5 Ground-Borne Vibration (During Construction)

Ground-borne vibration impacts were evaluated by identifying potential vibration sources, estimating the vibration levels at the effected receptor, and comparing the proposed Projectrelated ground vibration levels with the proposed Project significance thresholds, as described below. The vibration source levels for the various types of equipment anticipated to be used were based on data provided by the FTA (2006).

3.2 Significance Thresholds

According to the City of Los Angeles CEQA Thresholds Guide, a significant construction equipment noise impact would occur if:

- Construction activities lasting more than one day would exceed existing ambient exterior noise levels by 10 dBA or more at a noise-sensitive use;
- Construction activities lasting more than 10 days in a three month period would exceed existing ambient exterior noise levels by 5.0 dBA or more at a noise-sensitive use; or
- Construction activities would exceed the ambient exterior noise level by 5.0 dBA at a noisesensitive use between the hours of 9:00 p.m. and 7:00 a.m. Monday through Friday, before 8:00 a.m. or after 6:00 p.m. on Saturday, or at any time on Sunday.

According to the City of Los Angeles CEQA Thresholds Guide, a project would normally have a significant impact on noise levels from project operations if:

• The project causes the ambient noise level measured at the property line of affected uses to increase by 3.0 dBA in CNEL to or within the "normally acceptable" or "clearly unacceptable" category as shown on **Table 8**, or any 5 dBA or greater noise increase.

According to the City of Los Angeles CEQA Thresholds Guide, a project would normally have a significant impact on airport-related noise levels from project operations if:

• Noise levels at a noise sensitive use attributable to airport operations exceed 65 dBA CNEL and the project increases ambient noise levels by 1.5 dBA CNEL or greater.

3.3 **Project Impacts**

3.3.1 On-Site Construction Activities

Three CEQA thresholds of significance apply to construction noise. The first threshold addresses construction activities lasting more than one day. The second threshold identifies a different standard for construction activities lasting more than ten days in a three-month period. Proposed Project construction is expected to occur at varying levels over a several year period between 2016 and 2022. Therefore, it is concluded that the first threshold is not applicable to the proposed Project and the second threshold for construction activities lasting more than ten days in a three-month period is the applicable threshold. The third threshold addresses day and time limitations on when construction activities can occur in proximity to residential uses. In accordance with LAMC Section 41.40 and LAX Master Plan MM-N-10, the proposed Project's construction hours would not extend into the time frames set forth in the third threshold. Therefore, no analysis related to this threshold is required.

Noise impacts from construction activities occurring within the Project site would be a function of the noise generated by construction equipment, the equipment location, the timing and duration of the noise-generating activities, and the relative distance to noise sensitive receptors. Development of the proposed Project would include grading, clear and grub, installation of utilities, building foundations, building construction, architectural coating, and paving. Each one of these activities would include a mix of light and heavy equipment types such as tractors, forklifts, rollers, air compressors, and dozers. In addition to the equipment used on-site, trucks would be used to deliver equipment and building materials, and to haul away waste materials. Smaller equipment would also be used throughout the site during the construction phases, such as saws, hammers, and jackhammers. Construction equipment would generate both steady state and episodic noise that would be heard both on and off the Project site.

Development is anticipated to occur in two phases between 2016 and 2022. Development of each Area would require permit approvals and consist of site preparation, and construction of buildings and site improvements. Typical site preparation actions that would be required to prepare the Areas for future development would include earthwork, including grading, clearing of brush and debris, and excavation. During the first phase, from 2016 to 2018, 1,300,000 net square feet would be developed. During the second phase, from 2019 to 2022, the remaining 1,020,000 square feet would be developed.

Each stage involves the use of different kinds of construction equipment and, therefore, has its own distinct noise characteristics. Individual pieces of construction equipment that would be used for the proposed Project construction would produce maximum noise levels of 70 dBA to 90 dBA at a reference distance of 50 feet from the noise source, as shown in **Table 11**. These construction equipment reference noise levels are based on the FHWA Roadway Construction Noise Model User's Guide (RCNM, 2006), which is a report containing actual measured noise data for various construction equipment utilized in major construction sites. The RCNM reference noise levels used to estimate the construction noise levels by phase that are listed in **Table 12** can be found in **Table 11**. It is important to note that these maximum noise levels would occur when equipment is operating under full power conditions. However, equipment used on construction sites typically operates at less than full power. Specifically, the estimated acoustical usage factor (i.e., the percentage of time that particular equipment is anticipated to be in full power operation during a typical construction day) is shown in **Table 12**. Thus, the noise levels that are presented in **Table 11** are conservative.

Equipment Description	Acoustical Usage Factor (%)	Spec. 721.560 L _{max} at 50 feet (dBA, slow)	Actual Measured L _{max} at 50 feet (dBA, slow) samples average.
Impact Pile Driver**	20	95	101
Vibratory Pile Driver	20	95	101
Sand Blasting (single nozzle)	20	85	96
Sheers (on backhoe)	40	85	96
Hydra Break Ram**	10	90	N/A
Mounted Impact Hammer (hoe ram)**	20	90	90
Jackhammer**	20	85	89
Clam Shovel (dropping)**	20	93	87
Blasting**	50	85	N/A
Concrete Saw	20	90	90
Pavement Scarifier	20	85	90
Vibrating Hopper	50	85	87
All Other Equipment > 5 HP	50	85	N/A
Compressor (air)	50	85	N/A
Generator(<25KVA, VMS Signs)	50	85	N/A
Grader	40	85	N/A
Horizontal Boring Hydraulic Jack	50	85	N/A
Pneumatic Tools	50	85	85
Vacuum Excavator (Vac-Truck)	40	85	85
Auger Drill Rig	20	85	84
Chain Saw	20	85	84
Flat Bed Truck	40	84	N/A
Rivet Buster/Chipping Gun**	20	85	79
Scraper	40	85	84
Tractor	40	84	N/A
Boring Jack Power Unit	50	80	83
Concrete Batch Plant	15	83	N/A
Gradall	40	85	83
Warning Horn	5	85	83
Dozer	40	85	82
Grapple (on backhoe)	25	80	82

RCNM Construction Equipment Reference Noise Levels

Equipment Description	Acoustical Usage Factor (%)	Spec. 721.560 L _{max} at 50 feet (dBA, slow)	Actual Measured L _{max} at 50 feet (dBA, slow) samples average.
Vacuum Street Sweeper	10	80	82
Concrete Pump Truck	20	82	81
Crane	16	85	81
Excavator	40	85	81
Generator	50	82	81
Pumps	50	77	81
Rock Drill	20	85	81
Bar Bender	20	80	N/A
Drum Mixer	50	80	80
Roller	20	85	80
Slurry Trenching Machine	50	82	80
Soil Mix Drill Rig	50	80	N/A
Vibratory Concrete Mixer	20	80	80
Concrete Mixer Truck	40	85	79
Drill Rig Truck	20	84	79
Front End Loader	40	80	79
Ventilation Fan	100	85	79
Backhoe	40	80	78
Compactor (ground)	40	80	78
Slurry Plant	100	78	78
Paver	50	85	77
Dump Truck	40	84	76
Man Lift	20	85	75
Pickup Truck	40	55	75
Welder/Torch	40	73	74
Refrigerator Unit	100	82	73

RCNM Construction Equipment Reference Noise Levels

Notes:

L_{max} = Maximum noise level

dBA = A-weighted decibels

**impact device

Source: FHWA Roadway Construction Noise Model

Construction Equipment Noise Levels by Construction Phase

Equipment Type	Max Noise Level at 50 feet (dBA)	Hourly Utilization Rate (%)
Grading		
Graders	85	50
Rubber Tired Dozers	82	50
Tractors/Dozers/Backhoes	84	50
Clear & Grub		
Crawler Trucks	80	40
Dumpsters/Tenders	76	40
Excavators	81	40
Generator Sets	73	50
Graders	85	40
Rough Terrain Forklifts	70	50
Rubber Tired Dozers	82	40
Rubber Tired Loaders	79	40
Scrapers	85	40
Tractors/Loaders/Backhoes	84	40
Off-Highway Tractors	84	40
Site Utilities		
Air Compressors	78	40
Concrete/Industrial Saws	90	20
Cranes	81	20
Dumpsters/Tenders	76	40
Excavators	81	40
Generator Sets	73	50
Graders	85	40
Plate Compactors	80	40
Rough Terrain Forklifts	70	50
Rubber Tired Loaders	79	40
Skid Steer Loaders	80	40
Tractors/Loaders/Backhoes	84	40

Equipment Type	Max Noise Level at 50 feet (dBA)	Hourly Utilization Rate (%)
Trenchers	82	40
Welders	74	40
Building Foundation		
Air Compressors	78	40
Concrete/Industrial Saws	90	20
Cranes	81	20
Dumpsters/Tenders	76	40
Excavators	81	40
Generator Sets	73	50
Graders	85	40
Plate Compactors	80	40
Pumps	81	40
Rough Terrain Forklifts	70	50
Rubber Tired Loaders	79	40
Skid Steer Loaders	80	40
Tractors/Loaders/Backhoes	84	40
Trenchers	82	40
Welders	74	40
Building Construction (Supers	tructure)	
Aerial Lifts	80	40
Air Compressors	78	40
Core/Drill Rigs	79	20
Cement and Mortar Mixers	79	50
Concrete/Industrial Saws	90	20
Cranes	81	20
Dumpers/Tenders	76	40
Forklifts	70	50
Generator Sets	73	50
Pumps	81	40

Construction Equipment Noise Levels by Construction Phase

Equipment Type	Max Noise Level at 50 feet (dBA)	Hourly Utilization Rate (%)
Rough Terrain Forklifts	70	50
Rubber Tired Loaders	79	40
Surfacing Equipment	80	40
Tractors/Loaders/Backhoes	84	40
Welders	74	40
Architectural Coating		
Air Compressors	78	40
Paving		
Cement and Mortar Mixers	79	50
Pavers	77	50
Paving Equipment	82	50
Rollers	80	50
Tractors/Loaders/Backhoes	85	50

Construction Equipment Noise Levels by Construction Phase

dBA = A-weighted decibels

Source: URS, 2013.

To characterize construction-period noise levels, the average (Hourly Leg) noise level associated with each construction stage was calculated based on the quantity, type, and usage factors for each type of equipment that would be used during each construction stage. These noise levels are typically associated with multiple pieces of equipment operating simultaneously. Information with respect to the type and quantity of equipment anticipated to be utilized for specific proposed Project Areas is provided in Attachment D- Construction Equipment Noise Predictions.

Noise levels have been calculated for the most active grading and construction periods based on an anticipated equipment profile and consider concurrent construction activities. The resulting noise levels and change in hourly noise level at the representative sensitive receptor locations that are located in close proximity to the Project site are summarized in Table 13 and Table 14, and described further below. These noise levels represent the average daily noise levels that would be experienced when grading and construction activities occur in close proximity to existing receptor locations. As discussed in the Project Description, the Project site includes three districts: the LAX Northside Center District, LAX Northside Campus District, and LAX Northside Airport Support District. Construction noise impacts for each district are discussed below.

Location	Ambient Noise Level	Grading	Clear & Grub	Site Utilities	Building Foundation	Building Construction	Architectural Coating	Paving
Area 2	62	58	60	61	60	60	44	58
Area 3	64	70	71	73	72	72	56	68
Area 11 North of W. 88 th St.	61	52	53	55	55	54	39	51
Area 11 Homes with Line-of-Sight	61	57	58	60	60	59	44	56
Area 12A N of W. 88 th St.	61	51	53	53	53	53	38	50
Area 12A Visitation Catholic Church	61	69	70	71	71	71	56	68
Area 13 Apartments	69	73	74	75	88	88	72	84
Area 13 Day Care	69	63	64	65	78	77	62	74
Note: dBA = A-weighted decibels								

Construction Phase Maximum Noise Level (dBA)

Source: URS, 2013

Location	Ambient Noise Level	Grading	Clear & Grub	Site Utilities	Building Foundation	Building Construction	Architectural Coating	Paving
Area 2	62	-	-	-	-	-	-	-
Area 3	64	6	7	9	8	8	-	4
Area 11 North of W 88 th St.	61	-	-	-	-	-	-	-
Area 11 Homes with Line-of-Sight	61	-	-	-	-	-	-	-
Area 12A N of W 88 th St.	61	-	-	-	-	-	-	-
Area 12A Visitation Catholic Church	61	8	9	10	10	10		7
Area 13 Apartments	69	4	5	6	19	19	3	15
Area 13 Day Care	69	-	-	-	9	8	-	5

Change In Hourly Noise Level During Construction Activities (dBA)

Notes:

dBA = A-weighted decibels

Blank cell indicate construction activities do not contribute noise in excess of ambient levels.

Source: URS, 2013.

3.3.1.1 LAX Northside Campus District

Figures 9 through **Figure 11** depict the locations of ambient noise monitoring locations relative to Area 1, Area 2, and Area 3 in the LAX Northside Campus District. As shown, adjacent sensitive receptors include existing residences and public facilities/schools to the north of the LAX Northside Campus District. Project design features that would buffer construction noise from these sensitive receptors include a 20-foot buffer and 80-foot setback in Area 1, a 100-foot buffer and 20-foot setback in Area 2, and a 20-foot setback in Area 3.

Table 15 and **Table 16** depict the noise level, difference from ambient noise level, and number of days for each construction phase for Area 2 and Area 3. As shown, construction related activities would not result in noise levels in excess of ambient measured noise in Area 2. However, grading, clear and grub, site utilities, building foundation, and building construction would increase noise levels above ambient noise by more than 5.0 dBA in Area 3 as barrier mitigation in this Area is unable to mitigate impacts to multi-story apartments. These increases would be over the duration of 14 to 65 days. Therefore, construction related noise impacts in Area 3 would be significant.

Table 15

Condition/ Phase	Noise Level (dBA)	Difference From Ambient (dBA)	Number of Days (Office O1-1, O1-2, O1-3, O1-4, O1-5)	Number of Days (O2-1)	Number of Days (C3-1)	Number of Days (R1-1, R1-2, R1-3, R1-4, R1-5, R1-6, R1-7, R1-6, R1-9, R1-10)	Number of Days (R2-1, R2-2)
Measured Ambient	62	-	-	-	-	-	-
Grading	58	-4	64,65	64,65	64,65	64,65	64,65
Clear and Grub	60	-2	10	11	11	11	11
Site Utilities	61	-1	20	24	24	20	24
Building Foundation	60	-2	40	48	44	42	54
Building Construction	60	-2	-	-	-	-	-

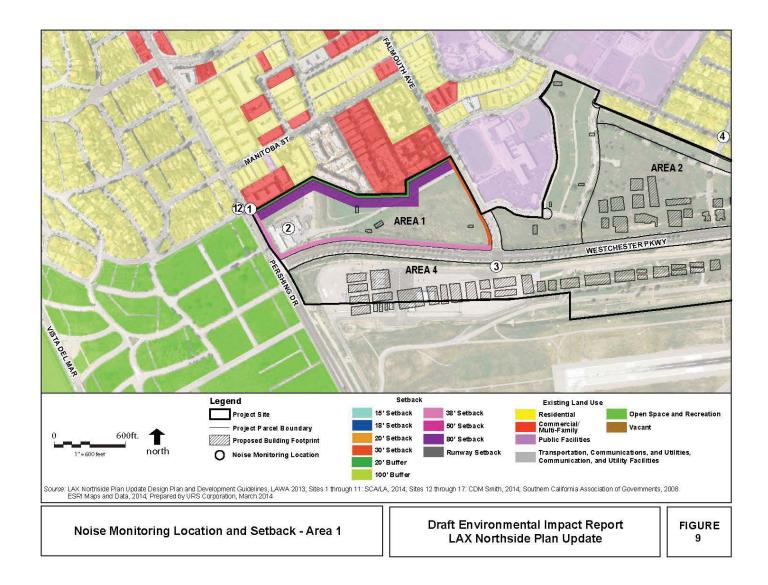
Area 2 Construction Noise Level Estimates

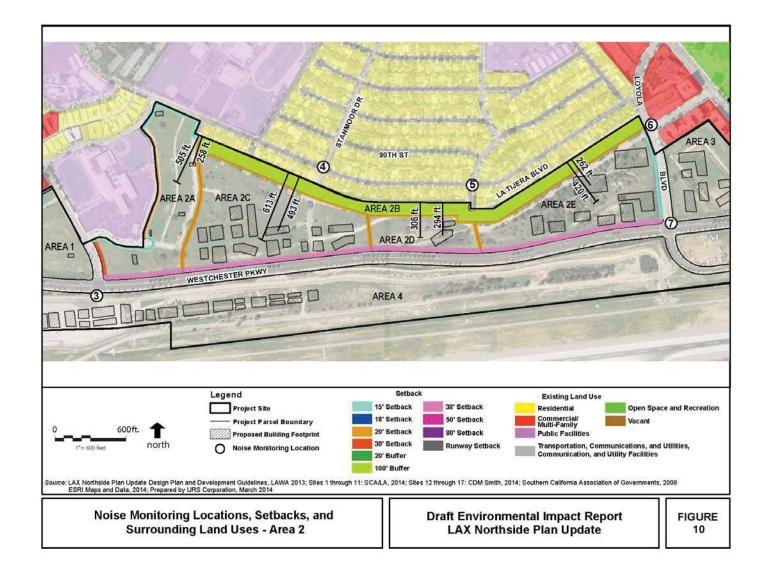
Area 2 Construction Noise Level Estimates

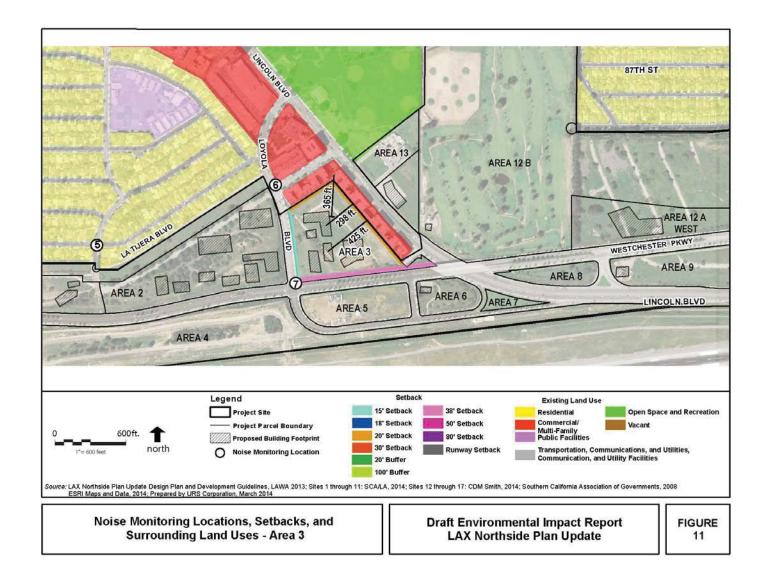
Condition/ Phase	Noise Level (dBA)	Difference From Ambient (dBA)	Number of Days (Office O1-1, O1-2, O1-3, O1-4, O1-5)	Number of Days (O2-1)	Number of Days (C3-1)	Number of Days (R1-1, R1-2, R1-3, R1-4, R1-5, R1-6, R1-7, R1-8, R1-9, R1-8, R1-9,	Number of Days (R2-1, R2-2)
Architectural Coating	44	-18	-	-	-	-	-
Paving	58	-4	-	-	-	-	-

Notes:

dBA = A-weighted decibels


Building Types: Project building types include investment quality office buildings (building type O1, O2, and O3), two-story research and development buildings (building type R1 and R2), retail and shopping buildings of two- to three-stories (building type S1 and S2), special purpose community buildings (building types C1, C2 and C3), and airport facility buildings for offices and storage areas with minimal HVAC requirements (building types F1 and F2).


Source: URS, 2013


Table 16

Area 3 Construction Noise Level Estimates

Condition/Phase	Noise Level (dBA)	Difference From Ambient (dBA)	Number of Days
Measured Ambient	64	-	-
Grading	70	6	65
Clear and Grub	71	7	14
Site Utilities	73	9	24
Building Foundation	72	8	48
Building Construction	72	8	-
Architectural Coating	56	-8	-
Paving	68	4	-
Note: dBA = A-weighted decibe Source: URS, 2013	els		

This Page Intentionally Left Blank

3.3.1.2 LAX Northside Center District

Figures 12, **Figure 13**, and **Figure 14** depict the locations of ambient noise monitoring locations relative to Area 11, Area 12A East, Area 12A West, and Area 13 in the LAX Northside Center District. As shown, adjacent sensitive receptors include existing residences and public facilities/schools to the north of the LAX Northside Center District. Proposed Project design features that would buffer construction noise from these sensitive receptors include maintaining existing sound walls along the northern boundaries of Area 11 and 12A East and a 30-foot setback along the northern edge of Area 11 and Area 12A East. Area 12A West is separated from residences to the north by the existing Westchester Golf Course. Area 13 is separated from the Westchester Recreation Center to the north by the existing First Flight Child Development Center.

Table 17 through Table 22 depict the noise level, difference from ambient noise level, and number of days for each construction phase for Area 11 north of West 88th Street where there are existing sound walls; Area 11 north of West 88th Street where there are no existing sound walls (homes with line-of-sight); Area 12A East north of West of 88th Street; Area 12A East at the Visitation Catholic Church; Area 13 at the multi-family residences along Lincoln Boulevard; and Area 13 at the First Flight Child Development Center. As shown, construction related activities would not result in noise levels in excess of ambient measured noise in Area 11 at either location or Area 12A East north of West 88th Street where there are existing sound walls. However, grading, clear and grub, site utilities, building foundation, and building construction would increase noise levels above ambient noise by more than 5.0 dBA in Area 12A East at the Visitation Catholic Church. These increases would be over the duration of 11 to 65 days. Near Area 13 at the apartments along Lincoln Boulevard construction related activities would increase noise levels above ambient noise by more than 5.0 dBA for clear and grub, site utilities, building foundation, building construction, and paving. These increases would be over the duration of 11 to 44 days. Finally, north of Area 13 at the First Flight Child Development Center construction related activities would increase noise levels above ambient noise by more than 5.0 dBA for building foundation and building construction over a duration of 44 days. Therefore, construction related noise impacts in Area 12A East at the Visitation Catholic Church and Area 13 at the apartments along Lincoln Boulevard and First Flight Child Development Center would be significant.

3.3.1.3 LAX Northside Airport Support District

Figure 15 depicts the locations of ambient noise monitoring locations relative to Area 4 through Area 10 in the LAX Northside Airport Support District. As shown, there are no sensitive receptors adjacent to the LAX Northside Airport Support District. Therefore, construction related noise impacts in the LAX Northside Airport Support District would be less than significant.

Area 11 North of W. 88th Street Construction Noise Level Estimates

Condition/Phase	Noise Level (dBA)	Difference From Ambient (dBA)	Number of Days
Measured Ambient	61	-	-
Grading	52	-9	65
Clear & Grub	53	-8	15
Site Utilities	55	-6	30
Building Foundation	55	-6	60
Building Construction	54	-7	-
Architectural Coating	39	-22	-
Paving	51	-10	-

Note:

dBA = A-weighted decibels Source: URS, 2013

Table 18

Area 11 Residences with Line-of-Sight Construction Noise Level Estimates

Condition/Phase	Noise Level (dBA)	Difference From Ambient (dBA)	Number of Days
Measured Ambient	61	-	-
Grading	57	-4	65
Clear & Grub	58	-3	16
Site Utilities	60	-1	34
Building Foundation	60	-1	55
Building Construction	59	-2	-
Architectural Coating	44	-17	-
Paving	56	-5	-

Note:

dBA = A-weighted decibels Source: URS, 2013

Area 12A East North of West 88th Street Construction Noise Level Estimates

Condition/Phase	Noise Level (dBA)	Difference From Ambient (dBA)	Number of Days
Measured Ambient	61	-	-
Grading	51	-10	65
Clear & Grub	53	-8	10
Site Utilities	53	-8	20
Building Foundation	53	-8	40
Building Construction	53	-8	-
Architectural Coating	38	-23	-
Paving	50	-11	-

dBA = A-weighted decibels Source: URS, 2013

Table 20

Area 12A East Visitation Catholic Church Construction Noise Level Estimates

Condition/Phase	Noise Level (dBA)	Difference From Ambient (dBA)	Number of Days
Measured Ambient	61	-	-
Grading	69	8	65
Clear & Grub	70	9	11
Site Utilities	71	10	24
Building Foundation	71	10	48
Building Construction	71	10	-
Architectural Coating	56	-5	-
Paving	68	7	-

dBA = A-weighted decibels Source: URS, 2013

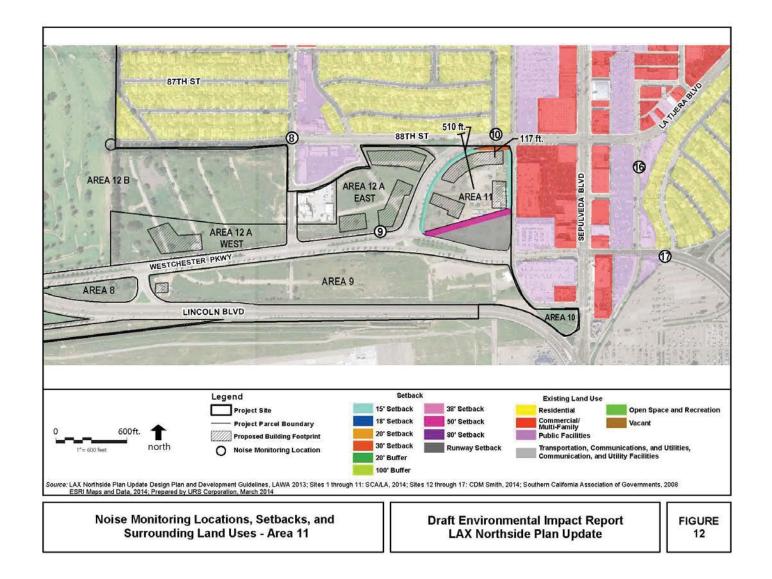
Area 13 Apartments on Lincoln Boulevard Construction Noise Level Estimates

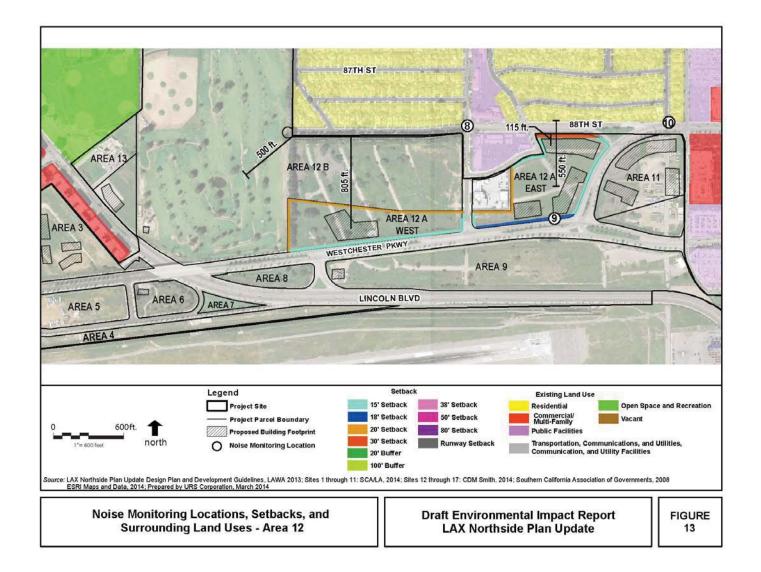
Condition/Phase	Noise Level (dBA)	Difference From Ambient (dBA)	Number of Days
Measured Ambient	69	-	-
Grading	73	4	65
Clear & Grub	74	5	11
Site Utilities	75	6	24
Building Foundation	88	19	44
Building Construction	88	19	-
Architectural Coating	72	3	-
Paving	84	15	-

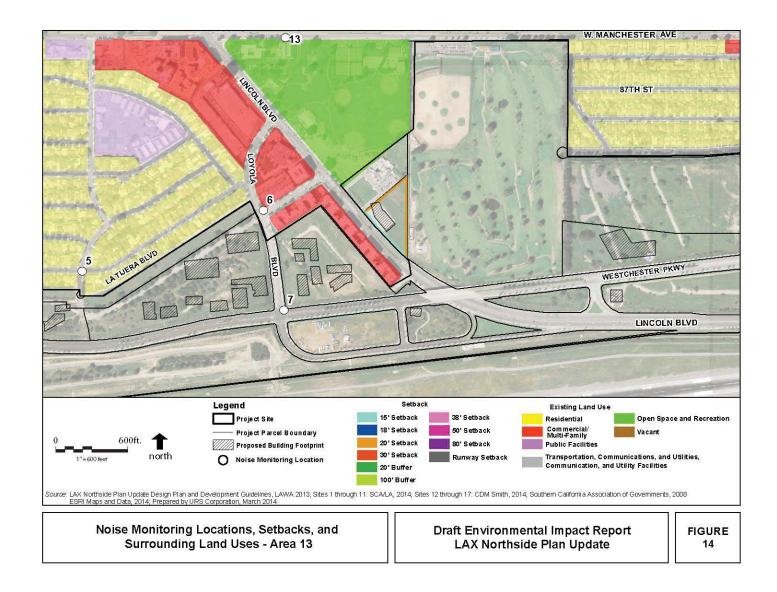
Note:

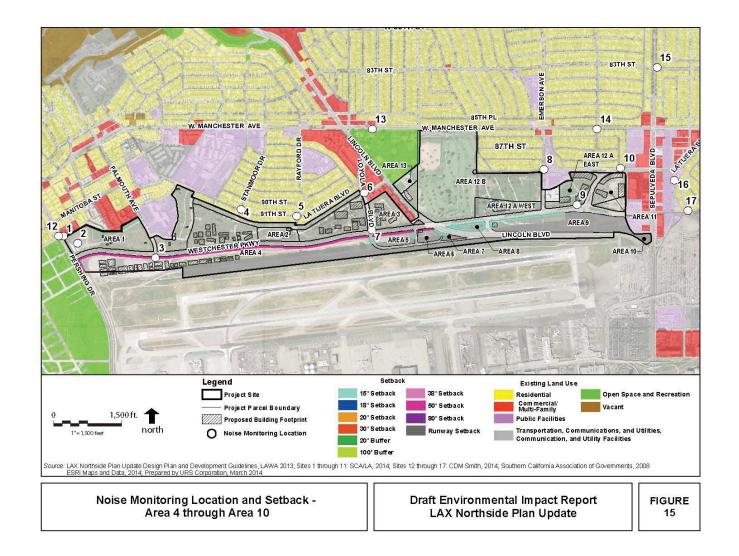
dBA = A-weighted decibels

Source: URS, 2013


Table 22


Area 13 First Flight Child Development Center Construction Noise Level Estimates


Condition/Phase	Noise Level (dBA)	Difference From Ambient (dBA)	Number of Days
Measured Ambient	69	-	-
Grading	63	-6	65
Clear & Grub	64	-5	11
Site Utilities	65	-4	24
Building Foundation	78	9	44
Building Construction	77	8	-
Architectural Coating	62	-7	-
Paving	74	5	-


Note:

dBA = A-weighted decibels Source: URS, 2013

3.3.2 Off-Site Construction Trucks

Construction activities would temporarily increase ambient noise levels in the immediate vicinity of the construction and land clearing activities as well as along the haul routes where construction trucks and employee vehicles would travel. Construction trucks would only be able to use haul routes designated by the LAX Master Plan commitment. These routes will be selected to ensure that trucks use the area freeway systems (the San Diego Freeway [I-405] and the Century Freeway [I-105]) as much as possible, and use only major arterial routes to travel as short a distance as possible from the freeways to the proposed Project construction sites. All of the designated haul routes accommodate relatively high traffic volumes today. As a result of limiting trucks to the already heavily traveled routes that are away from noise-sensitive land uses, no significant construction traffic noise impacts are anticipated.

3.3.3 Construction Ground-borne Vibration

Construction activities can generate varying degrees of ground-borne vibration, depending on the construction procedures and the construction equipment used. The operation of construction equipment generates vibrations that spread through the ground and diminish in amplitude (strength) with distance from the source (construction equipment). The effect on buildings located in the vicinity of the construction site often varies depending on soil type, ground strata, and construction characteristics of the receptor buildings. The results from vibration can range from no perceptible effects at the lowest vibration levels, to low rumbling sounds and perceptible vibration at moderate levels, to slight damage at the highest levels. Ground-borne vibrations from construction activities rarely reach the levels that damage structures. The FTA has published standard vibration velocities for construction equipment operations. The reference vibration levels, PPV, for construction equipment pieces anticipated to be used during the proposed Project construction are listed in **Table 11**. With regard to the proposed Project, high levels of ground-borne vibration would be generated primarily during grading/excavation activities on Project site.

Ground-borne vibration decreases rapidly with distance. As indicated in **Table 23**, vibration velocities from typical heavy construction equipment operations that would be used during the proposed Project construction range from 0.003 inches per second to 0.089 inches per second PPV at 25 feet from the equipment, based on the FTA data. At 50 feet from the source of activity, vibration velocities would be reduced to 0.001 inches per second to 0.031 inches per second PPV. As each of these values is well below the 0.3 inches per second and 0.12 inches per second PPV significance threshold for older residential and historic structures, vibration impacts associated with construction would be less than significant

Construction Vibration Impacts

Construction	Reference Vibration Levels at 25 feet, PPV		tion Levels at Indicated PPV (inch/second) ^b
Equipment	(inch/second) ^a	50 feet	100 feet
Large bulldozer	0.089	0.031	0.004
Caisson Drilling	0.089	0.031	0.004
Loaded trucks	0.076	0.027	0.003
Jackhammer	0.035	0.012	0.002
Small bulldozer	0.003	0.001	<0.001

Notes:

PPV = peak particle velocity

^a FTA, Transit Noise and Vibration Impact Assessment, Table 12-2, 2006

^b Peak particle velocity (PPV) at a given distance; $D = PPVref x (25/D)^{1.5}$

Source: URS, 2013

3.3.4 Operations

Noise impacts would result from operation of the proposed Project after the proposed Project's construction phase is completed. The potential noise impacts attributable to the proposed Project would primarily result from the proposed Project-generated vehicular traffic and the increased number of point sources located within the Project site. Each of these potential noise impacts is discussed below.

3.3.5 On-Site Stationary Noise Sources

The proposed Project would allow the development of mix of employment, retail, restaurant, office, hotel, research and development, higher education, civic, airport support, recreation, and buffer uses. Stationary noise sources associated with these uses include heating, ventilating, and air conditioning facilities; water and waste water systems; elevators; escalators; intake and discharge fans; truck and loading noise; and rubbish collection and disposal noise. Noise would also be generated by human activity within the Project site. Human activity-related noise would include people talking, doors slamming, truck deliveries, landscape maintenance equipment operation, stereos, domestic animals, etc. On-site stationary noise sources generated by each of the proposed Project Districts are evaluated below.

3.3.5.1 LAX Northside Campus District

Figure 9, **Figure 10**, and **Figure 11** depict the locations of ambient noise monitoring locations and adjacent land uses relative to Area 1, Area 2, and Area 3 in the LAX Northside Campus District. As shown, adjacent sensitive receptors include existing residences and public facilities/schools to the north of the LAX Northside Campus District. Project design features that would buffer operational noise from these sensitive receptors include a 20-foot buffer and 80-

foot setback in Area 1, a 100-foot buffer and 20-foot setback in Area 2, and a 20-foot setback in Area 3.

Presumed ambient noise levels for common land uses in the City of Los Angeles range from a low of 40 dBA L_{eq} for residential uses at night to a high of 65 dBA for heavy manufacturing uses during the day.³ The proposed Project land uses in the LAX Northside Campus District would have similar stationary noise sources as commercial or manufacturing uses, which are presumed to have ambient noise levels ranging from 60 dBA L_{eq} during the day to 55 dBA L_{eq} during the night. As discussed above, the existing ambient noise levels at the LAX Northside Campus District due to aircraft noise exposure range from below 65 CNEL to 70 CNEL, and, as shown in **Table 9**, measured existing ambient noise levels at sensitive receptors in the vicinity of the LAX Northside Campus District range from 59.7 L_{eq} dBA to 70.7 L_{eq} , dBA (noise receptor 1, 2, 3, 4, 5, 6, 7, and 12). Introducing land uses with presumed ambient noise levels ranging from 60 dBA L_{eq} to 55 dBA L_{eq} would not cause the ambient noise level measured at the property line of affected uses to increase by 3.0 dBA in CNEL to or within the "normally acceptable" or "clearly unacceptable" category as shown on **Table 8**, or any 5 dBA or greater noise increase. Therefore, operational impacts related to stationary noise sources in the LAX Northside Campus District would be less than significant.

3.3.5.2 LAX Northside Center District

Figures 12, **Figure 13**, and **Figure 14** depict the locations of ambient noise monitoring locations and adjacent land uses relative to Area 11, Area 12A East, Area 12A West, and Area 13 in the LAX Northside Center District. As shown, adjacent sensitive receptors include existing residences and public facilities/schools to the north of the LAX Northside Center District. Proposed Project design features that would buffer construction noise from these sensitive receptors include maintaining existing sound walls along the northern boundaries of Area 11 and 12A East and a 30-foot setback along the northern edge of Area 11 and Area 12A East. Area 12A West is separated from residences to the north by the existing Westchester Golf Course. Area 13 is separated from the Westchester Recreation Center to the north by the existing First Flight Child Development Center.

Presumed ambient noise levels for common land uses in the City of Los Angeles range from a low of 40 dBA L_{eq} for residential uses at night to a high of 65 dBA for heavy manufacturing uses during the day.⁴ The proposed Project land uses in the LAX Northside Center District would have similar stationary noise sources as commercial or manufacturing uses, which are presumed to have ambient noise levels ranging from 60 dBA L_{eq} during the day to 55 dBA L_{eq} during the night. As discussed above, the existing ambient noise levels at the LAX Northside Center District due to aircraft noise exposure range from below 65 CNEL to 70 CNEL, and, as shown in **Table 9**, measured existing ambient noise levels at sensitive receptors in the vicinity of the LAX Northside Center District range from 61.4 L_{eq} dBA to 69.5 L_{eq} , dBA (noise receptor 8, 9, 10, 13, 16, and 17). Introducing land uses with presumed ambient noise levels ranging from 60 dBA L_{eq} to 55 dBA L_{eq} would not cause the ambient noise level measured at the property line of affected uses to increase by 3.0 dBA in CNEL to or within the "normally acceptable" or "clearly unacceptable" category as shown on **Table 8**, or any 5 dBA or greater noise increase. Therefore, operational impacts related to stationary noise sources in the LAX Northside Center District would be less than significant.

³ City of Los Angeles, Los Angeles Municipal Code, Section 111.03.

⁴ City of Los Angeles, Los Angeles Municipal Code, Section 111.03.

3.3.5.3 LAX Northside Airport Support District

Figure 15 depicts the locations of ambient noise monitoring locations relative to Area 4 through Area 10 in the LAX Northside Airport Support District. As shown, there are no sensitive receptors adjacent to the LAX Northside Airport Support District.

Presumed ambient noise levels for common land uses in the City of Los Angeles range from a low of 40 dBA L_{eq} for residential uses at night to a high of 65 dBA for heavy manufacturing uses during the day.⁵ The proposed Project land uses in the LAX Northside Airport Support District would have similar stationary noise sources as commercial or manufacturing uses, which are presumed to have ambient noise levels ranging from 60 dBA L_{eq} during the day to 55 dBA L_{eq} during the night. As discussed above, the existing ambient noise levels at the LAX Northside Airport Support District due to aircraft noise exposure range from 65 CNEL to above 75 CNEL, and, as shown in **Table 9**, measured existing ambient noise levels at receptors in the vicinity of the LAX Northside Airport Support District range from 68.1 L_{eq} dBA to 70.7 L_{eq} , dBA (noise receptor 3, 7, 9, and 17). Introducing land uses with presumed ambient noise levels ranging from 60 dBA L_{eq} to 55 dBA L_{eq} would not cause the ambient noise level measured at the property line of affected uses to increase by 3.0 dBA in CNEL to or within the "normally acceptable" or "clearly unacceptable" category as shown on **Table 8**, or any 5 dBA or greater noise increase. Therefore, operational impacts related to stationary noise sources in the LAX Northside Airport Support District would be less than significant.

3.3.6 Off-Site Traffic (Mobile Sources)

This section addresses permanent noise effects associated with changes in roadway traffic attributable to future development of the proposed Project. Specifically, this section evaluates the extent to which baseline ambient exterior noise levels at noise-sensitive uses located along major roadways throughout the Project site vicinity may change due to traffic associated with the proposed Project.

Traffic noise levels during AM and PM peak hour traffic on the primary roads in the Project site vicinity were analyzed for existing (2012) and future (2022) traffic conditions with and without the proposed Project. **Table 24** and **Table 25** below summarize the calculated traffic noise levels for AM and PM peak hours, respectively, at a reference distance of 100 feet from each roadway segment, and compare the future traffic noise levels with the proposed Project to those under the existing traffic noise level and future without proposed Project noise levels.

⁵ City of Los Angeles, Los Angeles Municipal Code, Section 111.03.

Comparison of Existing and Future Hourly Traffic Noise Levels – AM Peak Hour

	Receiver	н	ourly L _{eq} , d	BA
Roadway Segment	Location (Relative to Road) ¹	Existing (2012)	2022 No Action	2022 with Project
Manahastar Ava East of Lincoln Dhul	North	64.7	65.1	65.6
Manchester Ave., East of Lincoln Blvd.	South	64.4	64.8	65.3
Merchanter Aug. West of Lincoln Dive	North	64.1	64.5	64.7
Manchester Ave., West of Lincoln Blvd.	South	64.6	65.0	65.2
Lincoln Dlud North of Monchoster Ave	West	67.7	67.8	68.4
Lincoln Blvd., North of Manchester Ave.	East	67.9	67.9	68.4
Lincoln Dlud - South of Manahastar Ava	West	67.3	67.5	68.3
Lincoln Blvd., South of Manchester Ave.	East	66.7	66.9	67.5
Manahastar Ava Fast of Darahing Dr	North	62.1	62.6	62.6
Manchester Ave., East of Pershing Dr.	South	61.2	61.8	61.9
Manahastas Aug. Mast of Desching Dr.	North	56.6	57.4	57.4
Manchester Ave., West of Pershing Dr.	South	56.8	57.6	57.6
Dersking Dr. North of Manchaster Ave	West	63.2	63.7	63.9
Pershing Dr., North of Manchester Ave.	East	64.5	64.8	64.9
Dereking Dr. Couth of Manchester Aug	West	62.7	63.2	63.4
Pershing Dr., South of Manchester Ave.	East	62.9	63.2	63.5
	North	60.3	60.6	61.3
Westchester Pkwy., East of Pershing Dr.	South	60.4	60.6	61.6
	West	63.0	63.3	63.5
Pershing Dr., North of Westchester Pkwy.	East	63.1	63.3	63.5
Develope Dr. Couth of Workshorter Diversion	West	63.4	63.7	63.9
Pershing Dr., South of Westchester Pkwy.	East	62.9	63.1	63.5
Menchester Ave. East of Estate the A	North	63.6	64.0	64.2
Manchester Ave., East of Falmouth Ave.	South	64.0	64.4	64.6
Monohooton Ave. Mart of Educanthe Ave.	North	64.1	64.5	64.5
Manchester Ave., West of Falmouth Ave.	South	64.2	64.5	64.6
Folgouth Ave. North of Manchester Ave.	West	57.5	57.8	58.3
Falmouth Ave., North of Manchester Ave.	East	57.1	57.5	57.9

Comparison of Existing and Future Hourly Traffic Noise Levels – AM Peak Hour

	Receiver	н	ourly L _{eq} , d	BA
Roadway Segment	Location (Relative to Road) ¹	Existing (2012)	2022 No Action	2022 with Project
Felmenth Aug. Or the of Manchester Aug	West	61.2	61.7	61.8
Falmouth Ave., South of Manchester Ave.	East	61.8	62.2	62.3
Westsheeter Diver East of Estracith Ave	North	66.5	66.9	67.4
Westchester Pkwy., East of Falmouth Ave.	South	67.1	67.5	68.1
	North	65.1	65.5	66.1
Westchester Pkwy., West of Falmouth Ave.	South	65.6	66.0	66.7
	West	64.4	64.8	65.0
Falmouth Ave., north of Westchester Pkwy.	East	63.6	64.1	64.3
	West	59.1	59.5	60.0
Falmouth, south of Westchester Pkwy.	East	59.1	59.5	60.0
Levels Divid Week of Lincoln Divid	North	59.9	60.2	62.0
Loyola Blvd., West of Lincoln Blvd.	South	60.5	60.8	62.1
Linearly Divid. North of Local a Divid	West	67.9	68.3	69.0
Lincoln Blvd., North of Loyola Blvd.	East	68.2	68.5	69.0
Linearly Divide One that (Linearly Divide	West	67.2	67.6	68.0
Lincoln Blvd., South of Loyola Blvd.	East	66.8	67.2	67.6
	North	64.0	64.5	66.6
Westchester Pkwy., East of Loyola Blvd.	South	63.5	64.0	65.8
	North	63.4	63.8	66.3
Westchester Pkwy., West of Loyola Blvd.	South	63.7	64.1	66.0
	West	60.5	60.9	61.8
Loyola Blvd., north of Westchester Pkwy.	East	60.8	61.2	62.0
	West	59.6	60.0	61.7
Loyola Blvd., south of Westchester Pkwy.	East	59.1	59.5	61.2
	North	66.2	66.6	66.9
Manchester Ave., East of Emerson	South	65.9	66.3	66.4
	North	66.0	66.4	66.7
Manchester Ave., West of Emerson	South	65.7	66.0	66.3

	Receiver	н	ourly L _{eq} , d	BA
Roadway Segment	Location (Relative to Road) ¹	Existing (2012)	2022 No Action	2022 with Project
Emergen Ave., north of Mencheoter	West	62.2	62.6	62.9
Emerson Ave., north of Manchester	East	61.9	62.3	62.5
Emoreon Ave. couth of Manchoster	West	62.0	62.4	62.6
Emerson Ave., south of Manchester	East	61.8	62.2	62.4
Westshester Diverse Fest of Le Tijere Dive	North	61.9	62.3	64.2
Westchester Pkwy., East of La Tijera Blvd.	South	61.5	61.9	63.6
Westsheeter Divert Mest of Le Tilere Dive	North	63.8	64.1	66.2
Westchester Pkwy., West of La Tijera Blvd.	South	63.5	63.9	65.8
La Tilana Dhud. Naath af Waatabaatan Dhum	West	60.8	61.2	63.7
La Tijera Blvd., North of Westchester Pkwy	East	60.1	60.5	63.0
Le Tilere Dhul. Feet of Constructe Westward	North	61.8	62.1	64.3
La Tijera Blvd., East of Sepulveda Westway	South	61.3	61.6	63.8
La Tilara Dhud. Maat af Caruhuada Maaturu	North	61.3	61.7	63.2
La Tijera Blvd., West of Sepulveda Westway	South	61.4	61.9	63.1
Ospukus de Masturer, north of Le Tiller, Dhui	West	57.6	57.9	58.8
Sepulveda Westway, north of La Tijera Blvd.	East	57.8	58.0	59.2
Openative de Mastares, poutte efficie Tillers Divis	West	57.8	58.2	60
Sepulveda Westway, south of La Tijera Blvd.	East	57.5	58.0	59.8

Comparison of Existing and Future Hourly Traffic Noise Levels – AM Peak Hour

Note:

dBA = A-weighted decibels

 L_{eq} = equivalent energy level ¹ Receiver is at a reference distance of 100 feet from roadway centerline.

Source: URS Corporation, 2012

Comparison of Existing and Future Hourly	Traffic Noise Levels – PM Peak Hour
--	-------------------------------------

	Receiver	н	ourly L _{eq} , d	BA
Roadway Segment	Location (Relative to Road)	Existing (2012)	2022 No Action	2022 with Project
Manahastar Aug. Fast of Lincoln Divid	North	65.1	65.6	66.0
Manchester Ave., East of Lincoln Blvd.	South	65.0	65.5	66.0
Manahastar Ava - West of Lincoln Dive	North	64.3	64.8	65.1
Manchester Ave., West of Lincoln Blvd.	South	64.2	64.9	65.1
Lincoln Dlvd North of Manahastar Ava	West	68.4	68.5	69.0
Lincoln Blvd., North of Manchester Ave.	East	68.3	68.4	69.0
Lincoln Dlyd South of Manahastar Ava	West	67.8	67.9	68.5
Lincoln Blvd., South of Manchester Ave.	East	67.2	67.3	68.0
Manahastar Ava Fast of Darahing Dr	North	62.7	63.2	63.4
Manchester Ave., East of Pershing Dr.	South	63.5	64.0	64.1
Menchester Ave. West of Dershins Dr.	North	62.2	62.4	62.5
Manchester Ave., West of Pershing Dr.	South	63.9	64.1	64.1
Develope Dr. North of Manchester Ave	West	61.3	61.8	62.1
Pershing Dr., North of Manchester Ave.	East	62.9	63.3	63.5
Dershing Dr. Couth of Monshouter Aug	West	61.5	62.0	62.2
Pershing Dr., South of Manchester Ave.	East	61.6	62.1	62.3
Westshooter Diver, East of Derships Dr	North	60.6	60.7	62.0
Westchester Pkwy., East of Pershing Dr.	South	60.5	60.7	61.8
Dereking Dr. North of Westshester Diver	West	63.1	62.7	63.0
Pershing Dr., North of Westchester Pkwy.	East	63.2	62.2	62.7
Derohing Dr. Couth of Mastehaster Divers	West	63.2	62.9	63.4
Pershing Dr., South of Westchester Pkwy.	East	62.6	62.1	62.6
Monchester Ave. East of Folmowth Ave	North	64.2	64.6	65.0
Manchester Ave., East of Falmouth Ave.	South	64.2	64.6	65.0
Manahastar Ava - West of Falmouth Ava	North	64.3	64.5	64.7
Manchester Ave., West of Falmouth Ave.	South	64.6	64.7	64.8

	Receiver	н	ourly L _{eq} , d	BA
Roadway Segment	Location (Relative to Road)	Existing (2012)	2022 No Action	2022 with Project
Folgerith Ave. North of Monchester Ave	West	58.1	58.4	58.9
Falmouth Ave., North of Manchester Ave.	East	57.7	58.1	58.5
Folmouth Ave. South of Monohostor Ave	West	59.4	59.7	60.6
Falmouth Ave., South of Manchester Ave.	East	59.6	60.0	60.9
Westsheater Division Fast of Falmouth Ave	North	65.3	65.8	66.9
Westchester Pkwy., East of Falmouth Ave.	South	65.1	65.6	66.8
Mantakan Dirum Mantaf Estanovik Aus	North	64.2	64.6	65.8
Westchester Pkwy., West of Falmouth Ave.	South	64.2	64.5	65.5
	West	60.4	60.7	61.2
Falmouth Ave., North of Westchester Pkwy.	East	60.2	60.6	61.1
Folgerith couth of Westsheater Divisi	West	57.7	58.1	59.9
Falmouth, south of Westchester Pkwy.	East	58.0	58.4	60.5
Levels Divid Meet of Lincoln Divid	North	60.0	60.4	61.0
Loyola Blvd., West of Lincoln Blvd.	South	60.3	60.7	61.3
Lincoln Divid. North of Lovido Divid	West	68.2	68.5	69.1
Lincoln Blvd., North of Loyola Blvd.	East	67.8	68.2	68.9
Lincoln Dhud. Couth of Louisla Dhud	West	67.5	67.9	68.2
Lincoln Blvd., South of Loyola Blvd.	East	66.7	67.1	67.5
Westshooter Diver, East of Levisla Dive	North	62.4	62.8	65.0
Westchester Pkwy., East of Loyola Blvd.	South	61.9	62.3	65.1
Westehester Division Masterial available of	North	62.0	62.4	65.2
Westchester Pkwy., West of Loyola Blvd.	South	61.8	62.3	65.8
Levels Divel worth of Westshoots, Divers	West	59.2	59.6	60.7
Loyola Blvd., north of Westchester Pkwy.	East	59.2	59.5	60.6

Comparison of Existing and Future Hourly Traffic Noise Levels – PM Peak Hour

	Receiver	Н	Hourly L _{eq} , dBA			
Roadway Segment	Location (Relative to Road)	Existing (2012)	2022 No Action	2022 with Project		
Levele Divel couth of Meetehooter Divers	West	57.2	57.6	61.2		
Loyola Blvd., south of Westchester Pkwy.	East	56.9	57.4	60.5		
Manahastar Ava Fast of Emoreon	North	65.7	66.0	66.3		
Manchester Ave., East of Emerson	South	65.8	66.2	66.5		
Manchaster Ave. West of Emerson	North	65.5	65.9	66.3		
Manchester Ave., West of Emerson	South	65.8	66.2	66.6		
	West	61.2	61.6	62.0		
Emerson Ave., north of Manchester	East	61.2	61.5	62.0		
Emerson Aug. couth of Monshootor	West	61.6	61.9	62.3		
Emerson Ave., south of Manchester	East	61.4	61.8	62.0		
Westshester Divisi Fest of Le Tilere Divis	North	60.0	60.4	63.2		
Westchester Pkwy., East of La Tijera Blvd.	South	59.6	60.0	63.3		
Mastehaster Diving Mast of La Tijera Divid	North	61.9	62.3	65.3		
Westchester Pkwy., West of La Tijera Blvd.	South	61.8	62.2	65.6		
	West	58.9	59.4	63.2		
La Tijera Blvd., north of Westchester Pkwy	East	58.4	58.8	62.8		
La Tilara Dhud. Each of Caraulus de Mastures	North	61.9	62.3	64.1		
La Tijera Blvd., East of Sepulveda Westway	South	61.6	62.0	64.0		
Le Tilere Divid Meet of Consultante Meeting	North	60.5	60.8	62.8		
La Tijera Blvd., West of Sepulveda Westway	South	60.5	60.9	63.2		
Oservius de Wasturge north of La Tilage Dist	West	60.2	60.6	61.2		
Sepulveda Westway, north of La Tijera Blvd.	East	60.3	60.7	61.3		
Constructe Masteria and the file Tiles Disk	West	59.1	59.5	61.1		
Sepulveda Westway, south of La Tijera Blvd.	East	59.3	59.6	61.2		

Comparison of Existing and Future Hourly Traffic Noise Levels – PM Peak Hour

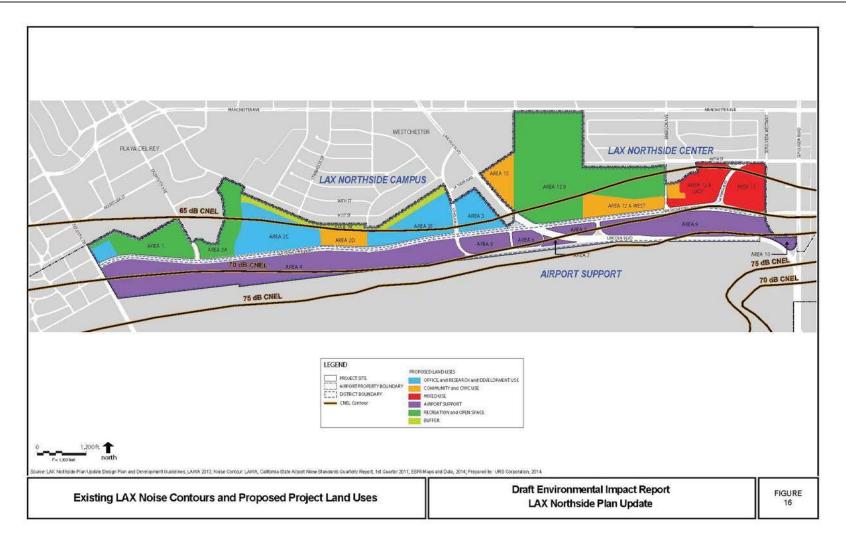
Notes:

dBA = A-weighted decibels

 L_{eq} = equivalent energy level ¹ Receiver location is at a reference distance of 100 feet from roadway centerline.

Source: URS Corporation, 2012

As shown by the data in **Table 24**, future (2022) AM peak hour traffic noise levels after full proposed Project implementation would increase over existing (2012) noise levels by approximately 1.0 dBA to 4.0 dBA. Such increases are below the established threshold of significance of 5.0 dBA increase. Similarly, the data in **Table 25** indicate that future PM peak hour traffic noise level increases over existing traffic noise levels would be in the range of 1.0 dBA to 4.0 dBA, which is below the threshold of significance. Therefore, operational impacts related to mobile noise would be less than significant.


3.3.7 Aircraft Noise Exposure

The Project site is not currently located in the flight path of LAX and is not expected to be in the future. However, the Project site is located within the LAX noise impact area and therefore, the proposed Project may introduce new land uses to noise impacts above those permitted by applicable regulations and thresholds. As shown on **Figure 16** the majority of the Project site is currently located within the 65 dBA CNEL to 70 dBA CNEL noise contour, with limited portions of the Project site south of Westchester Parkway located within the 70 dBA CNEL to 75 dBA CNEL noise contour.

Table 26 lists the proposed Project land uses that would be included in each CNEL noise contour present on the Project site and whether these are compatible or not with the City of Los Angeles, County of Los Angeles Airport Land Use Commission, Caltrans, and FAA Part 150 guidelines for land uses located in airport influence areas.

As shown in Table 26, the proposed Project does not introduce any land uses that would be considered clearly unacceptable according to the City of Los Angeles land use compatibility guidelines for noise. The majority of the proposed Project land uses are also "satisfactory" or "allowed with conditions (should review noise insulation needs)" according to the Los Angeles County Airport Land Use Commission land use compatibility guidelines. Similarly, the majority of land uses are compatible with Caltrans and FAA standards. However, the portions of the Project site located within the 65 dBA CNEL to 70 dBA CNEL noise contour would potentially include higher educational uses in the Office and Research and Development land use category. The Los Angeles County Airport Land Use Commission land use compatibility guidelines stipulate that educational land uses should be avoided in these areas, unless related to airport services. Caltrans Title 21, Section 5014b stipulates that private schools are incompatible unless an avigation easement for noise has been acquired by the airport proprietor, or acoustic performance ensures an interior CNEL of 45 dB or less in all classrooms. FAA Part 150 states that schools are incompatible, however, where the community determines that schools must be allowed, measures to achieve outdoor to indoor Noise Level Reduction of at least 25 dB and 30 dB should be incorporated into building codes and be considered in individual approvals. FAA Part 150 notes that these measures will not eliminate outdoor noise problems. The Project Design Features include that prior to the issuance of building permits for any proposed higher educational uses, the Project Applicant shall utilize an acoustical engineer to demonstrate to the City of Los Angeles that the 45 dBA interior noise standard and an outdoor to indoor Noise Level Reduction of at least 25 dB and 30 dB has been achieved. Outdoor areas associated with higher educational uses shall be designed to minimize noise exposure. Additionally, should the property owner of any land proposed for higher educational use be any entity other than LAWA, the property owner shall be required to grant LAWA a permanent and irrevocable avigation easement. Therefore, the proposed Project will comply with all applicable Los Angeles County Airport Land Use Commission, Caltrans, and FAA standards and guidance regarding land use compatibility.

Presumed ambient noise levels for common land uses in the City of Los Angeles range from a low of 40 dBA L_{eq} for residential uses at night to a high of 65 dBA for heavy manufacturing uses during the day. The proposed Project land uses would have similar stationary noise sources as commercial or manufacturing uses, which are presumed to have ambient noise levels ranging from 60 dBA L_{eq} during the day to 55 dBA L_{eq} during the night. As discussed above, the existing ambient noise levels at the Project site range from 65 dBA L_{eq} to 75 dBA L_{eq} . The proposed Project would not increase ambient noise levels by 1.5 dB CNEL or greater. Therefore, operational impacts related to aircraft noise exposure would be less than significant.

Proposed Project Land Use Aircraft Noise Exposure

CNEL Noise Contour	Proposed Project Land Uses	City of Los Angeles ^a	County of Los Angeles [♭]	Caltrans ^c	FAA Part 150 ^d	Impact
	Office and Research and Development	Normally Acceptable	Satisfactory	Compatible	Compatible	Less Than Significant
	Community and Civic Use	Normally Acceptable	Satisfactory	Compatible	Compatible	Less Than Significant
<65 dBA CNEL	Mixed Use	Normally Acceptable	Satisfactory	Compatible	Compatible	Less Than Significant
	Recreation and Open Space	Normally Acceptable	Satisfactory	Compatible	Compatible	Less Than Significant
	Buffer	Normally Acceptable	Satisfactory	Compatible	Compatible	Less Than Significant

Proposed Project Land Use Aircraft Noise Exposure

CNEL Noise Contour	Proposed Project Land Uses	City of Los Angeles ^a	County of Los Angeles [♭]	Caltrans [°]	FAA Part 150 ^d	Impact
	Office and Research and Development	Normally Acceptable	Caution, Avoid for Educational Facilities	Compatible. Private schools compatible with avigation easement or interior noise of 45 dB or less.	Compatible. Schools compatible when indoor noise level reduction of 25 dB to 30 dB is achieved.	Less Than Significant
·	Community and Civic Use	Normally Acceptable	Caution	Compatible	Compatible	Less Than Significant
65-70 dBA CNEL	Mixed Use	Normally Acceptable	Caution	Compatible	Compatible	Less Than Significant
	Recreation and Open Space	Normally Acceptable	Caution	Compatible	Compatible	Less Than Significant
	Buffer	Normally Acceptable	Caution	Compatible	Compatible	Less Than Significant
	Airport Support	Normally Acceptable	Satisfactory	Compatible	Compatible	Less Than Significant
70-75 dBA CNEL	Airport Support	Normally Acceptable	Caution	Compatible	Compatible	Less Than Significant

Notes:

dBA = A-weighted decibels

CNEL = Community Noise Equivalent Level ^a Based on L.A. City CEQA Thresholds Guide, California Department of Health Services (DHS).

^b Based on Los Angeles County Airport Land Use Commission, Los Angeles County Airport Land Use Plan. ^c Based on California Division of Aeronautics, Title 21, Section 5014.

^d Based on CFR Title 14: Aeronautics and Space, Part 150- Airport Noise Compatibility Planning.

Source: URS, 2013

This Page Intentionally Left Blank

3.3.8 Transfer Program

The proposed Project would include flexibility to allow for transfers of floor area within Districts. While transfers of floor area within Districts would be permitted, the maximum proposed Project total of 2,320,000 square feet may not be exceeded. Floor area transfers would not result in new impacts with regard to noise. Floor area transfers would not change the construction noise sources and operational stationary noise sources from what was analyzed within this Draft EIR section. Additionally, transfers between uses within Districts would be trip neutral, as they would have to comply with the LAX Northside Land Use Equivalency Matrix. Specifically, floor area transfers would not cause the number of total trips to exceed the estimated number of proposed Project vehicle trips (approximately 23,636 total new daily trips) as analyzed in this Draft EIR. Therefore, as floor area transfers would be trip neutral, off-site traffic noise levels would be similar to those analyzed herein. In summary, floor area transfers would not alter the conclusions with regard to noise impacts. Should uses be transferred within the Districts, the resulting impacts would be similar to those evaluated herein.

3.3.9 Cumulative Impacts

Cumulative noise impacts have the potential to occur based on the distance between related projects and their stationary noise sources, including the cumulative traffic that these projects and future anticipated growth would add on to the roadway network surrounding the Project site.

3.3.9.1 Noise

The Project site and surrounding area have been developed with uses that have previously generated, and will continue to generate, noise from a number of community noise sources including vehicle travel, mechanical equipment, and outdoor maintenance activities as well as noise related to aircraft operation at LAX. Future projects would also generate stationary-source and mobile-source noise as a result of ongoing day-to-day operations. These future related projects are generally residential, retail, commercial, or institutional in nature. Such uses are not typically associated with excessive exterior noise. In addition, noise levels would be less than significant at the property line for each related project due to City provisions that limit onsite stationary-source noise such as outdoor air-conditioning equipment. However, each related project would produce traffic volumes (off-site mobile sources) that are capable of generating roadway noise impacts.

As discussed above, the future with Project traffic conditions represent the cumulative conditions for purposes of the traffic noise cumulative impacts analysis. Cumulative noise impacts due to off-site traffic were analyzed by comparing the projected increase in traffic noise levels from "existing" conditions to "future" conditions to the applicable significance criteria. Future cumulative conditions include all projected regional development (as projected by the Southern California Association of Governments) in the Study Area between 2010 and 2022, including related projects. As shown by the data in **Table 24**, future (2022) AM peak hour traffic noise levels after full proposed Project implementation would increase over existing (2012) noise levels by approximately 1.0 dBA to 4.0 dBA. Such increases are below the established threshold of significance of 5.0 dBA increase. Similarly, the data in **Table 25** indicate that future PM peak hour traffic noise level increases over existing traffic noise levels would be in the range of 1.0 dBA to 4.0 dBA, which is below the threshold of significance. Therefore, cumulative impacts related to noise would be less than significant.

3.3.9.2 Ground-Borne Vibration

As discussed in Section 3.0 Environmental Setting, future growth including the development of 104 related projects is anticipated in the Project site vicinity through 2022. Noise from construction activities associated with this future growth together with proposed Project-related construction activities could contribute to the cumulative noise impact for receptors located between the two construction sites. However, cumulative construction-related noise levels from future development would be intermittent and temporary. In addition, like the proposed Project, it is anticipated that future construction of related projects in the Project site vicinity would comply with time restrictions and other relevant provisions in the City's Municipal Code. Furthermore, noise associated with cumulative construction activities would be reduced to the degree reasonably and technically feasible through proposed mitigation measures for the related project.

Due to the rapid attenuation characteristics of ground-borne vibration and distance of the related projects to the proposed Project, there is no potential for a cumulative construction-period impact with respect to ground-borne vibration. Therefore, cumulative impacts related to ground-borne vibration would be less than significant.

4.0 Mitigation Measures

4.1 Construction

The proposed Project will be developed in compliance with all statutory requirements to preclude significant impacts on construction noise. In addition, implementation of LAX Master Plan Commitments MM-N-7, MM-N-8, MM-N-9, and MM-N-10 and Project Design Features would ensure that impacts relative to construction noise associated with the proposed Project would be minimized. However, as discussed above construction of the proposed Project within limited Areas would result in significant noise impacts (Area 3, Area 12A East, and Area 13). Therefore, the following additional mitigation measures shall be implemented:

- **MM-N (NSP)-1:** A temporary, continuous and impermeable minimum ten-foot high sound barrier wall shall be erected between the proposed Project construction area and adjacent off-site sensitive noise receptors wherever construction activities are within 250 feet of the noise sensitive receptors and there are no intervening buildings or existing sound walls between the construction area and the noise sensitive receptors.
- **MM-N (NSP)-2:** Construction equipment shall be shut off during idling within 250 feet of noise sensitive receptors.
- **MM-N (NSP)-3:** Power construction equipment shall be equipped with noise shielding and muffling devices that achieve a minimum 5 dBA reduction in construction equipment related noise. All equipment shall be properly maintained to assure that no additional noise due to worn or improperly maintained parts would be generated.
- **MM-N (NSP)-4:** Stationary source equipment that is flexible with regard to relocation (such as generators and compressors) shall be located at the greatest distance possible from sensitive land uses and unnecessary idling of equipment shall be prohibited.
- **MM-N (NSP)-5:** Loading and unloading of heavy construction materials shall be located onsite and away from noise-sensitive uses, to the extent feasible.

Implementation of these mitigation measures is estimated to reduce noise levels from construction activities by 5.0 dBA to 12 dBA depending on specific location and construction activity. Construction activities result in noise increases over ambient conditions from 4 dBA to 9 dBA in Area 3; 7 dBA to 10 dBA in Area 12A East; and 4 dBA to 19 dBA in Area 13.Therefore, assuming the most conservative (minimum) reduction of 5 dBA from implementation of the mitigation measures, construction noise impacts would be reduced to less than significant levels during all construction phases in Area 3. However significant temporary construction related impacts would remain in Area 12A East and Area 13 even after implementation of all feasible mitigation measures. No further feasible mitigation measures under LAWA's control are available.

4.2 Operations

Impacts related to noise during proposed Project operation would be less than significant and no mitigation is required.

4.2.1 Level Of Significance after Mitigation

- The mitigation measures recommended in this section would reduce the noise levels associated with construction activities related to the proposed Project. However, construction activities in Area 12A East and Area 13 would continue to increase the daytime noise levels at nearby noise-sensitive uses by more than 5.0 dBA L_{eq}. This would be considered a significant and unavoidable short-term impact for construction of the proposed Project.
- Impacts related to noise sources during operation are less than significant without mitigation.
- The Project Design Features recommended for aircraft noise exposure would ensure that sensitive educational uses achieve required interior noise standards and comply with all applicable County of Los Angeles Airport Land Use Commission, Caltrans, and FAA airport noise land use compatibility guidance and standards. Therefore, operational impacts related to aircraft noise exposure would be less than significant with mitigation.
- The Project Design Features recommended for stationary noise sources would ensure that the HVAC noise at the Project site would be shielded. Therefore, operational impacts related to stationary noise sources would be less than significant.

5.0 References

California Department of Health Services, <u>Guidelines for the Preparation and Content of the</u> <u>Noise Element of the General Plan</u>, 1990

California Department of Transportation, Division of Aeronautics, website: http://www.dot.ca.gov/hq/planning/aeronaut/avnoise.html, accessed June 2012.

Caltrans, Technical Noise Supplement, 1998.

City of Los Angeles, L.A. City CEQA Thresholds Guide, 2006

City of Los Angeles, <u>Los Angeles International Airport Master Plan Final Environmental Impact</u> <u>Statement/Environmental Impact Report</u>, 2004.

City of Los Angeles, Los Angeles Municipal Code, Chapter 11, Section 111.02, 2013.

Federal Aviation Administration, <u>Order 1050.1E, Change 1, Environmental Impacts: Policies and Procedures</u>, March 2006.

Federal Aviation Administration, <u>Code of Federal Regulations, Title 14: Aeronautics and Space,</u> Part 150- Airport Noise Compatibility Planning, 2013.

Los Angeles County Airport Land Use Commission, <u>Los Angeles County Airport Land Use Plan</u>, Adopted 1991, Revised 2004.

Los Angeles World Airports, <u>California State Airport Noise Standards Quarterly Report, Fourth</u> <u>Quarter 2011, Los Angeles International Airport (LAX)</u>, October 19, 2012.

State of California, California Code of Regulations, Title 21, Division 2.5, Chapter 6, 2013.

State of California, Department of Transportation, Division of Aeronautics, <u>California Airport</u> <u>Land Use Planning Handbook</u>, 2002.

ATTACHMENT A ACOUSTICAL TERMINOLOGY

<u>Ambient Noise (Level)</u> - All-encompassing noise (level) at a given place and time, usually a composite of sounds from all sources near and far, including any specific source(s) of interest.

<u>A-Weighted Sound Level (abbreviated dBA or dB(A))</u> - Frequency weighted Sound Pressure Level approximating the frequency response of the human ear. It is defined as the sound level, in decibels, measured with a sound level meter having the metering characteristics and a frequency weighting specified in the American National Standards Institute Specification for Sound Level Meters, ANSI S 1.4 - 1983. The A-weighting de-emphasizes lower frequency sounds below 1000 Hz (1kHz) and higher frequency sounds above 4 kHz. It emphasizes sounds between 1kHz and 4 kHz. A-weighting is the most generally used measure for traffic and environmental noise throughout the world.

Community Noise Equivalent Level (CNEL) - A 24-hour, time-weighted average noise metric, expressed in terms of dBA, which accounts for the noise levels of individual noise events, the number of times those events occur, and the time of day they occur. CNEL is calculated based on noise levels and operational activity occurring during three time periods: daytime (7:00 a.m. to 6:59 p.m.), evening (7:00 p.m. to 9:59 p.m.), and nighttime (10:00 p.m. to 6:59 a.m.). To represent the added intrusiveness of sounds during evening and nighttime hours, CNEL adds weights of 4.77 dBA and 10 dBA to events occurring during the evening and nighttime periods, respectively.

Decibel (Abbreviated dB) - A decibel is one-tenth of a Bel. It is a measure on a logarithmic scale which indicates the squared ratio of sound pressure to a reference sound pressure (unit for *sound pressure level*), or the ratio of sound power to a reference sound power (unit for *sound power level*).

<u>Day-Night Noise Level (L_{dn})</u> - A noise level that takes into account all the A-weighted noise energy from a source during 24 hours and weights the nighttime (10 p.m. to 7 a.m.) noise by adding 10 dBA, during that period.

Existing Noise Levels - The noise, resulting from the natural and mechanical sources and human activity, considered to be usually present in a particular area.

Frequency, Hz - The number of complete pressure fluctuations per second above and below the atmospheric pressure.

 \underline{L}_{eq} - The sound pressure level over a time interval that is equivalent to a perfectly constant sound pressure level containing the same acoustic energy over the same interval. Leq is the average sound level for a specified time period (e.g., 24 hours, 8 hours, 1 hour, etc.) and it includes all sporadic or transient events occurring during the given time period. In terms of community noise, the City of Los Angeles uses the Leq metric to describe ambient noise levels.

<u>L_{max}</u> - The highest sound pressure level in a specific time period.

ATTACHMENT B NOISE MEASUREMENT DATA

Sinder Note Men Me										Calibration (Before)	Calibration	Calibration (After)	Calibration
Number Number<	Start Date & Time	Duration	Notes	Laeg (dB)	LAmax with Time	LAmin with Time	LCea	LCea-LAea	End Date & Time				
Important													
Image			Site 1										
MALAGNA 12.32 Order TA PA PA PA													
University No. No. No. No. N													
Optimization Optimization<													
Univ Univ Index													
OMAP Solution Solution <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>													
Important Part Part Part Part Part Part Part Par													
Initial Section Initial Se													
Inst B Inst B<													
7709 910-1 900-1 000-10 <td>10/10/2012 17.28</td> <td></td> <td>Sito 1</td> <td></td> <td>84.5 dB (10/10/2012 0.04.50 PW)</td> <td>40.2 dB (10/10/2012 5.52.52 FW)</td> <td>78.5 UB</td> <td>7.4 UB</td> <td>10/10/2012 18:03</td> <td>10/10/2012 17.27</td> <td>114.0 UB</td> <td>10/10/2012 18:03</td> <td>-0.4 UB</td>	10/10/2012 17.28		Sito 1		84.5 dB (10/10/2012 0.04.50 PW)	40.2 dB (10/10/2012 5.52.52 FW)	78.5 UB	7.4 UB	10/10/2012 18:03	10/10/2012 17.27	114.0 UB	10/10/2012 18:03	-0.4 UB
Burstein Nets Lanaw with Time Lanaw with Time Long (M) Lanaw with Time Lanaw with Time <thlanaw th="" time<="" with=""> Lanaw with Time<td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thlanaw>													
Start Date Note Note Note Note Index <		7:50:50	Site 1	09.0						Calibration (Poforo)	Calibration	Calibration (Aftor)	Calibration
111/5/2012 4:23 1:0:0:0 5::-0 1:0:0:0 1:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0	Start Data 9. Timo	Duration	Notor	Loog (dD)	I A may with Time	I A min with Time	1.000		End Data & Time				
111157021392 0.0653 1.0064 1.0167012393 10.0464 1.0167012393 10.07001 10.157012393 10.0400 10.157012393 10.0400 10.1570212343 10.0400 10.1570212343 10.0400 10.1570212343 10.0400 10.1570212343 10.0400 10.1570212343 10.0400 10.1570212343 10.0400 10.1570212343 10.0400 10.1570212343 10.0400 10.1570212343 10.0400 10.1570212343 10.0400 10.1570212343 10.0400 10.1570212343 10.0400 10.1570212343 10.0400 10.1570212343 10.0400 10.1570212343 10.0400 10.1570212343 10.0400 10.1570212343 10.0400 10.0400 10.1570212343 10.0400 10.0400 10.0400 10.057021343 10.0400											· /		
1111529021293 10000 100 1011529021293 100			Site 2										
11/15/2012 1.3.6 10/15/2012 1.3.6.2 m (11/15/2012 1.3.6.2 m (11/													
11/15/2012 1-44 10/15/2012 1-24 11/15/2012													
1115/2012124 1000													
111/5/201214/ 10/5 62.5 64.4 61/1/5/20124.5 75.4/8 10.6.4/8 1/15/20124.5 </td <td></td>													
1115/2012 44 1.00 63.4 51.00 1115/2012 32.3 10.4 1.125/2012 33.1 10.4 1.125/2012 33.1 10.4 1.8 dB 1115/2012 45 0.400 1013/2012 43.1 10.15/2012 33.1 10.4 dB 1.8 dB 1115/2012 45 10.14 10.15/2012 43.1 10.15/2012 43.1 10.4 dB 1.8 dB 1115/2012 45 10.14 10.15/2012 43.1 10.4 dB 1.15/2012 43.1 1.4 dB 1.8 dB 101172/012 10.5 10.01 Note 1.4 dB 1.4 dB 1.1 dB													
111152012152 01411mm 0163 2 alight [1/15/2012 + 28:0 [1/15/2012 + 28:0 [1/15 / 2012 + 28:0 [1/15 / 2012 + 28:0 [1/15 / 2012 + 15:0													
Total rule Site 2 Bink 2 <thbink 2<="" th=""> <thbink2< th=""> Bink 2</thbink2<></thbink>													
7:55:54 Site 2 64.1 Inclusion Lanis with Time Lanis with	11/15/2012 15:42				82.4 dB (11/15/2012 4:28:01 PM)	46.0 dB (11/15/2012 3:42:36 PM)	73.1 dB	10.1 dB	11/15/2012 16:28	11/15/2012 9:35	114.0 dB		-1.8 dB
Surt Date & Time Duration Notes Leng (B) LAmax with Time Lamin with Time Leng Cell-Leng End Leng Calibration (Refore) Calibration (Refore) <thcalibration (refore)<="" th=""> Calibration (Refore)</thcalibration>				, 0									
Shart Date X Time Notes Leq (dl) Maxwith Time Leq Leq (dl) Maxwith Time Leq Leq (dl) Maxwith Time Maxwith Time<		7:55:54	Site 2	64.1									
101/18/2012 1005 10000 Site 3 0 67/2 84.5 dB (10/18/2012 11:358 AM) 53.1 dB (10/18/2012 11:32:40 AM) 80.6 dB 10/18/2012 12:05 114.0 dB 10/18/2012 10:05 114.0 dB										Calibration (Before)			
101/13/2012 11:05 10:070 70 [8 1 dB [10/13/2012 11:32:04 AM] 80 dB 10 6 dB 10/13/2012 12:05 11/03/2012 10:05 <	Start Date & Time	Duration	Notes	Laeq (dB)	LAmax with Time	LAmin with Time		LCeq-LAeq	End Date & Time	1	· /		-
101/14/2012 12:05 10:000 10/18/2012 12:05 10:01/18/2012 12:05 10:01/18/2012 12:05 10:01/18/2012 13:05 10:	10/18/2012 10:05	1:00:00	Site 3	69.7	84.5 dB (10/18/2012 10:31:58 AM)	53.1 dB (10/18/2012 10:27:41 AM)	80.0 dB	10.3 dB	10/18/2012 11:05	10/18/2012 10:05	114.0 dB	10/18/2012 15:09	0.1 dB
101/18/2012 1:307 1:0000 70.1 97:9 dB (10/18/2012 1:02:46 PM) 1:21 dB (10/18/2012 1:20 PM) 92.6 dB 9.6 dB 10/18/2012 1:005 11:40.dB 10/18/2012 1:005 11:40.dB 10/18/2012 1:005 1:40.dB 10	10/18/2012 11:05	1:00:00		70	86.1 dB (10/18/2012 11:13:09 AM)	52.3 dB (10/18/2012 11:32:40 AM)	80.6 dB	10.6 dB	10/18/2012 12:05	10/18/2012 10:05	114.0 dB	10/18/2012 15:09	0.1 dB
101/s1/2012 14:07 1:0:0:0 70 87.7 dB (10/18/2012 1:5:0*, 114:04B) 10/18/2012 1:5:0*, 10.1 dB <	10/18/2012 12:05	1:00:00		69.9	91.6 dB (10/18/2012 12:22:28 PM)	51.3 dB (10/18/2012 12:48:02 PM)	80.4 dB	10.5 dB	10/18/2012 13:05	10/18/2012 10:05	114.0 dB	10/18/2012 15:09	0.1 dB
101/s/2012 15:09 10:00 10:01/s/2012 15:09 11:0.08 10/s/2012 16:09 10/s/2012 15:09 11:0.08 10/s/2012 16:08 0.2 dB 10:18/2012 15:09 10:08 00 BI (0/s/2012 3:45:14 PM) 46.6 dB (0/s/s/2012 4:45:2 PM) 78.9 dB 8.9 dB 10/s/2012 10:09 11:0.08 10/s/2012 10:08 0.2 dB 10:18/2012 15:09 11:0.08 01/s/2012 15:09 11:0.08 10/s/2012 15:09 11:0.08 10/s/2012 15:09 11:0.08 10/s/2012 15:09 11:0.08 0.2 dB 0.2 dB <t< td=""><td>10/18/2012 13:07</td><td>1:00:00</td><td></td><td>70.1</td><td>97.9 dB (10/18/2012 1:08:46 PM)</td><td>51.2 dB (10/18/2012 1:41:23 PM)</td><td>79.6 dB</td><td>9.5 dB</td><td>10/18/2012 14:07</td><td>10/18/2012 10:05</td><td>114.0 dB</td><td>10/18/2012 15:09</td><td>0.1 dB</td></t<>	10/18/2012 13:07	1:00:00		70.1	97.9 dB (10/18/2012 1:08:46 PM)	51.2 dB (10/18/2012 1:41:23 PM)	79.6 dB	9.5 dB	10/18/2012 14:07	10/18/2012 10:05	114.0 dB	10/18/2012 15:09	0.1 dB
10/18/2012 16:09 1:00:00 7:0.9 80.0 dB (10/18/2012 4:41:56 PM) 50.6 dB (10/18/2012 4:46:12 PM) 79.8 dB 8.9 dB 10/18/2012 1:0.9 11.0 dB 10/18/2012 1:0.8 10/18/2012 1:0.9 11.0 dB 10/18/20	10/18/2012 14:07	1:00:00		70	98.7 dB (10/18/2012 2:16:04 PM)	52.7 dB (10/18/2012 2:27:05 PM)	79.9 dB	9.9 dB	10/18/2012 15:07	10/18/2012 10:05	114.0 dB	10/18/2012 15:09	0.1 dB
10/18/2012 17:09 0:58:30 71.2 89.5 dB (10/18/2012 5:16:21 PM) 51.6 dB (10/18/2012 5:12:29 PM) 80.2 dB 9.0 dB 10/18/2012 18:08 10/18/2012 18:09 14.0 dB 10/18/2012 18:08 10/18/2012 18:09 14.0 dB 10/18/2012 18:08 10/18/2012 18:09 14.0 dB 10/18/2012 18:08 0.2 dB 75.83 Site 3 Daily Aw Amin with Time Lee Lee Lee Lee Calibration Galibration Gal	10/18/2012 15:09	1:00:00		69.2	91.3 dB (10/18/2012 3:45:14 PM)	48.6 dB (10/18/2012 4:01:08 PM)	78.9 dB	9.8 dB	10/18/2012 16:09	10/18/2012 15:09	114.0 dB	10/18/2012 18:08	-0.2 dB
Total Time Site 3 Daily Avg. Inclusion Inclusion <th< td=""><td>10/18/2012 16:09</td><td></td><td></td><td></td><td>88 0 dB (10/18/2012 4·41·56 PM)</td><td>50.6 dB (10/18/2012 4·46·12 PM)</td><td>79.8 dB</td><td>8.9 dB</td><td>10/18/2012 17:09</td><td>10/19/2012 15:00</td><td>1110 40</td><td></td><td>0.2.40</td></th<>	10/18/2012 16:09				88 0 dB (10/18/2012 4·41·56 PM)	50.6 dB (10/18/2012 4·46·12 PM)	79.8 dB	8.9 dB	10/18/2012 17:09	10/19/2012 15:00	1110 40		0.2.40
7:58:30 Site 3 70.1 Calibration Notes Laque (dB) LAmax with Time LAmin with Time LCeq LCeq LCeq-LAcq End bate & Time Date Calibration Galibration (Afer) Calibration (Afer)	10/18/2012 17:09			70.9	00.0 00 (10/ 10/ 2012 4.41.30 1 10)	5010 45 (10/10/2012 1110112 1111)				10/18/2012 13:05	114.0 dB	10/18/2012 18:08	-0.2 dB
Start Date & Time Duration Notes Laeq (dB) LAmax with Time LAmin with Time Lamin with Time LCeq LCeq.Leq End Date & Time Date Calibration Calibration <th< td=""><td></td><td>0:58:30</td><td></td><td></td><td></td><td></td><td>80.2 dB</td><td>9.0 dB</td><td></td><td></td><td></td><td></td><td></td></th<>		0:58:30					80.2 dB	9.0 dB					
Start Date & Time Duration Notes Leq (dB) Law with Time Lang with Time			Site 3	71.2			80.2 dB	9.0 dB					
10/19/2012 9:40 1:00:00 Site 4 57.7 77.1 dB (10/19/2012 9:48:59 AM) 39.3 dB (10/19/2012 10:35:01 AM) 72.0 dB 14.3 dB 10/19/2012 10:40 10/19/2012 9:40 14.0 dB 10/19/2012 13:44 -0.2 dB 10/19/2012 11:41 1:00:00 60.9 83.7 dB (10/19/2012 10:45:42 AM) 40.8 dB (10/19/2012 11:43:03 AM) 72.2 dB 14.7 dB 10/19/2012 13:41 10/19/2012 9:40 114.0 dB 10/19/2012 13:44 -0.2 dB 10/19/2012 12:41 10:00:00 60.1 83.7 dB (10/19/2012 10:20:10 PM) 43.3 dB (10/19/2012 13:32 DPM) 77.3 dB 16.1 dB 10/19/2012 13:41 10/19/2012 13:44 -0.2 dB 10/19/2012 13:45 10:00:00 64.1 73.4 dB (10/19/2012 1:42:11 PM) 49.5 dB (10/19/2012 1:42:00 PM) 78.3 dB 14.7 dB 10/19/2012 13:44 <t< td=""><td></td><td>Total Time</td><td></td><td>71.2 Daily Avg.</td><td>89.5 dB (10/18/2012 5:16:21 PM)</td><td></td><td>80.2 dB</td><td>9.0 dB</td><td></td><td></td><td></td><td></td><td></td></t<>		Total Time		71.2 Daily Avg.	89.5 dB (10/18/2012 5:16:21 PM)		80.2 dB	9.0 dB					
10/19/2012 10:41 1:00:00 59.6 76.9 dB (10/19/2012 10:45:42 AM) 40.8 dB (10/19/2012 11:07:04 AM) 74.2 dB 14.7 dB 10/19/2012 11:41 10/19/2012 9:40 114.0 dB 10/19/2012 13:44 -0.2 dB 10/19/2012 11:41 1:00:00 60.9 83.7 dB (10/19/2012 12:07:32 PM) 42.3 dB (10/19/2012 11:43:03 AM) 75.3 dB 14.4 dB 10/19/2012 13:41 10/19/2012 9:40 114.0 dB 10/19/2012 13:44 -0.2 dB 10/19/2012 13:41 1:00:00 61.1 83.8 dB (10/19/2012 1:02:13 PM) 43.9 dB (10/19/2012 1:3:32 PM) 72.8 dB 14.7 dB 10/19/2012 13:41 10/19/2012 9:40 114.0 dB 10/19/2012 13:44 -0.2 dB 10/19/2012 13:45 1:00:00 64.1 73.4 dB (10/19/2012 1:42:1PM) 49.5 dB (10/19/2012 1:33:2PM) 77.2 dB 16.1 dB 10/19/2012 1:44 14.0 dB 10/19/2012 1:344 14.0 dB 10/19/2012 1:344 -0.2 dB 10/19/2012 1:45 1:00:00 59.5 78.4 dB (10/19/2012 1:42:1PM) 41.5 dB (10/19/2012 1:43:2PM) 73.8 dB 14.4 dB 10/19/2012 1:44 14.0 dB 10/19/2012 1:42 -0.1 dB 10/19/2012 1:45 1:00:00 58.9 78.7 dB (10/19/2012 4:12:5PM) 41.5 dB (10/19/2012 3:42		Total Time		71.2 Daily Avg.	89.5 dB (10/18/2012 5:16:21 PM)		80.2 dB	9.0 dB		10/18/2012 15:09	114.0 dB	10/18/2012 18:08	-0.2 dB
10/19/2012 10:41 1:00:00 59.6 76.9 dB (10/19/2012 10:45:42 AM) 40.8 dB (10/19/2012 11:07:04 AM) 74.2 dB 14.7 dB 10/19/2012 11:41 10/19/2012 9:40 114.0 dB 10/19/2012 13:44 -0.2 dB 10/19/2012 11:41 1:00:00 60.9 83.7 dB (10/19/2012 12:07:32 PM) 42.3 dB (10/19/2012 11:43:03 AM) 75.3 dB 14.4 dB 10/19/2012 13:41 10/19/2012 9:40 114.0 dB 10/19/2012 13:44 -0.2 dB 10/19/2012 13:41 1:00:00 61.1 83.8 dB (10/19/2012 1:02:13 PM) 43.9 dB (10/19/2012 1:3:32 PM) 72.8 dB 14.7 dB 10/19/2012 13:41 10/19/2012 9:40 114.0 dB 10/19/2012 13:44 -0.2 dB 10/19/2012 13:45 1:00:00 64.1 73.4 dB (10/19/2012 1:42:1PM) 49.5 dB (10/19/2012 1:33:2PM) 77.2 dB 16.1 dB 10/19/2012 1:44 14.0 dB 10/19/2012 1:344 14.0 dB 10/19/2012 1:344 -0.2 dB 10/19/2012 1:45 1:00:00 59.5 78.4 dB (10/19/2012 1:42:1PM) 41.5 dB (10/19/2012 1:43:2PM) 73.8 dB 14.4 dB 10/19/2012 1:44 14.0 dB 10/19/2012 1:42 -0.1 dB 10/19/2012 1:45 1:00:00 58.9 78.7 dB (10/19/2012 4:12:5PM) 41.5 dB (10/19/2012 3:42	Start Date & Time	Total Time 7:58:30	Site 3	71.2 Daily Avg. 70.1	89.5 dB (10/18/2012 5:16:21 PM)	51.6 dB (10/18/2012 5:12:59 PM)			10/18/2012 18:08	10/18/2012 15:09 Calibration (Before)	114.0 dB Calibration	10/18/2012 18:08 Calibration (After)	-0.2 dB Calibration
10/19/2012 11:41 1:00:00 60.9 83.7 dB (10/19/2012 12:07:32 PM) 42.3 dB (10/19/2012 11:43:03 AM) 75.3 dB 14.4 dB 10/19/2012 12:41 10/19/2012 9:40 114.0 dB 10/19/2012 13:44 -0.2 dB 10/19/2012 13:41 10:00:00 61.1 83.8 dB (10/19/2012 12:01:0 PM) 43.9 dB (10/19/2012 13:320 PM) 77.2 dB 16.1 dB 10/19/2012 13:41 10/19/2012 9:40 114.0 dB 10/19/2012 13:44 -0.2 dB 10/19/2012 13:45 1:00:00 64.1 73.4 dB (10/19/2012 12:42:10 PM) 49.5 dB (10/19/2012 13:42:0 PM) 75.8 dB 14.7 dB 10/19/2012 13:42 10/19/2012 13:44 14.0 dB 10/19/2012 13:44 -0.2 dB 10/19/2012 13:45 1:00:00 64.1 73.4 dB (10/19/2012 15:45:10/19/2012 13:42 10/19/2012 13:44 14.0 dB 10/19/2012 13:44 14.0 dB 10/19/2012 13:44 -0.2 dB 10/19/2012 13:45 1:00:00 55.9 78.4 dB (10/19/2012 15:15 PM) 41.4 dB (10/19/2012 15:25 27:27 PM) 73.4 dB 138.8 dB 10/19/2012 13:44 14.0 dB 10/19/2012 13:42 -0.1 dB 10/19/2012 15:45 0/19/2012 13:44 14.0 dB 10/19/2012 13:44 14.0 dB 10/19/2012 13:44 14.0 dB 10/19/2012 13:44		Total Time 7:58:30 Duration	Site 3 Notes	71.2 Daily Avg. 70.1 Laeq (dB)	89.5 dB (10/18/2012 5:16:21 PM)	51.6 dB (10/18/2012 5:12:59 PM)	LCeq	LCeq-LAeq	10/18/2012 18:08 End Date & Time	10/18/2012 15:09 Calibration (Before) Date	114.0 dB Calibration (Before) SPL	10/18/2012 18:08 Calibration (After) Date	-0.2 dB Calibration Drift
10/19/2012 12:41 1:00:00 61.1 83.8 dB (10/19/2012 1:02:10 PM) 43.9 dB (10/19/2012 1:33:20 PM) 77.2 dB 16.1 dB 10/19/2012 1:341 10/19/2012 1:342 10/19/2012 1:342 10/19/2012 1:342 10/19/2012 1:344 -0.2 dB 10/19/2012 13:41 0:00:46 64.1 73.4 dB (10/19/2012 1:32:1PM) 49.5 dB (10/19/2012 1:42:00 PM) 78.8 dB 14.7 dB 10/19/2012 1:342 10/19/2012 1:344 14.0 dB 10/19/2012 1:344 -0.2 dB 10/19/2012 1:445 1:00:00 64.1 73.4 dB (10/19/2012 1:56:46 PM) 39.9 dB (10/19/2012 1:45:19 PM) 75.8 dB 14.8 dB 10/19/2012 1:344 114.0 dB 10/19/2012 1:742 -0.1 dB 10/19/2012 1:545 1:00:00 59.5 78.4 dB (10/19/2012 1:315 PM) 41.4 dB (10/19/2012 1:323 PM) 73.4 dB 138.8 dB 10/19/2012 1:344 114.0 dB 10/19/2012 1:742 -0.1 dB 10/19/2012 1:645 0:56:11 58.9 77.8 dB (10/19/2012 1:31 PM) 41.5 dB (10/19/2012 1:327 PM) 73.3 dB 14.4 dB 10/19/2012 1:34 14.0 dB 10/	10/19/2012 9:40	Total Time 7:58:30 Duration 1:00:00	Site 3 Notes	71.2 Daily Avg. 70.1 Laeq (dB) 57.7	89.5 dB (10/18/2012 5:16:21 PM) LAmax with Time 77.1 dB (10/19/2012 9:48:59 AM)	51.6 dB (10/18/2012 5:12:59 PM) LAmin with Time 39.3 dB (10/19/2012 10:35:01 AM)	LCeq 72.0 dB	LCeq-LAeq 14.3 dB	10/18/2012 18:08 End Date & Time 10/19/2012 10:40	10/18/2012 15:09 Calibration (Before) Date 10/19/2012 9:40	114.0 dB Calibration (Before) SPL 114.0 dB	10/18/2012 18:08 Calibration (After) Date 10/19/2012 13:44	-0.2 dB Calibration Drift -0.2 dB
10/19/2012 13:41 0:00:46 64.1 73.4 dB (10/19/2012 1:42:11 PM) 49.5 dB (10/19/2012 1:42:00 PM) 78.8 dB 14.7 dB 10/19/2012 13:42 10/19/2012 1:40 114.0 dB 10/19/2012 1:44 -0.2 dB 10/19/2012 13:45 1:00:00 64.1 73.4 dB (10/19/2012 1:42:11 PM) 39.9 dB (10/19/2012 1:45:19 PM) 75.8 dB 14.8 dB 10/19/2012 1:44 10/19/2012 1:44 114.0 dB 10/19/2012 1:42 -0.1 dB 10/19/2012 1:445 1:00:00 59.5 78.4 dB (10/19/2012 2:51:15 PM) 41.4 dB (10/19/2012 3:15:38 PM) 73.4 dB 138.4 B 10/19/2012 1:45 10/19/2012 1:44 140.0 dB 10/19/2012 1:42 -0.1 dB 10/19/2012 1:45 1:00:00 75.8 dB (10/19/2012 2:51:15 PM) 41.4 dB (10/19/2012 3:15:38 PM) 73.4 dB 138.4 B 10/19/2012 1:45 10/19/2012 1:44 140.0 dB 10/19/2012 1:42 -0.1 dB 10/19/2012 1:45 1:00:00 75.8 dB (10/19/2012 4:12:50 PM) 41.5 dB (10/19/2012 5:27:27 PM) 73.3 dB 14.4 dB 10/19/2012 1:44 140.0 dB 10/19/2012 1:44 140.0 dB 10/19/2012 1:42 -0.1 dB 10/23/2012 1:23 55.67 Site 4 FVALUE! Laeq (dB) Lamax with Time LAmin wit	10/19/2012 9:40 10/19/2012 10:41	Total Time 7:58:30 Duration 1:00:00 1:00:00	Site 3 Notes	71.2 Daily Avg. 70.1 Laeq (dB) 57.7 59.6	89.5 dB (10/18/2012 5:16:21 PM) LAmax with Time 77.1 dB (10/19/2012 9:48:59 AM) 76.9 dB (10/19/2012 10:45:42 AM)	51.6 dB (10/18/2012 5:12:59 PM) LAmin with Time 39.3 dB (10/19/2012 10:35:01 AM) 40.8 dB (10/19/2012 11:07:04 AM)	LCeq 72.0 dB 74.2 dB	LCeq-LAeq 14.3 dB 14.7 dB	10/18/2012 18:08 End Date & Time 10/19/2012 10:40 10/19/2012 11:41	10/18/2012 15:09 Calibration (Before) Date 10/19/2012 9:40 10/19/2012 9:40	114.0 dB Calibration (Before) SPL 114.0 dB 114.0 dB	10/18/2012 18:08 Calibration (After) Date 10/19/2012 13:44 10/19/2012 13:44	-0.2 dB Calibration Drift -0.2 dB -0.2 dB
10/19/2012 13:45 1:00:00 10/19/2012 13:45 1:00:00 10/19/2012 13:45 1:00:00 10/19/2012 13:45 1:00:00 10/19/2012 13:45 1:00:00 10/19/2012 13:45 1:00:00 10/19/2012 13:45 1:00:00 10/19/2012 13:45 1:00:00 10/19/2012 13:45 1:00:00 10/19/2012 13:45 1:00:00 10/19/2012 13:45 1:00:00 10/19/2012 13:45 1:00:10/19/2012 13:44 1:14.0 dB 10/19/2012 17:42 0:1 dB 10/19/2012 13:45 1:00:10/19/2012 13:44 1:14.0 dB 10/19/2012 17:42 0:1 dB 10/19/2012 13:45 1:00:10/19/2012 13:44 1:14.0 dB 10/19/2012 17:42 0:1 dB 10/19/2012 13:44 1:4.0 dB 10/19/2012 13:44 1:4.0 dB 10/19/2012 13:44 1:4.0 dB 10/19/2012 13:44 1:4.0 dB 10/19/2012 13:44 1:4.0 dB 10/19/2012 13:44 1:4.0 dB 10/19/2012 13:44 1:4.0 dB 10/19/2012 13:44 1:4.0 dB 1:0/19/2012 13:44 1:4.0 dB 1:0/19/2012 13:44 1:4.0 dB 1:0/19/2012 13:44 1:4.0 dB 1:0/19/2012 13:44 1:4.0 dB :0/19/2012 13:44	10/19/2012 9:40 10/19/2012 10:41 10/19/2012 11:41	Total Time 7:58:30 Duration 1:00:00 1:00:00 1:00:00	Site 3 Notes	71.2 Daily Avg. 70.1 Laeq (dB) 57.7 59.6 60.9	89.5 dB (10/18/2012 5:16:21 PM) LAmax with Time 77.1 dB (10/19/2012 9:48:59 AM) 76.9 dB (10/19/2012 10:45:42 AM) 83.7 dB (10/19/2012 12:07:32 PM)	51.6 dB (10/18/2012 5:12:59 PM) LAmin with Time 39.3 dB (10/19/2012 10:35:01 AM) 40.8 dB (10/19/2012 11:07:04 AM) 42.3 dB (10/19/2012 11:43:03 AM)	LCeq 72.0 dB 74.2 dB 75.3 dB	LCeq-LAeq 14.3 dB 14.7 dB 14.4 dB	10/18/2012 18:08 End Date & Time 10/19/2012 10:40 10/19/2012 11:41 10/19/2012 12:41	10/18/2012 15:09 Calibration (Before) Date 10/19/2012 9:40 10/19/2012 9:40	114.0 dB Calibration (Before) SPL 114.0 dB 114.0 dB 114.0 dB	10/18/2012 18:08 Calibration (After) Date 10/19/2012 13:44 10/19/2012 13:44	-0.2 dB Calibration Drift -0.2 dB -0.2 dB -0.2 dB
10/19/2012 14:45 1:00:00 55.5 78.4 dB (10/19/2012 2:51:15 PM) 41.4 dB (10/19/2012 3:5:38 PM) 73.4 dB 13.8 dB 10/19/2012 15:45 10/19/2012 13:44 114.0 dB 10/19/2012 17:42 0.1 dB 10/19/2012 15:45 1:00:00 58.9 78.7 dB (10/19/2012 4:32:0 PM) 41.5 dB (10/19/2012 4:37:01 PM) 73.7 dB 14.7 dB 10/19/2012 13:44 114.0 dB 10/19/2012 17:42 0.1 dB 10/19/2012 16:45 0:56:11 58.9 78.8 dB (10/19/2012 5:02*13 PM) 40.3 dB (10/19/2012 5:27:27 PM) 73.3 dB 14.4 dB 10/19/2012 17:42 10/19/2012 13:44 114.0 dB 10/19/2012 17:42 0.1 dB 10/19/2012 16:45 0:56:11 58.9 78.8 dB (10/19/2012 5:02*13 PM) 40.3 dB (10/19/2012 5:27:27 PM) 73.3 dB 14.4 dB 10/19/2012 13:44 114.0 dB 10/19/2012 17:42 0.1 dB 10/19/2012 16:45 0:56:11 58.9 78.8 dB (10/19/2012 5:02*13 PM) 40.3 dB (10/19/2012 5:02*12 PM) 73.3 dB 14.4 dB 10/19/2012 13:44 114.0 dB 10/19/2012 13:42 0.1 dB 58:7 Site 4 #VALUE! #VALUE! LAmin with Time LAmin with Time LCeq LCeq LCeq Leq End	10/19/2012 9:40 10/19/2012 10:41 10/19/2012 11:41 10/19/2012 12:41	Total Time 7:58:30 Duration 1:00:00 1:00:00 1:00:00 1:00:00 1:00:00	Site 3 Notes	71.2 Daily Avg. 70.1 Laeq (dB) 57.7 59.6 60.9 61.1	89.5 dB (10/18/2012 5:16:21 PM) LAmax with Time 77.1 dB (10/19/2012 9:48:59 AM) 76.9 dB (10/19/2012 10:45:42 AM) 83.7 dB (10/19/2012 12:07:32 PM) 83.8 dB (10/19/2012 1:02:10 PM)	51.6 dB (10/18/2012 5:12:59 PM) LAmin with Time 39.3 dB (10/19/2012 10:35:01 AM) 40.8 dB (10/19/2012 11:07:04 AM) 42.3 dB (10/19/2012 11:43:03 AM) 43.9 dB (10/19/2012 1:33:20 PM)	LCeq 72.0 dB 74.2 dB 75.3 dB 77.2 dB	LCeq-LAeq 14.3 dB 14.7 dB 14.4 dB 16.1 dB	10/18/2012 18:08 End Date & Time 10/19/2012 10:40 10/19/2012 11:41 10/19/2012 12:41 10/19/2012 13:41	10/18/2012 15:09 Calibration (Before) Date 10/19/2012 9:40 10/19/2012 9:40 10/19/2012 9:40	114.0 dB Calibration (Before) SPL 114.0 dB 114.0 dB 114.0 dB 114.0 dB	10/18/2012 18:08 Calibration (After) Date 10/19/2012 13:44 10/19/2012 13:44 10/19/2012 13:44	-0.2 dB Calibration Drift -0.2 dB -0.2 dB -0.2 dB -0.2 dB
10/19/2012 15:45 1:00:00 58.9 78.7 dB (10/19/2012 4:12:50 PM) 41.5 dB (10/19/2012 4:37:01 PM) 73.7 dB 14.7 dB 10/19/2012 16:45 10/19/2012 13:44 114.0 dB 10/19/2012 17:42 0.1 dB 10/19/2012 16:45 0:56:11 58.9 77.8 dB (10/19/2012 4:32:0 PM) 40.3 dB (10/19/2012 5:27:27 PM) 73.3 dB 14.4 dB 10/19/2012 17:42 10/19/2012 13:44 114.0 dB 10/19/2012 17:42 0.1 dB Total Time Site 4 Daily Avg. Image: Control of the tem in	10/19/2012 9:40 10/19/2012 10:41 10/19/2012 11:41 10/19/2012 12:41 10/19/2012 13:41	Total Time 7:58:30 Duration 1:00:00 1:00:00 1:00:00 0:00:00 0:00:46	Site 3 Notes	71.2 Daily Avg. 70.1 Laeq (dB) 57.7 59.6 60.9 61.1 64.1	89.5 dB (10/18/2012 5:16:21 PM) LAmax with Time 77.1 dB (10/19/2012 9:48:59 AM) 76.9 dB (10/19/2012 10:45:42 AM) 83.7 dB (10/19/2012 12:07:32 PM) 83.8 dB (10/19/2012 1:02:10 PM) 73.4 dB (10/19/2012 1:42:11 PM)	51.6 dB (10/18/2012 5:12:59 PM) LAmin with Time 39.3 dB (10/19/2012 10:35:01 AM) 40.8 dB (10/19/2012 11:07:04 AM) 42.3 dB (10/19/2012 11:43:03 AM) 43.9 dB (10/19/2012 11:33:20 PM) 49.5 dB (10/19/2012 11:42:00 PM)	LCeq 72.0 dB 74.2 dB 75.3 dB 77.2 dB 78.8 dB	LCeq-LAeq 14.3 dB 14.7 dB 14.4 dB 16.1 dB 14.7 dB	10/18/2012 18:08 End Date & Time 10/19/2012 10:40 10/19/2012 11:41 10/19/2012 12:41 10/19/2012 13:41 10/19/2012 13:42	10/18/2012 15:09 Calibration (Before) Date 10/19/2012 9:40 10/19/2012 9:40 10/19/2012 9:40 10/19/2012 9:40	114.0 dB Calibration (Before) SPL 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB	10/18/2012 18:08 Calibration (After) Date 10/19/2012 13:44 10/19/2012 13:44 10/19/2012 13:44 10/19/2012 13:44	-0.2 dB Calibration Drift -0.2 dB -0.2 dB -0.2 dB -0.2 dB -0.2 dB
10/19/2012 16:45 0:56:1 58.9 7.8. dB (10/19/2012 5:04:13 PM) 40.3 dB (10/19/2012 5:7:27 PM) 73.3 dB 14.4 dB 10/19/2012 1:44 14.0 dB 10/19/2012 1:344 14.0 dB 10/19/2012 1:342 0.1 dB Total Time Site 4 Daily Avg. Image: Site 4 Maxe:	10/19/2012 9:40 10/19/2012 10:41 10/19/2012 11:41 10/19/2012 12:41 10/19/2012 13:41 10/19/2012 13:45	Total Time 7:58:30 Duration 1:00:00 1:00:00 1:00:00 0:00:00 1:00:00 1:00:00 1:00:00	Site 3 Notes	71.2 Daily Avg. 70.1 Laeq (dB) 57.7 59.6 60.9 61.1 64.1 61.1	89.5 dB (10/18/2012 5:16:21 PM) LAmax with Time 77.1 dB (10/19/2012 9:48:59 AM) 76.9 dB (10/19/2012 10:45:42 AM) 83.7 dB (10/19/2012 1:02:10 PM) 83.8 dB (10/19/2012 1:02:10 PM) 73.4 dB (10/19/2012 1:42:11 PM) 82.6 dB (10/19/2012 1:56:46 PM)	51.6 dB (10/18/2012 5:12:59 PM) LAmin with Time 39.3 dB (10/19/2012 10:35:01 AM) 40.8 dB (10/19/2012 11:07:04 AM) 42.3 dB (10/19/2012 11:43:03 AM) 43.9 dB (10/19/2012 1:33:20 PM) 49.5 dB (10/19/2012 1:42:00 PM) 39.9 dB (10/19/2012 1:45:19 PM)	LCeq 72.0 dB 74.2 dB 75.3 dB 77.2 dB 78.8 dB 75.8 dB	LCeq-LAeq 14.3 dB 14.7 dB 14.4 dB 16.1 dB 14.7 dB 14.8 dB	10/18/2012 18:08 End Date & Time 10/19/2012 10:40 10/19/2012 11:41 10/19/2012 12:41 10/19/2012 13:42 10/19/2012 13:42	10/18/2012 15:09 Calibration (Before) Date 10/19/2012 9:40 10/19/2012 9:40 10/19/2012 9:40 10/19/2012 9:40 10/19/2012 9:40 10/19/2012 13:44	114.0 dB Calibration (Before) SPL 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB	10/18/2012 18:08 Calibration (After) Date 10/19/2012 13:44 10/19/2012 13:44 10/19/2012 13:44 10/19/2012 13:44 10/19/2012 13:44	-0.2 dB Calibration Drift -0.2 dB -0.2 dB -0.2 dB -0.2 dB -0.2 dB -0.2 dB
Total Time Site 4 Daily Avg. Image: Constraint of the state o	10/19/2012 9:40 10/19/2012 10:41 10/19/2012 11:41 10/19/2012 12:41 10/19/2012 13:41 10/19/2012 13:45 10/19/2012 14:45	Total Time 7:58:30 Duration 1:00:00 1:00:00 1:00:00 0:00:00 1:00:00 1:00:00 0:00:046 1:00:00 1:00:00	Site 3 Notes	71.2 Daily Avg. 70.1 Laeq (dB) 57.7 59.6 60.9 61.1 64.1 61 59.5	89.5 dB (10/18/2012 5:16:21 PM) LAmax with Time 77.1 dB (10/19/2012 9:48:59 AM) 76.9 dB (10/19/2012 10:45:42 AM) 83.7 dB (10/19/2012 12:07:32 PM) 83.8 dB (10/19/2012 1:20:10 PM) 73.4 dB (10/19/2012 1:56:46 PM) 78.4 dB (10/19/2012 2:51:15 PM)	51.6 dB (10/18/2012 5:12:59 PM) LAmin with Time 39.3 dB (10/19/2012 10:35:01 AM) 40.8 dB (10/19/2012 11:07:04 AM) 42.3 dB (10/19/2012 11:43:03 AM) 43.9 dB (10/19/2012 11:43:03 AM) 49.5 dB (10/19/2012 11:43:00 PM) 49.5 dB (10/19/2012 11:45:19 PM) 41.4 dB (10/19/2012 3:15:38 PM)	LCeq 72.0 dB 74.2 dB 75.3 dB 77.2 dB 78.8 dB 75.8 dB 73.4 dB	LCeq-LAeq 14.3 dB 14.7 dB 14.4 dB 16.1 dB 14.7 dB 14.8 dB 13.8 dB	10/18/2012 18:08 End Date & Time 10/19/2012 10:40 10/19/2012 11:41 10/19/2012 13:41 10/19/2012 13:42 10/19/2012 13:45	10/18/2012 15:09 Calibration (Before) Date 10/19/2012 9:40 10/19/2012 9:40 10/19/2012 9:40 10/19/2012 9:40 10/19/2012 13:44 10/19/2012 13:44	114.0 dB Calibration (Before) SPL 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB	10/18/2012 18:08 Calibration (After) Date 10/19/2012 13:44 10/19/2012 13:44 10/19/2012 13:44 10/19/2012 13:44 10/19/2012 17:42 10/19/2012 17:42	-0.2 dB Calibration Drift -0.2 dB -0.2 dB -0.2 dB -0.2 dB -0.2 dB -0.1 dB
756:57 Site 4 #VALUE! Image: Constraint of the state of the s	10/19/2012 9:40 10/19/2012 10:41 10/19/2012 11:41 10/19/2012 12:41 10/19/2012 13:41 10/19/2012 13:45 10/19/2012 14:45 10/19/2012 15:45	Total Time 7:58:30 Duration 1:00:00 1:00:00 1:00:00 1:00:00 1:00:00 0:00:046 1:00:00 1:00:00 1:00:00	Site 3 Notes	71.2 Daily Avg. 70.1 Laeq (dB) 57.7 59.6 60.9 61.1 64.1 64.1 61 59.5 58.9	89.5 dB (10/18/2012 5:16:21 PM) LAmax with Time 77.1 dB (10/19/2012 9:48:59 AM) 76.9 dB (10/19/2012 10:45:42 AM) 83.7 dB (10/19/2012 12:07:32 PM) 83.8 dB (10/19/2012 1:20:10 PM) 73.4 dB (10/19/2012 1:56:46 PM) 78.4 dB (10/19/2012 2:51:15 PM) 78.7 dB (10/19/2012 4:12:50 PM)	51.6 dB (10/18/2012 5:12:59 PM) LAmin with Time 39.3 dB (10/19/2012 10:35:01 AM) 40.8 dB (10/19/2012 11:07:04 AM) 42.3 dB (10/19/2012 11:43:03 AM) 43.9 dB (10/19/2012 1:33:20 PM) 49.5 dB (10/19/2012 1:42:00 PM) 39.9 dB (10/19/2012 1:45:19 PM) 41.4 dB (10/19/2012 3:15:38 PM) 41.5 dB (10/19/2012 4:37:01 PM)	LCeq 72.0 dB 74.2 dB 75.3 dB 77.2 dB 78.8 dB 75.8 dB 73.4 dB 73.7 dB	LCeq-LAeq 14.3 dB 14.7 dB 14.4 dB 16.1 dB 14.7 dB 14.7 dB 13.8 dB 14.7 dB	10/18/2012 18:08 End Date & Time 10/19/2012 10:40 10/19/2012 11:41 10/19/2012 13:41 10/19/2012 13:42 10/19/2012 13:45 10/19/2012 15:45	10/18/2012 15:09 Calibration (Before) Date 10/19/2012 9:40 10/19/2012 9:40 10/19/2012 9:40 10/19/2012 9:40 10/19/2012 13:44 10/19/2012 13:44	114.0 dB Calibration (Before) SPL 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB	10/18/2012 18:08 Calibration (After) Date 10/19/2012 13:44 10/19/2012 13:44 10/19/2012 13:44 10/19/2012 13:44 10/19/2012 17:42 10/19/2012 17:42	-0.2 dB Calibration Drift -0.2 dB -0.2 dB -0.2 dB -0.2 dB -0.2 dB -0.1 dB -0.1 dB
Start Date & Time Notes Laeq (dB) LAmax with Time LAmin with Time Leeq Le	10/19/2012 9:40 10/19/2012 10:41 10/19/2012 11:41 10/19/2012 12:41 10/19/2012 13:41 10/19/2012 13:45 10/19/2012 14:45 10/19/2012 15:45	Total Time 7:58:30 Duration 1:00:00 1:00:00 1:00:00 0:00:46 1:00:00 1:00:00 0:00:46 1:00:00 1:00:00 0:00:46 1:00:00 0:00:00	Site 3 Notes Site 4	71.2 Daily Avg. 70.1 Laeq (dB) 57.7 59.6 60.9 61.1 64.1 64.1 61 59.5 58.9 58.9	89.5 dB (10/18/2012 5:16:21 PM) LAmax with Time 77.1 dB (10/19/2012 9:48:59 AM) 76.9 dB (10/19/2012 10:45:42 AM) 83.7 dB (10/19/2012 12:07:32 PM) 83.8 dB (10/19/2012 1:20:10 PM) 73.4 dB (10/19/2012 1:56:46 PM) 78.4 dB (10/19/2012 2:51:15 PM) 78.7 dB (10/19/2012 4:12:50 PM)	51.6 dB (10/18/2012 5:12:59 PM) LAmin with Time 39.3 dB (10/19/2012 10:35:01 AM) 40.8 dB (10/19/2012 11:07:04 AM) 42.3 dB (10/19/2012 11:43:03 AM) 43.9 dB (10/19/2012 1:33:20 PM) 49.5 dB (10/19/2012 1:42:00 PM) 39.9 dB (10/19/2012 1:45:19 PM) 41.4 dB (10/19/2012 3:15:38 PM) 41.5 dB (10/19/2012 4:37:01 PM)	LCeq 72.0 dB 74.2 dB 75.3 dB 77.2 dB 78.8 dB 75.8 dB 73.4 dB 73.7 dB	LCeq-LAeq 14.3 dB 14.7 dB 14.4 dB 16.1 dB 14.7 dB 14.7 dB 13.8 dB 14.7 dB	10/18/2012 18:08 End Date & Time 10/19/2012 10:40 10/19/2012 11:41 10/19/2012 13:41 10/19/2012 13:42 10/19/2012 13:45 10/19/2012 15:45	10/18/2012 15:09 Calibration (Before) Date 10/19/2012 9:40 10/19/2012 9:40 10/19/2012 9:40 10/19/2012 9:40 10/19/2012 13:44 10/19/2012 13:44	114.0 dB Calibration (Before) SPL 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB	10/18/2012 18:08 Calibration (After) Date 10/19/2012 13:44 10/19/2012 13:44 10/19/2012 13:44 10/19/2012 13:44 10/19/2012 17:42 10/19/2012 17:42	-0.2 dB Calibration Drift -0.2 dB -0.2 dB -0.2 dB -0.2 dB -0.2 dB -0.1 dB -0.1 dB
Start Date & Time Duration Notes Laeq (dB) Lamax with Time Leq Leq Leq Fed Date & Time Date Defenic Defenic <td>10/19/2012 9:40 10/19/2012 10:41 10/19/2012 11:41 10/19/2012 12:41 10/19/2012 13:41 10/19/2012 13:45 10/19/2012 14:45 10/19/2012 15:45</td> <td>Total Time 7:58:30 Duration 1:00:00 1:00:00 1:00:00 1:00:00 1:00:00 0:00:46 1:00:00 1:00:00 0:00:00 1:00:00 1:00:00 1:00:00 1:00:00 1:00:00 0:56:11 Total Time</td> <td>Site 3 Notes Site 4 Site 4</td> <td>71.2 Daily Avg. 70.1 Laeq (dB) 57.7 59.6 60.9 61.1 64.1 64.1 61 59.5 58.9 58.9 58.9 Daily Avg.</td> <td>89.5 dB (10/18/2012 5:16:21 PM) LAmax with Time 77.1 dB (10/19/2012 9:48:59 AM) 76.9 dB (10/19/2012 10:45:42 AM) 83.7 dB (10/19/2012 12:07:32 PM) 83.8 dB (10/19/2012 1:20:10 PM) 73.4 dB (10/19/2012 1:56:46 PM) 78.4 dB (10/19/2012 2:51:15 PM) 78.7 dB (10/19/2012 4:12:50 PM)</td> <td>51.6 dB (10/18/2012 5:12:59 PM) LAmin with Time 39.3 dB (10/19/2012 10:35:01 AM) 40.8 dB (10/19/2012 11:07:04 AM) 42.3 dB (10/19/2012 11:43:03 AM) 43.9 dB (10/19/2012 1:33:20 PM) 49.5 dB (10/19/2012 1:42:00 PM) 39.9 dB (10/19/2012 1:45:19 PM) 41.4 dB (10/19/2012 3:15:38 PM) 41.5 dB (10/19/2012 4:37:01 PM)</td> <td>LCeq 72.0 dB 74.2 dB 75.3 dB 77.2 dB 78.8 dB 75.8 dB 73.4 dB 73.7 dB</td> <td>LCeq-LAeq 14.3 dB 14.7 dB 14.4 dB 16.1 dB 14.7 dB 14.7 dB 13.8 dB 14.7 dB</td> <td>10/18/2012 18:08 End Date & Time 10/19/2012 10:40 10/19/2012 11:41 10/19/2012 13:41 10/19/2012 13:42 10/19/2012 13:45 10/19/2012 15:45</td> <td>10/18/2012 15:09 Calibration (Before) Date 10/19/2012 9:40 10/19/2012 9:40 10/19/2012 9:40 10/19/2012 9:40 10/19/2012 13:44 10/19/2012 13:44</td> <td>114.0 dB Calibration (Before) SPL 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB</td> <td>10/18/2012 18:08 Calibration (After) Date 10/19/2012 13:44 10/19/2012 13:44 10/19/2012 13:44 10/19/2012 13:44 10/19/2012 17:42 10/19/2012 17:42</td> <td>-0.2 dB Calibration Drift -0.2 dB -0.2 dB -0.2 dB -0.2 dB -0.2 dB -0.1 dB -0.1 dB</td>	10/19/2012 9:40 10/19/2012 10:41 10/19/2012 11:41 10/19/2012 12:41 10/19/2012 13:41 10/19/2012 13:45 10/19/2012 14:45 10/19/2012 15:45	Total Time 7:58:30 Duration 1:00:00 1:00:00 1:00:00 1:00:00 1:00:00 0:00:46 1:00:00 1:00:00 0:00:00 1:00:00 1:00:00 1:00:00 1:00:00 1:00:00 0:56:11 Total Time	Site 3 Notes Site 4 Site 4	71.2 Daily Avg. 70.1 Laeq (dB) 57.7 59.6 60.9 61.1 64.1 64.1 61 59.5 58.9 58.9 58.9 Daily Avg.	89.5 dB (10/18/2012 5:16:21 PM) LAmax with Time 77.1 dB (10/19/2012 9:48:59 AM) 76.9 dB (10/19/2012 10:45:42 AM) 83.7 dB (10/19/2012 12:07:32 PM) 83.8 dB (10/19/2012 1:20:10 PM) 73.4 dB (10/19/2012 1:56:46 PM) 78.4 dB (10/19/2012 2:51:15 PM) 78.7 dB (10/19/2012 4:12:50 PM)	51.6 dB (10/18/2012 5:12:59 PM) LAmin with Time 39.3 dB (10/19/2012 10:35:01 AM) 40.8 dB (10/19/2012 11:07:04 AM) 42.3 dB (10/19/2012 11:43:03 AM) 43.9 dB (10/19/2012 1:33:20 PM) 49.5 dB (10/19/2012 1:42:00 PM) 39.9 dB (10/19/2012 1:45:19 PM) 41.4 dB (10/19/2012 3:15:38 PM) 41.5 dB (10/19/2012 4:37:01 PM)	LCeq 72.0 dB 74.2 dB 75.3 dB 77.2 dB 78.8 dB 75.8 dB 73.4 dB 73.7 dB	LCeq-LAeq 14.3 dB 14.7 dB 14.4 dB 16.1 dB 14.7 dB 14.7 dB 13.8 dB 14.7 dB	10/18/2012 18:08 End Date & Time 10/19/2012 10:40 10/19/2012 11:41 10/19/2012 13:41 10/19/2012 13:42 10/19/2012 13:45 10/19/2012 15:45	10/18/2012 15:09 Calibration (Before) Date 10/19/2012 9:40 10/19/2012 9:40 10/19/2012 9:40 10/19/2012 9:40 10/19/2012 13:44 10/19/2012 13:44	114.0 dB Calibration (Before) SPL 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB	10/18/2012 18:08 Calibration (After) Date 10/19/2012 13:44 10/19/2012 13:44 10/19/2012 13:44 10/19/2012 13:44 10/19/2012 17:42 10/19/2012 17:42	-0.2 dB Calibration Drift -0.2 dB -0.2 dB -0.2 dB -0.2 dB -0.2 dB -0.1 dB -0.1 dB
10/23/2012 9:23 1:00:00 Site 5 62.9 87.3 dB (10/23/2012 9:34:29 AM) 40.6 dB (10/23/2012 9:51:22 AM) 77.0 dB 14.1 dB 10/23/2012 10:23 10/23/2012 9:22 14.0 dB 10/23/2012 10:23 0.23/2012 10:23 10/23/2012 10:22 0.23/2012 10:22 0.23/2012 10:22 0.23/2012 10:22 0.23/2012 10:22 <td>10/19/2012 9:40 10/19/2012 10:41 10/19/2012 11:41 10/19/2012 12:41 10/19/2012 13:41 10/19/2012 13:45 10/19/2012 14:45 10/19/2012 15:45</td> <td>Total Time 7:58:30 Duration 1:00:00 1:00:00 1:00:00 1:00:00 1:00:00 0:00:46 1:00:00 1:00:00 0:00:00 1:00:00 1:00:00 1:00:00 1:00:00 1:00:00 0:56:11 Total Time</td> <td>Site 3 Notes Site 4 Site 4</td> <td>71.2 Daily Avg. 70.1 Laeq (dB) 57.7 59.6 60.9 61.1 64.1 64.1 61 59.5 58.9 58.9 58.9 Daily Avg.</td> <td>89.5 dB (10/18/2012 5:16:21 PM) LAmax with Time 77.1 dB (10/19/2012 9:48:59 AM) 76.9 dB (10/19/2012 10:45:42 AM) 83.7 dB (10/19/2012 12:07:32 PM) 83.8 dB (10/19/2012 1:20:10 PM) 73.4 dB (10/19/2012 1:56:46 PM) 78.4 dB (10/19/2012 2:51:15 PM) 78.7 dB (10/19/2012 4:12:50 PM)</td> <td>51.6 dB (10/18/2012 5:12:59 PM) LAmin with Time 39.3 dB (10/19/2012 10:35:01 AM) 40.8 dB (10/19/2012 11:07:04 AM) 42.3 dB (10/19/2012 11:43:03 AM) 43.9 dB (10/19/2012 1:33:20 PM) 49.5 dB (10/19/2012 1:42:00 PM) 39.9 dB (10/19/2012 1:45:19 PM) 41.4 dB (10/19/2012 3:15:38 PM) 41.5 dB (10/19/2012 4:37:01 PM)</td> <td>LCeq 72.0 dB 74.2 dB 75.3 dB 77.2 dB 78.8 dB 75.8 dB 73.4 dB 73.7 dB</td> <td>LCeq-LAeq 14.3 dB 14.7 dB 14.4 dB 16.1 dB 14.7 dB 14.7 dB 13.8 dB 14.7 dB</td> <td>10/18/2012 18:08 End Date & Time 10/19/2012 10:40 10/19/2012 11:41 10/19/2012 13:41 10/19/2012 13:42 10/19/2012 13:45 10/19/2012 15:45</td> <td>10/18/2012 15:09 Calibration (Before) Date 10/19/2012 9:40 10/19/2012 9:40 10/19/2012 9:40 10/19/2012 9:40 10/19/2012 13:44 10/19/2012 13:44 10/19/2012 13:44</td> <td>114.0 dB Calibration (Before) SPL 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB</td> <td>10/18/2012 18:08 Calibration (After) Date 10/19/2012 13:44 10/19/2012 13:44 10/19/2012 13:44 10/19/2012 13:44 10/19/2012 17:42 10/19/2012 17:42 10/19/2012 17:42</td> <td>-0.2 dB Calibration Drift -0.2 dB -0.2 dB -0.2 dB -0.2 dB -0.1 dB -0.1 dB -0.1 dB -0.1 dB</td>	10/19/2012 9:40 10/19/2012 10:41 10/19/2012 11:41 10/19/2012 12:41 10/19/2012 13:41 10/19/2012 13:45 10/19/2012 14:45 10/19/2012 15:45	Total Time 7:58:30 Duration 1:00:00 1:00:00 1:00:00 1:00:00 1:00:00 0:00:46 1:00:00 1:00:00 0:00:00 1:00:00 1:00:00 1:00:00 1:00:00 1:00:00 0:56:11 Total Time	Site 3 Notes Site 4 Site 4	71.2 Daily Avg. 70.1 Laeq (dB) 57.7 59.6 60.9 61.1 64.1 64.1 61 59.5 58.9 58.9 58.9 Daily Avg.	89.5 dB (10/18/2012 5:16:21 PM) LAmax with Time 77.1 dB (10/19/2012 9:48:59 AM) 76.9 dB (10/19/2012 10:45:42 AM) 83.7 dB (10/19/2012 12:07:32 PM) 83.8 dB (10/19/2012 1:20:10 PM) 73.4 dB (10/19/2012 1:56:46 PM) 78.4 dB (10/19/2012 2:51:15 PM) 78.7 dB (10/19/2012 4:12:50 PM)	51.6 dB (10/18/2012 5:12:59 PM) LAmin with Time 39.3 dB (10/19/2012 10:35:01 AM) 40.8 dB (10/19/2012 11:07:04 AM) 42.3 dB (10/19/2012 11:43:03 AM) 43.9 dB (10/19/2012 1:33:20 PM) 49.5 dB (10/19/2012 1:42:00 PM) 39.9 dB (10/19/2012 1:45:19 PM) 41.4 dB (10/19/2012 3:15:38 PM) 41.5 dB (10/19/2012 4:37:01 PM)	LCeq 72.0 dB 74.2 dB 75.3 dB 77.2 dB 78.8 dB 75.8 dB 73.4 dB 73.7 dB	LCeq-LAeq 14.3 dB 14.7 dB 14.4 dB 16.1 dB 14.7 dB 14.7 dB 13.8 dB 14.7 dB	10/18/2012 18:08 End Date & Time 10/19/2012 10:40 10/19/2012 11:41 10/19/2012 13:41 10/19/2012 13:42 10/19/2012 13:45 10/19/2012 15:45	10/18/2012 15:09 Calibration (Before) Date 10/19/2012 9:40 10/19/2012 9:40 10/19/2012 9:40 10/19/2012 9:40 10/19/2012 13:44 10/19/2012 13:44 10/19/2012 13:44	114.0 dB Calibration (Before) SPL 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB	10/18/2012 18:08 Calibration (After) Date 10/19/2012 13:44 10/19/2012 13:44 10/19/2012 13:44 10/19/2012 13:44 10/19/2012 17:42 10/19/2012 17:42 10/19/2012 17:42	-0.2 dB Calibration Drift -0.2 dB -0.2 dB -0.2 dB -0.2 dB -0.1 dB -0.1 dB -0.1 dB -0.1 dB
10/23/2012 10:23 1:00:00 61.8 83.0 dB (10/23/2012 10:47:27 AM) 42.1 dB (10/23/2012 10:40:45 AM) 76.2 dB 14.4 dB 10/23/2012 11:23 10/23/2012 9:22 14.0 dB 10/23/2012 12:22 -0.2 dB 10/23/2012 11:23 0:55:51 61.3 80.2 dB (10/23/2012 11:58:9 AM) 44.6 dB (10/23/2012 11:30:32 AM) 77.0 dB 157.d B 10/23/2012 12:22 14.0 dB 10/23/2012 12:22 -0.2 dB 10/23/2012 12:22 1:00:00 61.5 80.7 dB (10/23/2012 12:38:09 PM) 44.0 dB (10/23/2012 12:57:49 PM) 75.9 dB 14.4 dB 10/23/2012 13:22 10/23/2012 12:22 14.0 dB 10/23/2012 12:22 -0.2 dB	10/19/2012 9:40 10/19/2012 10:41 10/19/2012 11:41 10/19/2012 11:41 10/19/2012 13:45 10/19/2012 13:45 10/19/2012 15:45 10/19/2012 15:45	Total Time 7:58:30 Duration 1:00:00 1:00:00 1:00:00 1:00:00 1:00:00 1:00:00 0:00:46 1:00:00 1:00:00 1:00:00 1:00:00 1:00:00 1:00:00 1:00:00 0:56:11 Total Time 7:56:57	Site 3 Notes Site 4 Site 4 Site 4	71.2 Daily Avg. 70.1 Laeq (dB) 57.7 59.6 60.9 61.1 64.1 64.1 61.1 59.5 58.9 03.5 58.9 Daily Avg. #VALUE!	89.5 dB (10/18/2012 5:16:21 PM) LAmax with Time 77.1 dB (10/19/2012 9:48:59 AM) 76.9 dB (10/19/2012 10:45:42 AM) 83.7 dB (10/19/2012 1:02:10 PM) 73.4 dB (10/19/2012 1:02:10 PM) 73.4 dB (10/19/2012 1:42:11 PM) 82.6 dB (10/19/2012 1:56:46 PM) 78.4 dB (10/19/2012 2:51:15 PM) 78.7 dB (10/19/2012 4:12:50 PM) 77.8 dB (10/19/2012 5:04:13 PM)	51.6 dB (10/18/2012 5:12:59 PM) LAmin with Time 39.3 dB (10/19/2012 10:35:01 AM) 40.8 dB (10/19/2012 11:35:01 AM) 42.3 dB (10/19/2012 11:43:03 AM) 43.9 dB (10/19/2012 11:43:03 AM) 43.9 dB (10/19/2012 11:43:03 PM) 49.5 dB (10/19/2012 11:43:00 PM) 39.9 dB (10/19/2012 11:45:19 PM) 41.4 dB (10/19/2012 11:45:19 PM) 41.5 dB (10/19/2012 11:538 PM) 40.3 dB (10/19/2012 5:27:27 PM)	LCeq 72.0 dB 74.2 dB 75.3 dB 77.2 dB 78.8 dB 75.8 dB 73.4 dB 73.7 dB 73.3 dB	LCeq-LAeq 14.3 dB 14.7 dB 14.4 dB 16.1 dB 14.7 dB 14.8 dB 13.8 dB 14.7 dB 14.4 dB	10/18/2012 18:08 End Date & Time 10/19/2012 10:40 10/19/2012 11:41 10/19/2012 12:41 10/19/2012 13:42 10/19/2012 13:42 10/19/2012 15:45 10/19/2012 16:45 10/19/2012 17:42	10/18/2012 15:09 Calibration (Before) Date 10/19/2012 9:40 10/19/2012 9:40 10/19/2012 9:40 10/19/2012 9:40 10/19/2012 13:44 10/19/2012 13:44 10/19/2012 13:44 10/19/2012 13:44	114.0 dB Calibration (Before) SPL 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 2000 2000 2000 2000 2000 2000 2000 20	10/18/2012 18:08 Calibration (After) Date 10/19/2012 13:44 10/19/2012 13:44 10/19/2012 13:44 10/19/2012 13:44 10/19/2012 17:42 10/19/2012 17:42 10/19/2012 17:42 Calibration (After)	-0.2 dB Calibration Drift -0.2 dB -0.2 dB -0.2 dB -0.2 dB -0.1 dB -0.1 dB -0.1 dB -0.1 dB -0.1 dB -0.1 dB
10/23/2012 11:23 0:55:51 61.3 80.2 dB (10/23/2012 11:58:29 AM) 44.6 dB (10/23/2012 11:30:32 AM) 77.0 dB 10/23/2012 12:19 10/23/2012 9:22 14.0 dB 10/23/2012 12:22 -0.2 dB 10/23/2012 12:22 1:00:00 61.5 80.7 dB (10/23/2012 12:38:09 PM) 44.0 dB (10/23/2012 12:57:49 PM) 75.9 dB 14.4 dB 10/23/2012 13:22 10/23/2012 12:22 14.0 dB 10/23/2012 17:34 -2.1 dB	10/19/2012 9:40 10/19/2012 10:41 10/19/2012 11:41 10/19/2012 11:41 10/19/2012 13:43 10/19/2012 13:45 10/19/2012 13:45 10/19/2012 15:45 10/19/2012 16:45	Total Time 7:58:30 Duration 1:00:00 1:00:00 1:00:00 1:00:00 1:00:00 0:00:46 1:00:00 1:00:00 0:00:46 1:00:00 1:00:00 0:56:11 Total Time 7:56:57 Duration	Site 3 Notes Site 4 Site 4 Site 4 Site 4 Notes	71.2 Daily Avg. 70.1 Laeq (dB) 57.7 59.6 60.9 61.1 64.1 64.1 64.1 64.1 59.5 58.9 58.9 58.9 58.9 58.9 58.9 58.9	89.5 dB (10/18/2012 5:16:21 PM) LAmax with Time 77.1 dB (10/19/2012 9:48:59 AM) 76.9 dB (10/19/2012 10:45:42 AM) 83.7 dB (10/19/2012 1:207:32 PM) 83.8 dB (10/19/2012 1:42:11 PM) 82.6 dB (10/19/2012 1:56:46 PM) 78.4 dB (10/19/2012 2:51:15 PM) 78.7 dB (10/19/2012 2:504:13 PM) 77.8 dB (10/19/2012 5:04:13 PM) LAmax with Time	51.6 dB (10/18/2012 5:12:59 PM) LAmin with Time 39.3 dB (10/19/2012 10:35:01 AM) 40.8 dB (10/19/2012 11:35:01 AM) 42.3 dB (10/19/2012 11:43:03 AM) 43.9 dB (10/19/2012 11:43:03 AM) 43.9 dB (10/19/2012 11:43:00 PM) 49.5 dB (10/19/2012 11:45:10 PM) 41.4 dB (10/19/2012 11:45:10 PM) 41.5 dB (10/19/2012 41:37:01 PM) 40.3 dB (10/19/2012 5:27:27 PM) LAmin with Time	LCeq 72.0 dB 74.2 dB 75.3 dB 75.3 dB 78.8 dB 75.8 dB 73.4 dB 73.7 dB 73.3 dB 73.3 dB	LCeq-LAeq 14.3 dB 14.7 dB 14.4 dB 16.1 dB 14.7 dB 14.8 dB 13.8 dB 14.7 dB 14.4 dB 14.4 dB LCeq-LAeq	10/18/2012 18:08 End Date & Time 10/19/2012 10:40 10/19/2012 11:41 10/19/2012 13:41 10/19/2012 13:42 10/19/2012 13:42 10/19/2012 15:45 10/19/2012 17:42 End Date & Time	10/18/2012 15:09 Calibration (Before) Date 10/19/2012 9:40 10/19/2012 9:40 10/19/2012 9:40 10/19/2012 9:40 10/19/2012 13:44 10/19/2012 13:44 10/19/2012 13:44 Calibration (Before) Date	114.0 dB Calibration (Before) SPL 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB Calibration (Before) SPL	10/18/2012 18:08 Calibration (After) Date 10/19/2012 13:44 10/19/2012 13:44 10/19/2012 13:44 10/19/2012 13:44 10/19/2012 17:42 10/19/2012 17:42 10/19/2012 17:42 0/19/2012 17:42	-0.2 dB Calibration Drift -0.2 dB -0.2 dB -0.2 dB -0.2 dB -0.2 dB -0.2 dB -0.1 dB -0.1 dB -0.1 dB -0.1 dB -0.1 dB Calibration Drift
10/23/2012 12:22 1:00:00 61.5 80.7 dB (10/23/2012 12:38:09 PM) 44.0 dB (10/23/2012 12:57:49 PM) 75.9 dB 14.4 dB 10/23/2012 13:22 10/23/2012 12:22 114.0 dB 10/23/2012 17:34 -2.1 dB	10/19/2012 9:40 10/19/2012 10:41 10/19/2012 11:41 10/19/2012 11:41 10/19/2012 13:41 10/19/2012 13:45 10/19/2012 13:45 10/19/2012 15:45 10/19/2012 16:45 Start Date & Time 10/23/2012 9:23	Total Time 7:58:30 Duration 1:00:00 1:00:00 1:00:00 1:00:00 0:00:46 1:00:00 1:00:00 0:00:46 1:00:00 1:00:00 0:56:11 Total Time 7:56:57 Duration 1:00:00	Site 3 Notes Site 4 Site 4 Site 4 Site 4 Notes	71.2 Daily Avg. 70.1 Laeq (dB) 57.7 59.6 60.9 61.1 64.1 64.1 64.1 61 59.5 58.9 58.9 58.9 58.9 58.9 58.9 58.9	89.5 dB (10/18/2012 5:16:21 PM) LAmax with Time 77.1 dB (10/19/2012 9:48:59 AM) 76.9 dB (10/19/2012 10:45:42 AM) 83.7 dB (10/19/2012 1:02:10 PM) 73.4 dB (10/19/2012 1:20:10 PM) 73.4 dB (10/19/2012 1:56:46 PM) 78.4 dB (10/19/2012 1:56:46 PM) 78.7 dB (10/19/2012 2:51:15 PM) 77.8 dB (10/19/2012 2:504:13 PM) LAmax with Time 87.3 dB (10/23/2012 9:34:29 AM)	51.6 dB (10/18/2012 5:12:59 PM) LAmin with Time 39.3 dB (10/19/2012 10:35:01 AM) 40.8 dB (10/19/2012 11:35:01 AM) 40.3 dB (10/19/2012 11:37:01 AM) 42.3 dB (10/19/2012 11:37:00 PM) 43.9 dB (10/19/2012 11:37:00 PM) 49.5 dB (10/19/2012 11:45:19 PM) 41.4 dB (10/19/2012 3:15:38 PM) 41.5 dB (10/19/2012 3:15:38 PM) 41.5 dB (10/19/2012 5:27:27 PM) 40.3 dB (10/19/2012 5:27:27 PM) LAmin with Time 40.6 dB (10/23/2012 9:51:22 AM)	LCeq 74.2 dB 75.3 dB 77.2 dB 78.8 dB 75.8 dB 73.4 dB 73.4 dB 73.4 dB 73.4 dB 73.4 dB 73.3 dB LCeq 77.0 dB	LCeq-LAeq 14.3 dB 14.7 dB 14.4 dB 16.1 dB 14.7 dB 14.8 dB 14.7 dB 14.8 dB 14.7 dB 14.4 dB LCeq-LAeq 14.1 dB	10/18/2012 18:08 End Date & Time 10/19/2012 10:40 10/19/2012 11:41 10/19/2012 13:41 10/19/2012 13:42 10/19/2012 13:45 10/19/2012 13:45 10/19/2012 16:45 10/19/2012 17:42 End Date & Time 10/23/2012 10:23	10/18/2012 15:09 Calibration (Before) Date 10/19/2012 9:40 10/19/2012 9:40 10/19/2012 9:40 10/19/2012 9:40 10/19/2012 13:44 10/19/2012 13:44 10/19/2012 13:44 10/19/2012 13:44 Calibration (Before) Date 10/23/2012 9:22	114.0 dB Calibration (Before) SPL 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB Calibration (Before) SPL 114.0 dB	10/18/2012 18:08 Calibration (After) Date 10/19/2012 13:44 10/19/2012 13:44 10/19/2012 13:44 10/19/2012 13:44 10/19/2012 13:44 10/19/2012 17:42 10/19/2012 17:42 10/19/2012 17:42 Calibration (After) Date 10/23/2012 12:22	-0.2 dB Calibration Drift -0.2 dB -0.2 dB -0.2 dB -0.2 dB -0.2 dB -0.1 dB -0.1 dB -0.1 dB -0.1 dB -0.1 dB -0.1 dB -0.1 dB -0.2 dB
	10/19/2012 9:40 10/19/2012 10:41 10/19/2012 11:41 10/19/2012 12:41 10/19/2012 13:41 10/19/2012 13:45 10/19/2012 13:45 10/19/2012 15:45 10/19/2012 16:45 Start Date & Time 10/23/2012 9:23 10/23/2012 10:23	Total Time 7:58:30 Duration 1:00:00 1:00:00 1:00:00 1:00:00 0:00:46 1:00:00 1:00:00 0:00:46 1:00:00 1:00:00 0:56:11 Total Time 7:56:57 Duration 1:00:00 1:00:00	Site 3 Notes Site 4 Site 4 Site 4 Site 4 Notes	71.2 Daily Avg. 70.1 Laeq (dB) 57.7 59.6 60.9 61.1 64.1 64.1 611 59.5 58.9 58.9 Daily Avg. #VALUE! Laeq (dB) 62.9 61.8	89.5 dB (10/18/2012 5:16:21 PM) LAmax with Time 77.1 dB (10/19/2012 9:48:59 AM) 76.9 dB (10/19/2012 10:45:42 AM) 83.7 dB (10/19/2012 1:02:10 PM) 73.4 dB (10/19/2012 1:02:10 PM) 73.4 dB (10/19/2012 1:56:46 PM) 78.4 dB (10/19/2012 2:51:15 PM) 78.7 dB (10/19/2012 4:12:50 PM) 77.8 dB (10/19/2012 4:12:50 PM) 77.8 dB (10/19/2012 9:34:29 AM) 83.0 dB (10/23/2012 10:47:27 AM)	51.6 dB (10/18/2012 5:12:59 PM) LAmin with Time 39.3 dB (10/19/2012 10:35:01 AM) 40.8 dB (10/19/2012 11:07:04 AM) 42.3 dB (10/19/2012 11:43:03 AM) 43.9 dB (10/19/2012 1:33:20 PM) 49.5 dB (10/19/2012 1:42:00 PM) 39.9 dB (10/19/2012 1:45:19 PM) 41.4 dB (10/19/2012 3:15:38 PM) 41.5 dB (10/19/2012 3:15:38 PM) 41.5 dB (10/19/2012 3:27:27 PM) LAmin with Time 40.6 dB (10/23/2012 9:51:22 AM) 42.1 dB (10/23/2012 10:40:45 AM)	LCeq 72.0 dB 74.2 dB 75.3 dB 77.2 dB 78.8 dB 73.4 dB 73.4 dB 73.7 dB 73.7 dB 73.3 dB LCeq 77.0 dB 76.2 dB	LCeq-LAeq 14.3 dB 14.7 dB 14.4 dB 16.1 dB 14.7 dB 14.8 dB 13.8 dB 14.7 dB 14.4 dB LCeq-LAeq 14.1 dB 14.4 dB	10/18/2012 18:08 End Date & Time 10/19/2012 10:40 10/19/2012 11:41 10/19/2012 13:41 10/19/2012 13:42 10/19/2012 13:45 10/19/2012 15:45 10/19/2012 15:45 10/19/2012 17:42 End Date & Time 10/23/2012 10:23 10/23/2012 11:23	10/18/2012 15:09 Calibration (Before) Date 10/19/2012 9:40 10/19/2012 9:40 10/19/2012 9:40 10/19/2012 9:40 10/19/2012 13:44 10/19/2012 13:44 10/19/2012 13:44 10/19/2012 13:44 20/19/2012 13:44 10/19/2012 13:44 10/19/2012 13:44 10/19/2012 13:44 10/19/2012 13:44 10/19/2012 13:44 10/19/2012 13:44	114.0 dB Calibration (Before) SPL 114.0 dB 114.0 dB	10/18/2012 18:08 Calibration (After) Date 10/19/2012 13:44 10/19/2012 13:44 10/19/2012 13:44 10/19/2012 13:44 10/19/2012 13:44 10/19/2012 17:42 10/19/2012 17:42 10/19/2012 17:42 10/19/2012 17:42 10/19/2012 17:42 10/19/2012 12:22 10/23/2012 12:22 10/23/2012 12:22 10/23/2012 12:22	-0.2 dB Calibration Drift -0.2 dB -0.2 dB -0.2 dB -0.2 dB -0.1 dB -0.1 dB -0.1 dB -0.1 dB -0.1 dB -0.1 dB -0.1 dB -0.1 dB -0.2 dB -0.2 dB
10/23/2012 15:22 1:00:00 62.8[85.7 dB (10/23/2012 2:10:32 PM) 45.0 dB (10/23/2012 1:35:38 PM) //.1 dB 14.2 dB 10/23/2012 14:22 10/23/2012 12:22 114.0 dB 10/23/2012 17:34-2.1 dB	10/19/2012 9:40 10/19/2012 10:41 10/19/2012 11:41 10/19/2012 12:41 10/19/2012 13:41 10/19/2012 13:45 10/19/2012 13:45 10/19/2012 15:45 10/19/2012 16:45 Start Date & Time 10/23/2012 9:23 10/23/2012 10:23	Total Time 7:58:30 Duration 1:00:00 1:00:00 1:00:00 1:00:00 1:00:00 0:00:46 1:00:00 1:00:00 0:00:46 1:00:00 1:00:00 0:55:51	Site 3 Notes Site 4 Site 4 Site 4 Site 4 Notes	71.2 Daily Avg. 70.1 Laeq (dB) 57.7 59.6 60.9 61.1 64.1 64.1 59.5 58.9 Daily Avg. #VALUE! Laeq (dB) 62.9 61.8 61.3	89.5 dB (10/18/2012 5:16:21 PM) LAmax with Time 77.1 dB (10/19/2012 9:48:59 AM) 76.9 dB (10/19/2012 10:45:42 AM) 83.7 dB (10/19/2012 1:02:10 PM) 73.4 dB (10/19/2012 1:02:10 PM) 73.4 dB (10/19/2012 1:62:40 PM) 78.4 dB (10/19/2012 1:56:46 PM) 78.7 dB (10/19/2012 4:12:50 PM) 77.8 dB (10/19/2012 5:04:13 PM) LAmax with Time 87.3 dB (10/23/2012 9:34:29 AM) 83.0 dB (10/23/2012 10:47:27 AM) 80.2 dB (10/23/2012 11:58:29 AM)	51.6 dB (10/18/2012 5:12:59 PM) LAmin with Time 39.3 dB (10/19/2012 10:35:01 AM) 40.8 dB (10/19/2012 11:07:04 AM) 42.3 dB (10/19/2012 11:43:03 AM) 43.9 dB (10/19/2012 1:43:00 PM) 49.5 dB (10/19/2012 1:42:00 PM) 41.4 dB (10/19/2012 1:45:19 PM) 41.5 dB (10/19/2012 4:37:01 PM) 40.3 dB (10/19/2012 4:37:01 PM) 40.3 dB (10/19/2012 5:27:27 PM) LAmin with Time 40.6 dB (10/23/2012 9:51:22 AM) 42.1 dB (10/23/2012 11:30:32 AM)	LCeq 72.0 dB 74.2 dB 75.3 dB 77.2 dB 78.8 dB 73.4 dB 73.4 dB 73.7 dB 73.7 dB 73.3 dB LCeq 77.0 dB 76.2 dB 77.0 dB	LCeq-LAeq 14.3 dB 14.7 dB 14.4 dB 16.1 dB 14.7 dB 14.8 dB 13.8 dB 14.7 dB 14.4 dB 14.4 dB LCeq-LAeq 14.1 dB 14.4 dB 15.7 dB	10/18/2012 18:08 End Date & Time 10/19/2012 10:40 10/19/2012 11:41 10/19/2012 13:42 10/19/2012 13:42 10/19/2012 13:42 10/19/2012 15:45 10/19/2012 15:45 10/19/2012 17:42 End Date & Time 10/23/2012 10:23 10/23/2012 10:23 10/23/2012 12:19	10/18/2012 15:09 Calibration (Before) Date 10/19/2012 9:40 10/19/2012 9:40 10/19/2012 9:40 10/19/2012 9:40 10/19/2012 13:44 10/19/2012 13:44	114.0 dB Calibration (Before) SPL 114.0 dB 114.0 dB	10/18/2012 18:08 Calibration (After) Date 10/19/2012 13:44 10/19/2012 13:44 10/19/2012 13:44 10/19/2012 13:44 10/19/2012 13:44 10/19/2012 17:42 10/19/2012 17:42 10/19/2012 17:42 10/19/2012 17:42 10/19/2012 17:42 10/19/2012 12:22 10/23/2012 10/23/201 10/23/2012 10/23/2012 10/23	-0.2 dB Calibration Drift -0.2 dB -0.2 dB -0.2 dB -0.2 dB -0.2 dB -0.1 dB -0.1 dB -0.1 dB -0.1 dB -0.1 dB -0.1 dB -0.1 dB -0.2 dB -0.2 dB -0.2 dB -0.2 dB
	10/19/2012 9:40 10/19/2012 10:41 10/19/2012 11:41 10/19/2012 12:41 10/19/2012 13:41 10/19/2012 13:45 10/19/2012 14:45 10/19/2012 16:45 10/19/2012 16:45 10/19/2012 10:23 10/23/2012 9:23 10/23/2012 10:23 10/23/2012 11:23	Total Time 7:58:30 Duration 1:00:00 1:00:00 1:00:00 1:00:00 1:00:00 0:00:46 1:00:00 1:00:00 0:05:611 Total Time 7:56:57 Duration 1:00:00 1:00:00 0:05:51 1:00:00	Site 3 Notes Site 4 Site 4 Site 4 Site 4 Notes	71.2 Daily Avg. 70.1 Laeq (dB) 57.7 59.6 60.9 61.1 64.1 64.1 61.1 64.2 95.5 58.9 Daily Avg. #VALUE! Laeq (dB) 62.9 61.8 61.3 61.3 61.5	89.5 dB (10/18/2012 5:16:21 PM) LAmax with Time 77.1 dB (10/19/2012 9:48:59 AM) 76.9 dB (10/19/2012 10:45:42 AM) 83.7 dB (10/19/2012 1:02:10 PM) 73.4 dB (10/19/2012 1:02:10 PM) 73.4 dB (10/19/2012 1:56:46 PM) 78.7 dB (10/19/2012 2:51:15 PM) 78.7 dB (10/19/2012 4:12:50 PM) 77.8 dB (10/19/2012 4:12:50 PM) 77.8 dB (10/19/2012 9:34:29 AM) 83.0 dB (10/23/2012 10:47:27 AM) 80.2 dB (10/23/2012 11:58:29 AM) 80.7 dB (10/23/2012 12:38:09 PM)	51.6 dB (10/18/2012 5:12:59 PM) LAmin with Time 39.3 dB (10/19/2012 10:35:01 AM) 40.8 dB (10/19/2012 11:30:34 AM) 42.3 dB (10/19/2012 11:43:03 AM) 43.9 dB (10/19/2012 1:43:03 AM) 43.9 dB (10/19/2012 1:42:00 PM) 39.9 dB (10/19/2012 1:45:19 PM) 41.4 dB (10/19/2012 4:37:01 PM) 41.5 dB (10/19/2012 4:37:01 PM) 40.3 dB (10/19/2012 5:27:27 PM) LAmin with Time LAmin with Time 40.6 dB (10/23/2012 9:51:22 AM) 42.1 dB (10/23/2012 10:40:45 AM) 44.6 dB (10/23/2012 11:30:32 AM)	LCeq 72.0 dB 75.3 dB 75.3 dB 77.2 dB 78.8 dB 75.8 dB 73.4 dB 73.7 dB 73.3 dB 73.3 dB 73.3 dB 73.7 dB 73.0 dB 76.2 dB 77.0 dB 75.9 dB	LCeq-LAeq 14.3 dB 14.7 dB 14.4 dB 16.1 dB 14.7 dB 14.8 dB 13.8 dB 14.7 dB 14.4 dB LCeq-LAeq 14.1 dB 14.4 dB 15.7 dB 14.4 dB	10/18/2012 18:08 End Date & Time 10/19/2012 10:40 10/19/2012 12:41 10/19/2012 13:42 10/19/2012 13:42 10/19/2012 13:42 10/19/2012 15:45 10/19/2012 15:45 10/19/2012 15:45 10/19/2012 17:42 10/23/2012 10:23 10/23/2012 10:23 10/23/2012 11:23 10/23/2012 11:23	10/18/2012 15:09 Calibration (Before) Date 10/19/2012 9:40 10/19/2012 9:40 10/19/2012 9:40 10/19/2012 9:40 10/19/2012 13:44 10/19/2012 13:44 10/19/2012 13:44 10/19/2012 13:44 10/19/2012 13:44 10/19/2012 13:44 10/19/2012 13:42 10/23/2012 9:22 10/23/2012 9:22 10/23/2012 9:22 10/23/2012 9:22 10/23/2012 9:22	114.0 dB Calibration (Before) SPL 114.0 dB 114.0 dB	10/18/2012 18:08 Calibration (After) Date 10/19/2012 13:44 10/19/2012 13:44 10/19/2012 13:44 10/19/2012 13:44 10/19/2012 13:44 10/19/2012 17:42 10/19/2012 17:42 10/19/2012 17:42 10/19/2012 17:42 10/19/2012 17:42 10/23/2012 12:24 10/23/2012 12:24 10/23/2012 10/23/2012 12:24 10/23/2012 10/23/2012 10/23/2012 10/23/2012 10/23/2012	-0.2 dB Calibration Drift -0.2 dB -0.2 dB -0.2 dB -0.2 dB -0.1 dB -0.1 dB -0.1 dB -0.1 dB -0.1 dB -0.1 dB -0.1 dB -0.2 dB -0.2 dB -0.2 dB -0.2 dB -0.2 dB -0.2 dB -0.2 dB

10/22/2012 14:22	1.00.00		C1.1	PC 4 dp (10/22/2012 2:45:20 PM)	42 4 HD (10/22/2012 2:05:40 DM)	74.3 dB	13.2 dB	10/22/2012 15:22	10/22/2012 12:22	111040	10/22/2012 17:24	2 1 40
10/23/2012 14:22	1:00:00			86.4 dB (10/23/2012 2:45:20 PM)	42.4 dB (10/23/2012 3:05:48 PM)			10/23/2012 15:22	10/23/2012 12:22		10/23/2012 17:34	
10/23/2012 15:22	1:00:00			83.7 dB (10/23/2012 4:02:15 PM)	45.6 dB (10/23/2012 3:54:50 PM)	75.7 dB	12.9 dB	10/23/2012 16:22	10/23/2012 12:22		10/23/2012 17:34	
10/23/2012 16:22	1:00:00			82.5 dB (10/23/2012 4:51:31 PM)	43.3 dB (10/23/2012 4:55:39 PM)	75.0 dB	13.1 dB	10/23/2012 17:22	10/23/2012 12:22		10/23/2012 17:34	
10/23/2012 17:23	0:10:14			78.1 dB (10/23/2012 5:33:39 PM)	47.3 dB (10/23/2012 5:25:07 PM)	73.8 dB	14.1 dB	10/23/2012 17:33	10/23/2012 12:22	114.0 dB	10/23/2012 17:34	-2.1 dB
	Total Time	Site 5	Daily Avg.									
	8:06:05	Site 5	62.0									
										Calibration	Calibration (After)	Calibration
	Duration	Notes	Laeq (dB)	LAmax with Time	LAmin with Time	LCeq	LCeq-LAeq		Date	(Before) SPL	Date	Drift
10/24/2012 8:46	1:00:00	Site 6		83.9 dB (10/24/2012 9:16:44 AM)		73.1 dB	11.0 dB	10/24/2012 9:46	10/24/2012 8:45		10/24/2012 10:37	
10/24/2012 9:46	0:48:19			84.9 dB (10/24/2012 10:15:19 AM)		71.6 dB	10.1 dB	10/24/2012 10:34	10/24/2012 8:45		10/24/2012 10:37	
10/24/2012 10:37	1:00:00			83.7 dB (10/24/2012 11:30:08 AM)	46.6 dB (10/24/2012 10:43:01 AM)		11.1 dB	10/24/2012 11:37	10/24/2012 10:37		10/24/2012 16:56	
10/24/2012 11:37	1:00:00			81.9 dB (10/24/2012 12:03:36 PM)	49.8 dB (10/24/2012 11:45:29 AM)		12.3 dB	10/24/2012 12:37	10/24/2012 10:37		10/24/2012 16:56	
10/24/2012 12:37	1:00:00			83.4 dB (10/24/2012 1:30:24 PM)		76.8 dB	11.3 dB	10/24/2012 13:37	10/24/2012 10:37		10/24/2012 16:56	
10/24/2012 13:37	1:00:00			83.8 dB (10/24/2012 2:16:20 PM)	47.8 dB (10/24/2012 2:30:46 PM)	76.8 dB	11.6 dB	10/24/2012 14:37	10/24/2012 10:37			
10/24/2012 14:37	1:00:00			84.7 dB (10/24/2012 3:18:07 PM)	50.4 dB (10/24/2012 3:29:21 PM)	75.9 dB	11.4 dB	10/24/2012 15:37	10/24/2012 10:37		10/24/2012 16:56	
10/24/2012 15:37	1:00:00			81.6 dB (10/24/2012 3:47:04 PM)	49.8 dB (10/24/2012 3:46:15 PM)	75.8 dB	10.9 dB	10/24/2012 16:37	10/24/2012 10:37		10/24/2012 16:56	
10/24/2012 16:37	0:18:06			79.9 dB (10/24/2012 4:40:41 PM)	49.6 dB (10/24/2012 4:51:46 PM)	75.1 dB	10.1 dB	10/24/2012 16:55	10/24/2012 10:37	114.0 dB	10/24/2012 16:56	-0.1 dB
	Total Time	Site 6	Daily Avg.									
	8:06:25	Site 6	63.9									
										Calibration	Calibration (After)	Calibration
Start Date & Time	Duration	Notes	Laeq (dB)	LAmax with Time	LAmin with Time	LCeq	LCeq-LAeq	End Date & Time	Date	(Before) SPL	Date	Drift
10/29/2012 10:02	1:00:00	Site 7	69.2	88.0 dB (10/29/2012 10:06:49 AM)	49.3 dB (10/29/2012 10:45:14 AM)	77.0 dB	7.8 dB	10/29/2012 11:02	10/29/2012 10:02	114.0 dB	10/29/2012 11:11	-0.1 dB
10/29/2012 11:02	0:06:43		69.9	81.9 dB (10/29/2012 11:03:05 AM)	50.0 dB (10/29/2012 11:08:11 AM)	79.8 dB	9.9 dB	10/29/2012 11:09	10/29/2012 10:02	114.0 dB	10/29/2012 11:11	-0.1 dB
10/29/2012 11:11	1:00:00		70	92.1 dB (10/29/2012 11:52:53 AM)	51.1 dB (10/29/2012 11:12:31 AM)	78.0 dB	8.0 dB	10/29/2012 12:11	10/29/2012 11:11	114.0 dB	10/29/2012 17:12	
10/29/2012 12:11	1:00:00		70.5	94.1 dB (10/29/2012 12:29:32 PM)	53.7 dB (10/29/2012 12:15:05 PM)	79.8 dB	9.4 dB	10/29/2012 13:11	10/29/2012 11:11	114.0 dB	10/29/2012 17:12	
10/29/2012 13:11	1:00:00		71.5	95.7 dB (10/29/2012 2:06:07 PM)	53.3 dB (10/29/2012 1:21:15 PM)	80.7 dB	9.2 dB	10/29/2012 14:11	10/29/2012 11:11	114.0 dB	10/29/2012 17:12	
10/29/2012 14:11	1:00:00		71	92.0 dB (10/29/2012 3:07:05 PM)	52.2 dB (10/29/2012 2:52:08 PM)	79.8 dB	8.8 dB	10/29/2012 15:11	10/29/2012 11:11	114.0 dB	10/29/2012 17:12	
10/29/2012 15:12	1:00:00		71.2	97.6 dB (10/29/2012 3:43:46 PM)	51.8 dB (10/29/2012 4:11:37 PM)	80.0 dB	8.7 dB	10/29/2012 16:12	10/29/2012 11:11	114.0 dB	10/29/2012 17:12	
10/29/2012 16:12	1:00:00		71.3	94.4 dB (10/29/2012 4:18:15 PM)	49.7 dB (10/29/2012 4:57:48 PM)	78.2 dB	6.9 dB	10/29/2012 17:12	10/29/2012 11:11	114.0 dB	10/29/2012 17:12	
10/29/2012 17:13	0:58:15		71.4	90.6 dB (10/29/2012 5:39:07 PM)	51.0 dB (10/29/2012 6:07:23 PM)	80.0 dB	8.6 dB	10/29/2012 18:11	10/29/2012 17:12		10/29/2012 18:11	-0.5 dB
10/29/2012 17:13	0:58:15 Total Time	Site 7	71.4 Daily Avg.	90.6 dB (10/29/2012 5:39:07 PM)								-0.5 dB
10/29/2012 17:13		Site 7 Site 7										-0.5 dB
10/29/2012 17:13	Total Time		Daily Avg.						10/29/2012 17:12		10/29/2012 18:11	-0.5 dB Calibration
10/29/2012 17:13 Start Date & Time	Total Time		Daily Avg.						10/29/2012 17:12	114.0 dB	10/29/2012 18:11	
	Total Time 8:04:58	Site 7	Daily Avg. 70.7 Laeq (dB)		51.0 dB (10/29/2012 6:07:23 PM)	80.0 dB	8.6 dB	10/29/2012 18:11	10/29/2012 17:12 Calibration (Before)	114.0 dB Calibration (Before) SPL	10/29/2012 18:11 Calibration (After)	Calibration Drift
Start Date & Time	Total Time 8:04:58 Duration	Site 7 Notes	Daily Avg. 70.7 Laeq (dB) 57.1	LAmax with Time	51.0 dB (10/29/2012 6:07:23 PM) LAmin with Time 45.1 dB (10/30/2012 9:17:09 AM)	80.0 dB LCeq	8.6 dB LCeq-LAeq	10/29/2012 18:11 End Date & Time	10/29/2012 17:12 Calibration (Before) Date	114.0 dB Calibration (Before) SPL 114.0 dB	10/29/2012 18:11 Calibration (After) Date	Calibration Drift 0.4 dB
Start Date & Time 10/30/2012 9:16	Total Time 8:04:58 Duration 1:00:00	Site 7 Notes	Daily Avg. 70.7 Laeq (dB) 57.1 57.6	LAmax with Time 76.8 dB (10/30/2012 9:57:45 AM)	51.0 dB (10/29/2012 6:07:23 PM) LAmin with Time 45.1 dB (10/30/2012 9:17:09 AM) 45.5 dB (10/30/2012 10:20:30 AM)	80.0 dB LCeq 71.3 dB	8.6 dB LCeq-LAeq 14.2 dB	10/29/2012 18:11 End Date & Time 10/30/2012 10:16	10/29/2012 17:12 Calibration (Before) Date 10/30/2012 9:16	114.0 dB Calibration (Before) SPL 114.0 dB 114.0 dB	10/29/2012 18:11 Calibration (After) Date 10/30/2012 15:46	Calibration Drift 0.4 dB 0.4 dB
Start Date & Time 10/30/2012 9:16 10/30/2012 10:16	Total Time 8:04:58 Duration 1:00:00 1:00:00	Site 7 Notes	Daily Avg. 70.7 Laeq (dB) 57.1 57.6 68.9	LAmax with Time 76.8 dB (10/30/2012 9:57:45 AM) 83.3 dB (10/30/2012 10:54:45 AM)	51.0 dB (10/29/2012 6:07:23 PM) LAmin with Time 45.1 dB (10/30/2012 9:17:09 AM) 45.5 dB (10/30/2012 10:20:30 AM)	80.0 dB LCeq 71.3 dB 72.3 dB	8.6 dB LCeq-LAeq 14.2 dB 14.7 dB	10/29/2012 18:11 End Date & Time 10/30/2012 10:16 10/30/2012 11:16	10/29/2012 17:12 Calibration (Before) Date 10/30/2012 9:16 10/30/2012 9:16	114.0 dB Calibration (Before) SPL 114.0 dB 114.0 dB 114.0 dB	10/29/2012 18:11 Calibration (After) Date 10/30/2012 15:46 10/30/2012 15:46	Calibration Drift 0.4 dB 0.4 dB 0.4 dB
Start Date & Time 10/30/2012 9:16 10/30/2012 10:16 10/30/2012 11:17	Total Time 8:04:58 Duration 1:00:00 1:00:00 1:00:00	Site 7 Notes	Daily Avg. 70.7 Laeq (dB) 57.1 57.6 68.9 60.3	LAmax with Time 76.8 dB (10/30/2012 9:57:45 AM) 83.3 dB (10/30/2012 10:54:45 AM) 99.3 dB (10/30/2012 11:22:58 AM)	51.0 dB (10/29/2012 6:07:23 PM) LAmin with Time 45.1 dB (10/30/2012 9:17:09 AM) 45.5 dB (10/30/2012 10:20:30 AM) 46.0 dB (10/30/2012 11:58:39 AM)	80.0 dB LCeq 71.3 dB 72.3 dB 74.0 dB	8.6 dB LCeq-LAeq 14.2 dB 14.7 dB 5.1 dB	10/29/2012 18:11 End Date & Time 10/30/2012 10:16 10/30/2012 11:16 10/30/2012 12:17	10/29/2012 17:12 Calibration (Before) Date 10/30/2012 9:16 10/30/2012 9:16 10/30/2012 9:16	114.0 dB Calibration (Before) SPL 114.0 dB 114.0 dB 114.0 dB 114.0 dB	10/29/2012 18:11 Calibration (After) Date 10/30/2012 15:46 10/30/2012 15:46	Calibration Drift 0.4 dB 0.4 dB 0.4 dB 0.4 dB
Start Date & Time 10/30/2012 9:16 10/30/2012 10:16 10/30/2012 11:17 10/30/2012 12:17	Total Time 8:04:58 Duration 1:00:00 1:00:00 1:00:00 1:00:00 1:00:00	Site 7 Notes	Daily Avg. 70.7 Laeq (dB) 57.1 57.6 68.9 60.3 60.3	LAmax with Time 76.8 dB (10/30/2012 9:57:45 AM) 83.3 dB (10/30/2012 10:54:45 AM) 99.3 dB (10/30/2012 11:22:58 AM) 87.0 dB (10/30/2012 12:38:56 PM)	51.0 dB (10/29/2012 6:07:23 PM) LAmin with Time 45.1 dB (10/30/2012 9:17:09 AM) 45.5 dB (10/30/2012 10:20:30 AM) 46.0 dB (10/30/2012 11:58:39 AM) 46.4 dB (10/30/2012 12:52:50 PM)	80.0 dB LCeq 71.3 dB 72.3 dB 74.0 dB 72.7 dB	8.6 dB LCeq-LAeq 14.2 dB 14.7 dB 5.1 dB 12.5 dB	10/29/2012 18:11 End Date & Time 10/30/2012 10:16 10/30/2012 11:16 10/30/2012 12:17 10/30/2012 13:17	10/29/2012 17:12 Calibration (Before) Date 10/30/2012 9:16 10/30/2012 9:16 10/30/2012 9:16	114.0 dB Calibration (Before) SPL 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB	10/29/2012 18:11 Calibration (After) Date 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46	Calibration Drift 0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB
Start Date & Time 10/30/2012 9:16 10/30/2012 10:16 10/30/2012 11:17 10/30/2012 12:17 10/30/2012 13:17	Total Time 8:04:58 Duration 1:00:00 1:00:00 1:00:00 1:00:00 1:00:00 1:00:00	Site 7 Notes	Daily Avg. 70.7 Laeq (dB) 57.1 57.6 68.9 60.3 60 58.2	LAmax with Time 76.8 dB (10/30/2012 9:57:45 AM) 83.3 dB (10/30/2012 10:54:45 AM) 99.3 dB (10/30/2012 11:22:58 AM) 87.0 dB (10/30/2012 12:38:56 PM) 80.7 dB (10/30/2012 1:24:42 PM)	51.0 dB (10/29/2012 6:07:23 PM) LAmin with Time 45.1 dB (10/30/2012 9:17:09 AM) 45.5 dB (10/30/2012 10:20:30 AM) 46.0 dB (10/30/2012 11:58:39 AM) 46.4 dB (10/30/2012 12:52:50 PM) 46.2 dB (10/30/2012 1:42:03 PM)	80.0 dB LCeq 71.3 dB 72.3 dB 74.0 dB 72.7 dB 74.3 dB	8.6 dB LCeq-LAeq 14.2 dB 14.7 dB 5.1 dB 12.5 dB 14.3 dB	10/29/2012 18:11 End Date & Time 10/30/2012 10:16 10/30/2012 11:16 10/30/2012 12:17 10/30/2012 13:17 10/30/2012 14:17	10/29/2012 17:12 Calibration (Before) Date 10/30/2012 9:16 10/30/2012 9:16 10/30/2012 9:16 10/30/2012 9:16	114.0 dB Calibration (Before) SPL 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB	10/29/2012 18:11 Calibration (After) Date 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46	Calibration Drift 0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB
Start Date & Time 10/30/2012 9:16 10/30/2012 10:16 10/30/2012 11:17 10/30/2012 12:17 10/30/2012 13:17 10/30/2012 14:17	Total Time 8:04:58 Duration 1:00:00 1:00:00 1:00:00 1:00:00 1:00:00 1:00:00 1:00:00	Site 7 Notes	Daily Avg. 70.7 Laeq (dB) 57.1 57.6 68.9 60.3 60 58.2 59.8	LAmax with Time 76.8 dB (10/30/2012 9:57:45 AM) 83.3 dB (10/30/2012 10:54:45 AM) 99.3 dB (10/30/2012 11:22:58 AM) 87.0 dB (10/30/2012 12:38:56 PM) 80.7 dB (10/30/2012 1:24:42 PM) 78.3 dB (10/30/2012 2:26:45 PM)	51.0 dB (10/29/2012 6:07:23 PM) LAmin with Time 45.1 dB (10/30/2012 9:17:09 AM) 45.5 dB (10/30/2012 10:20:30 AM) 46.0 dB (10/30/2012 11:58:39 AM) 46.4 dB (10/30/2012 12:52:50 PM) 46.2 dB (10/30/2012 1:42:03 PM) 44.9 dB (10/30/2012 2:28:39 PM)	80.0 dB LCeq 71.3 dB 72.3 dB 74.0 dB 72.7 dB 74.3 dB 70.9 dB	8.6 dB LCeq-LAeq 14.2 dB 14.7 dB 5.1 dB 12.5 dB 14.3 dB 12.7 dB	10/29/2012 18:11 End Date & Time 10/30/2012 10:16 10/30/2012 11:16 10/30/2012 11:17 10/30/2012 13:17 10/30/2012 13:17 10/30/2012 15:17	10/29/2012 17:12 Calibration (Before) Date 10/30/2012 9:16 10/30/2012 9:16 10/30/2012 9:16 10/30/2012 9:16 10/30/2012 9:16	114.0 dB Calibration (Before) SPL 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB	10/29/2012 18:11 Calibration (After) Date 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46	Calibration Drift 0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB
Start Date & Time 10/30/2012 9:16 10/30/2012 10:16 10/30/2012 11:17 10/30/2012 12:17 10/30/2012 13:17 10/30/2012 14:17 10/30/2012 15:17	Total Time 8:04:58 Duration 1:00:00 1:00:00 1:00:00 1:00:00 0:27:04	Site 7 Notes	Daily Avg. 70.7 Laeq (dB) 57.1 57.6 68.9 60.3 60 58.2 59.8 69.2	LAmax with Time 76.8 dB (10/30/2012 9:57:45 AM) 83.3 dB (10/30/2012 10:54:45 AM) 99.3 dB (10/30/2012 11:22:58 AM) 87.0 dB (10/30/2012 12:38:56 PM) 80.7 dB (10/30/2012 1:24:42 PM) 78.3 dB (10/30/2012 2:26:45 PM) 80.0 dB (10/30/2012 3:29:42 PM)	51.0 dB (10/29/2012 6:07:23 PM) LAmin with Time 45.1 dB (10/30/2012 9:17:09 AM) 45.5 dB (10/30/2012 10:20:30 AM) 46.0 dB (10/30/2012 11:58:39 AM) 46.4 dB (10/30/2012 12:52:50 PM) 46.2 dB (10/30/2012 1:42:03 PM) 44.9 dB (10/30/2012 2:28:39 PM) 47.2 dB (10/30/2012 3:28:46 PM)	80.0 dB LCeq 71.3 dB 72.3 dB 74.0 dB 72.7 dB 74.3 dB 70.9 dB 75.2 dB	8.6 dB LCeq-LAeq 14.2 dB 14.7 dB 5.1 dB 12.5 dB 14.3 dB 12.7 dB 15.4 dB	10/29/2012 18:11 End Date & Time 10/30/2012 10:16 10/30/2012 11:16 10/30/2012 12:17 10/30/2012 13:17 10/30/2012 15:17 10/30/2012 15:44	10/29/2012 17:12 Calibration (Before) Date 10/30/2012 9:16 10/30/2012 9:16 10/30/2012 9:16 10/30/2012 9:16 10/30/2012 9:16	114.0 dB Calibration (Before) SPL 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB	10/29/2012 18:11 Calibration (After) Date 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46	Calibration Drift 0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB
Start Date & Time 10/30/2012 9:16 10/30/2012 10:16 10/30/2012 11:17 10/30/2012 12:17 10/30/2012 13:17 10/30/2012 15:17 10/30/2012 15:46	Total Time 8:04:58 Duration 1:00:00 1:00:00 1:00:00 1:00:00 1:00:00 0:27:04 1:00:00	Site 7 Notes	Daily Avg. 70.7 Laeq (dB) 57.1 57.6 68.9 60.3 60 58.2 59.8 69.2	LAmax with Time 76.8 dB (10/30/2012 9:57:45 AM) 83.3 dB (10/30/2012 10:54:45 AM) 99.3 dB (10/30/2012 11:22:58 AM) 87.0 dB (10/30/2012 12:38:56 PM) 80.7 dB (10/30/2012 1:24:42 PM) 78.3 dB (10/30/2012 2:26:45 PM) 80.0 dB (10/30/2012 3:29:42 PM) 107.7 dB (10/30/2012 4:37:28 PM)	51.0 dB (10/29/2012 6:07:23 PM) LAmin with Time 45.1 dB (10/30/2012 9:17:09 AM) 45.5 dB (10/30/2012 10:20:30 AM) 46.0 dB (10/30/2012 11:58:39 AM) 46.4 dB (10/30/2012 12:52:50 PM) 46.2 dB (10/30/2012 12:28:39 PM) 47.2 dB (10/30/2012 3:28:46 PM) 46.5 dB (10/30/2012 3:59:32 PM)	80.0 dB LCeq 71.3 dB 72.3 dB 74.0 dB 72.7 dB 74.3 dB 70.9 dB 75.2 dB 73.3 dB	8.6 dB LCeq-LAeq 14.2 dB 14.7 dB 5.1 dB 12.5 dB 14.3 dB 12.7 dB 15.4 dB 4.1 dB	10/29/2012 18:11 End Date & Time 10/30/2012 10:16 10/30/2012 11:16 10/30/2012 13:17 10/30/2012 13:17 10/30/2012 15:17 10/30/2012 15:44 10/30/2012 16:46	10/29/2012 17:12 Calibration (Before) Date 10/30/2012 9:16 10/30/2012 9:16 10/30/2012 9:16 10/30/2012 9:16 10/30/2012 9:16 10/30/2012 9:546	114.0 dB Calibration (Before) SPL 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB	10/29/2012 18:11 Calibration (After) Date 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:24	Calibration Drift 0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB
Start Date & Time 10/30/2012 9:16 10/30/2012 10:16 10/30/2012 11:17 10/30/2012 12:17 10/30/2012 13:17 10/30/2012 15:17 10/30/2012 15:46	Total Time 8:04:58 Duration 1:00:00 1:00:00 1:00:00 1:00:00 1:00:00 1:00:00 1:00:00 0:27:04 1:00:00 0:37:43	Site 7 Notes Site 8	Daily Avg. 70.7 Laeq (dB) 57.1 57.6 68.9 60.3 60 58.2 59.8 69.2 60.5	LAmax with Time 76.8 dB (10/30/2012 9:57:45 AM) 83.3 dB (10/30/2012 10:54:45 AM) 99.3 dB (10/30/2012 11:22:58 AM) 87.0 dB (10/30/2012 12:38:56 PM) 80.7 dB (10/30/2012 12:26:45 PM) 80.0 dB (10/30/2012 2:26:45 PM) 80.0 dB (10/30/2012 3:29:42 PM) 107.7 dB (10/30/2012 4:37:28 PM) 79.5 dB (10/30/2012 5:02:26 PM)	51.0 dB (10/29/2012 6:07:23 PM) LAmin with Time 45.1 dB (10/30/2012 9:17:09 AM) 45.5 dB (10/30/2012 10:20:30 AM) 46.0 dB (10/30/2012 11:58:39 AM) 46.4 dB (10/30/2012 12:52:50 PM) 46.2 dB (10/30/2012 12:28:39 PM) 47.2 dB (10/30/2012 3:28:46 PM) 46.5 dB (10/30/2012 3:59:32 PM)	80.0 dB LCeq 71.3 dB 72.3 dB 74.0 dB 72.7 dB 74.3 dB 70.9 dB 75.2 dB 73.3 dB	8.6 dB LCeq-LAeq 14.2 dB 14.7 dB 5.1 dB 12.5 dB 14.3 dB 12.7 dB 15.4 dB 4.1 dB	10/29/2012 18:11 End Date & Time 10/30/2012 10:16 10/30/2012 11:16 10/30/2012 13:17 10/30/2012 13:17 10/30/2012 15:17 10/30/2012 15:44 10/30/2012 16:46	10/29/2012 17:12 Calibration (Before) Date 10/30/2012 9:16 10/30/2012 9:16 10/30/2012 9:16 10/30/2012 9:16 10/30/2012 9:16 10/30/2012 9:546	114.0 dB Calibration (Before) SPL 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB	10/29/2012 18:11 Calibration (After) Date 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:24	Calibration Drift 0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB
Start Date & Time 10/30/2012 9:16 10/30/2012 10:16 10/30/2012 11:17 10/30/2012 12:17 10/30/2012 13:17 10/30/2012 15:17 10/30/2012 15:46	Total Time 8:04:58 Duration 1:00:00 1:00:00 1:00:00 1:00:00 1:00:00 0:27:04 1:00:00 0:37:43 Total Time	Site 7 Notes Site 8 Site 8	Daily Avg. 70.7 Laeq (dB) 57.1 57.6 68.9 60.3 600 58.2 59.8 69.2 60.5 Daily Avg.	LAmax with Time 76.8 dB (10/30/2012 9:57:45 AM) 83.3 dB (10/30/2012 10:54:45 AM) 99.3 dB (10/30/2012 11:22:58 AM) 87.0 dB (10/30/2012 12:38:56 PM) 80.7 dB (10/30/2012 12:26:45 PM) 80.0 dB (10/30/2012 2:26:45 PM) 80.0 dB (10/30/2012 3:29:42 PM) 107.7 dB (10/30/2012 4:37:28 PM) 79.5 dB (10/30/2012 5:02:26 PM)	51.0 dB (10/29/2012 6:07:23 PM) LAmin with Time 45.1 dB (10/30/2012 9:17:09 AM) 45.5 dB (10/30/2012 10:20:30 AM) 46.0 dB (10/30/2012 11:58:39 AM) 46.4 dB (10/30/2012 12:52:50 PM) 46.2 dB (10/30/2012 12:28:39 PM) 47.2 dB (10/30/2012 3:28:46 PM) 46.5 dB (10/30/2012 3:59:32 PM)	80.0 dB LCeq 71.3 dB 72.3 dB 74.0 dB 72.7 dB 74.3 dB 70.9 dB 75.2 dB 73.3 dB	8.6 dB LCeq-LAeq 14.2 dB 14.7 dB 5.1 dB 12.5 dB 14.3 dB 12.7 dB 15.4 dB 4.1 dB	10/29/2012 18:11 End Date & Time 10/30/2012 10:16 10/30/2012 11:16 10/30/2012 13:17 10/30/2012 13:17 10/30/2012 15:17 10/30/2012 15:44 10/30/2012 16:46	10/29/2012 17:12 Calibration (Before) Date 10/30/2012 9:16 10/30/2012 9:16 10/30/2012 9:16 10/30/2012 9:16 10/30/2012 9:16 10/30/2012 15:46 10/30/2012 15:46	114.0 dB Calibration (Before) SPL 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB	10/29/2012 18:11 Calibration (After) Date 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:24	Calibration Drift 0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB
Start Date & Time 10/30/2012 9:16 10/30/2012 10:16 10/30/2012 11:17 10/30/2012 12:17 10/30/2012 13:17 10/30/2012 14:17 10/30/2012 15:17 10/30/2012 15:46 10/30/2012 16:46	Total Time 8:04:58 Duration 1:00:00 1:00:00 1:00:00 1:00:00 1:00:00 0:27:04 1:00:00 0:37:43 Total Time	Site 7 Notes Site 8 Site 8	Daily Avg. 70.7 Laeq (dB) 57.1 57.6 68.9 60.3 600 58.2 59.8 69.2 60.5 Daily Avg.	LAmax with Time 76.8 dB (10/30/2012 9:57:45 AM) 83.3 dB (10/30/2012 10:54:45 AM) 99.3 dB (10/30/2012 11:22:58 AM) 87.0 dB (10/30/2012 12:38:56 PM) 80.7 dB (10/30/2012 12:26:45 PM) 80.0 dB (10/30/2012 2:26:45 PM) 80.0 dB (10/30/2012 3:29:42 PM) 107.7 dB (10/30/2012 4:37:28 PM) 79.5 dB (10/30/2012 5:02:26 PM)	51.0 dB (10/29/2012 6:07:23 PM) LAmin with Time 45.1 dB (10/30/2012 9:17:09 AM) 45.5 dB (10/30/2012 10:20:30 AM) 46.0 dB (10/30/2012 11:58:39 AM) 46.4 dB (10/30/2012 12:52:50 PM) 46.2 dB (10/30/2012 12:28:39 PM) 47.2 dB (10/30/2012 3:28:46 PM) 46.5 dB (10/30/2012 3:59:32 PM)	80.0 dB LCeq 71.3 dB 72.3 dB 74.0 dB 72.7 dB 74.3 dB 70.9 dB 75.2 dB 73.3 dB	8.6 dB LCeq-LAeq 14.2 dB 14.7 dB 5.1 dB 12.5 dB 14.3 dB 12.7 dB 15.4 dB 4.1 dB	10/29/2012 18:11 End Date & Time 10/30/2012 10:16 10/30/2012 11:16 10/30/2012 13:17 10/30/2012 13:17 10/30/2012 15:17 10/30/2012 15:44 10/30/2012 16:46	10/29/2012 17:12 Calibration (Before) Date 10/30/2012 9:16 10/30/2012 9:16 10/30/2012 9:16 10/30/2012 9:16 10/30/2012 9:16 10/30/2012 15:46 10/30/2012 15:46	114.0 dB Calibration (Before) SPL 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB	10/29/2012 18:11 Calibration (After) Date 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 17:24 10/30/2012 17:24	Calibration Drift 0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB -0.7 dB -0.7 dB
Start Date & Time 10/30/2012 9:16 10/30/2012 10:16 10/30/2012 11:17 10/30/2012 12:17 10/30/2012 13:17 10/30/2012 14:17 10/30/2012 15:17 10/30/2012 15:46 10/30/2012 16:46	Total Time 8:04:58 Duration 1:00:00 1:00:00 1:00:00 1:00:00 1:00:00 1:00:00 0:027:04 1:00:00 0:37:43 Total Time 8:04:47	Site 7 Notes Site 8 Site 8 Site 8	Daily Avg. 70.7 Laeq (dB) 57.1 57.6 68.9 60.3 600 58.2 59.8 69.2 60.3 Daily Avg. 61.4 Laeq (dB)	LAmax with Time 76.8 dB (10/30/2012 9:57:45 AM) 83.3 dB (10/30/2012 10:54:45 AM) 99.3 dB (10/30/2012 11:22:58 AM) 87.0 dB (10/30/2012 11:23:8:56 PM) 80.7 dB (10/30/2012 11:24:42 PM) 78.3 dB (10/30/2012 11:24:42 PM) 80.0 dB (10/30/2012 11:24:42 PM) 107.7 dB (10/30/2012 11:29 PM) 107.7 dB (10/30/2012 4:37:28 PM) 79.5 dB (10/30/2012 5:02:26 PM)	51.0 dB (10/29/2012 6:07:23 PM) LAmin with Time 45.1 dB (10/30/2012 9:17:09 AM) 45.5 dB (10/30/2012 10:20:30 AM) 46.0 dB (10/30/2012 11:58:39 AM) 46.4 dB (10/30/2012 12:52:50 PM) 46.2 dB (10/30/2012 1:42:03 PM) 44.9 dB (10/30/2012 2:28:39 PM) 47.2 dB (10/30/2012 3:28:46 PM) 46.5 dB (10/30/2012 3:59:32 PM) 47.1 dB (10/30/2012 4:56:55 PM) LAmin with Time	80.0 dB LCeq 71.3 dB 72.3 dB 72.3 dB 74.0 dB 74.0 dB 74.0 dB 75.2 dB 73.3 dB 74.7 dB	8.6 dB LCeq-LAeq 14.2 dB 14.7 dB 5.1 dB 12.5 dB 14.3 dB 12.7 dB 15.4 dB 14.2 dB 14.2 dB	10/29/2012 18:11 End Date & Time 10/30/2012 10:16 10/30/2012 11:16 10/30/2012 12:17 10/30/2012 13:17 10/30/2012 15:17 10/30/2012 15:44 10/30/2012 16:46 10/30/2012 17:24	10/29/2012 17:12 Calibration (Before) Date 10/30/2012 9:16 10/30/2012 9:16 10/30/2012 9:16 10/30/2012 9:16 10/30/2012 9:16 10/30/2012 15:46 10/30/2012 15:46 Calibration (Before)	114.0 dB Calibration (Before) SPL 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB Calibration (Before) SPL	10/29/2012 18:11 Calibration (After) Date 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 17:24 10/30/2012 17:24 Calibration (After)	Calibration Drift 0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB -0.7 dB -0.7 dB -0.7 dB Calibration Drift
Start Date & Time 10/30/2012 9:16 10/30/2012 10:16 10/30/2012 11:17 10/30/2012 12:17 10/30/2012 13:17 10/30/2012 15:17 10/30/2012 15:46 10/30/2012 16:46 Start Date & Time	Total Time 8:04:58 Duration 1:00:00 1:00:00 1:00:00 1:00:00 1:00:00 0:27:04 1:00:00 0:37:43 Total Time 8:04:47 Duration	Site 7 Notes Site 8 Site 8 Site 8 Site 8 Notes	Daily Avg. 70.7 Laeq (dB) 57.1 57.6 68.9 60.3 60 58.2 59.8 69.2 60.5 Daily Avg. 61.4 Laeq (dB) 63.3	LAmax with Time 76.8 dB (10/30/2012 9:57:45 AM) 83.3 dB (10/30/2012 10:54:45 AM) 99.3 dB (10/30/2012 11:22:58 AM) 87.0 dB (10/30/2012 12:38:56 PM) 80.7 dB (10/30/2012 1:24:42 PM) 78.3 dB (10/30/2012 1:24:42 PM) 80.0 dB (10/30/2012 1:24:42 PM) 107.7 dB (10/30/2012 1:29:42 PM) 107.7 dB (10/30/2012 1:20:226 PM) 95.5 dB (10/30/2012 5:02:26 PM) LAmax with Time	51.0 dB (10/29/2012 6:07:23 PM) LAmin with Time 45.1 dB (10/30/2012 9:17:09 AM) 45.5 dB (10/30/2012 10:20:30 AM) 46.0 dB (10/30/2012 11:58:39 AM) 46.4 dB (10/30/2012 12:52:50 PM) 46.2 dB (10/30/2012 1:42:03 PM) 44.9 dB (10/30/2012 2:28:39 PM) 47.2 dB (10/30/2012 3:28:46 PM) 46.5 dB (10/30/2012 3:59:32 PM) 47.1 dB (10/30/2012 4:56:55 PM) LAmin with Time	80.0 dB LCeq 71.3 dB 72.3 dB 74.0 dB 72.7 dB 74.3 dB 70.9 dB 75.2 dB 73.3 dB 74.7 dB LCeq 74.1 dB	8.6 dB LCeq-LAeq 14.2 dB 14.7 dB 5.1 dB 12.5 dB 14.3 dB 12.7 dB 15.4 dB 14.2 dB 14.2 dB LCeq-LAeq	10/29/2012 18:11 End Date & Time 10/30/2012 10:16 10/30/2012 12:17 10/30/2012 13:17 10/30/2012 13:17 10/30/2012 15:17 10/30/2012 15:44 10/30/2012 15:44 10/30/2012 17:24	10/29/2012 17:12 Calibration (Before) Date 10/30/2012 9:16 10/30/2012 9:16 10/30/2012 9:16 10/30/2012 9:16 10/30/2012 9:16 10/30/2012 9:16 10/30/2012 15:46 10/30/2012 15:46 Calibration (Before) Date	114.0 dB Calibration (Before) SPL 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB Calibration (Before) SPL 114.0 dB	10/29/2012 18:11 Calibration (After) Date 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 17:24 Calibration (After) Date	Calibration Drift 0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB -0.7 dB -0.7 dB -0.7 dB Calibration Drift 0.3 dB
Start Date & Time 10/30/2012 9:16 10/30/2012 10:16 10/30/2012 11:17 10/30/2012 12:17 10/30/2012 13:17 10/30/2012 15:17 10/30/2012 15:46 10/30/2012 16:46 Start Date & Time 11/12/2012 9:27	Total Time 8:04:58 Duration 1:00:00 1:00:00 1:00:00 1:00:00 1:00:00 1:00:00 0:27:04 1:00:00 0:37:43 Total Time 8:04:47 Duration	Site 7 Notes Site 8 Site 8 Site 8 Site 8 Notes	Daily Avg. 70.7 Laeq (dB) 57.1 57.6 68.9 60.3 60 58.2 59.8 69.2 60.5 Daily Avg. 61.4 Laeq (dB) 63.3 65.3	LAmax with Time 76.8 dB (10/30/2012 9:57:45 AM) 83.3 dB (10/30/2012 10:54:45 AM) 99.3 dB (10/30/2012 10:54:45 AM) 87.0 dB (10/30/2012 11:22:58 AM) 80.7 dB (10/30/2012 12:38:56 PM) 80.0 dB (10/30/2012 2:26:45 PM) 80.0 dB (10/30/2012 3:29:42 PM) 107.7 dB (10/30/2012 3:29:42 PM) 107.7 dB (10/30/2012 3:29:42 PM) 107.7 dB (10/30/2012 3:29:42 PM) 107.7 dB (10/30/2012 3:29:42 PM) LAmax with Time 80.2 dB (11/12/2012 9:54:14 AM) 92.7 dB (11/12/2012 11:16:43 AM)	51.0 dB (10/29/2012 6:07:23 PM) LAmin with Time 45.1 dB (10/30/2012 9:17:09 AM) 45.5 dB (10/30/2012 10:20:30 AM) 46.0 dB (10/30/2012 11:58:39 AM) 46.4 dB (10/30/2012 12:52:50 PM) 46.2 dB (10/30/2012 12:28:39 PM) 47.2 dB (10/30/2012 2:28:39 PM) 47.2 dB (10/30/2012 3:28:46 PM) 46.5 dB (10/30/2012 3:59:32 PM) 47.1 dB (10/30/2012 4:56:55 PM) LAmin with Time 41.9 dB (11/12/2012 10:26:48 AM)	80.0 dB LCeq 71.3 dB 72.3 dB 74.0 dB 72.7 dB 74.3 dB 70.9 dB 75.2 dB 73.3 dB 74.7 dB 74.7 dB LCeq 74.1 dB 75.8 dB	8.6 dB LCeq-LAeq 14.2 dB 14.7 dB 5.1 dB 12.5 dB 14.3 dB 12.7 dB 15.4 dB 14.2 dB 14.2 dB LCeq-LAeq 10.8 dB	10/29/2012 18:11 End Date & Time 10/30/2012 10:16 10/30/2012 11:16 10/30/2012 13:17 10/30/2012 13:17 10/30/2012 15:17 10/30/2012 15:24 10/30/2012 15:44 10/30/2012 17:24 End Date & Time 11/12/2012 10:27	10/29/2012 17:12 Calibration (Before) Date 10/30/2012 9:16 10/30/2012 9:16 10/30/2012 9:16 10/30/2012 9:16 10/30/2012 9:16 10/30/2012 9:16 10/30/2012 15:46 10/30/2012 15:46 Calibration (Before) Date 11/12/2012 9:27 11/12/2012 9:27	114.0 dB Calibration (Before) SPL 114.0 dB 114.0 dB	10/29/2012 18:11 Calibration (After) Date 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 17:24 10/30/2012 17:24 Calibration (After) Date 11/12/2012 12:16	Calibration Drift 0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB -0.7 dB -0.7 dB -0.7 dB Calibration Drift 0.3 dB 0.3 dB
Start Date & Time 10/30/2012 9:16 10/30/2012 10:16 10/30/2012 11:17 10/30/2012 13:17 10/30/2012 14:17 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 Start Date & Time 11/12/2012 9:27 11/12/2012 10:27	Total Time 8:04:58 Duration 1:00:00 1:00:00 1:00:00 1:00:00 1:00:00 1:00:00 0:27:04 1:00:00 0:37:43 Total Time 8:04:47 Duration 1:00:00	Site 7 Notes Site 8 Site 8 Site 8 Site 8 Notes	Daily Avg. 70.7 Laeq (dB) 57.1 57.6 68.9 60.3 60 58.2 59.8 69.2 50aily Avg. 61.4 Laeq (dB) 63.3 65.3 72.4	LAmax with Time 76.8 dB (10/30/2012 9:57:45 AM) 83.3 dB (10/30/2012 10:54:45 AM) 99.3 dB (10/30/2012 10:54:45 AM) 87.0 dB (10/30/2012 11:22:58 AM) 80.7 dB (10/30/2012 12:38:56 PM) 80.0 dB (10/30/2012 2:26:45 PM) 80.0 dB (10/30/2012 3:29:42 PM) 107.7 dB (10/30/2012 3:29:42 PM) 107.7 dB (10/30/2012 3:29:42 PM) 107.7 dB (10/30/2012 3:29:42 PM) 107.7 dB (10/30/2012 3:29:42 PM) LAmax with Time 80.2 dB (11/12/2012 9:54:14 AM) 92.7 dB (11/12/2012 11:16:43 AM)	51.0 dB (10/29/2012 6:07:23 PM) LAmin with Time 45.1 dB (10/30/2012 9:17:09 AM) 45.5 dB (10/30/2012 10:20:30 AM) 46.0 dB (10/30/2012 11:58:39 AM) 46.4 dB (10/30/2012 1:42:03 PM) 44.9 dB (10/30/2012 1:42:03 PM) 47.2 dB (10/30/2012 3:28:46 PM) 47.1 dB (10/30/2012 3:59:32 PM) 47.1 dB (10/30/2012 4:56:55 PM) LAmin with Time LAmin with Time 41.9 dB (11/12/2012 10:26:48 AM) 41.3 dB (11/12/2012 11:35:54 AM)	80.0 dB LCeq 71.3 dB 72.3 dB 74.0 dB 72.7 dB 74.3 dB 70.9 dB 75.2 dB 73.3 dB 74.7 dB 74.7 dB LCeq 74.1 dB 75.8 dB	8.6 dB LCeq-LAeq 14.2 dB 14.7 dB 5.1 dB 12.5 dB 14.3 dB 12.7 dB 15.4 dB 4.1 dB 14.2 dB 14.2 dB LCeq-LAeq 10.8 dB 10.5 dB	10/29/2012 18:11 End Date & Time 10/30/2012 10:16 10/30/2012 11:16 10/30/2012 13:17 10/30/2012 13:17 10/30/2012 15:17 10/30/2012 15:44 10/30/2012 15:44 10/30/2012 15:44 10/30/2012 17:24 End Date & Time 11/12/2012 10:27 11/12/2012 11:27	10/29/2012 17:12 Calibration (Before) Date 10/30/2012 9:16 10/30/2012 9:16 10/30/2012 9:16 10/30/2012 9:16 10/30/2012 9:16 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 11/12/2012 9:27 11/12/2012 9:27 11/12/2012 9:27	114.0 dB Calibration (Before) SPL 114.0 dB 114.0 dB	10/29/2012 18:11 Calibration (After) Date 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 17:24 10/30/2012 17:24 Calibration (After) Date 11/12/2012 12:16 11/12/2012 12:16	Calibration Drift 0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB -0.7 dB -0.7 dB -0.7 dB -0.7 dB -0.7 dB 0.3 dB 0.3 dB
Start Date & Time 10/30/2012 9:16 10/30/2012 10:16 10/30/2012 11:17 10/30/2012 13:17 10/30/2012 13:17 10/30/2012 15:16 10/30/2012 15:46 10/30/2012 16:46 Start Date & Time 11/12/2012 9:27 11/12/2012 10:27 11/12/2012 11:27	Total Time 8:04:58 Duration 1:00:00 1:00:00 1:00:00 1:00:00 1:00:00 1:00:00 0:27:04 1:00:00 0:37:43 Total Time 8:04:47 Duration 1:00:00 1:00:00 0:00:00	Site 7 Notes Site 8 Site 8 Site 8 Site 8 Notes	Daily Avg. 70.7 Laeq (dB) 57.1 57.6 68.9 60.3 60 58.2 59.8 69.2 60.5 Daily Avg. Call A Laeq (dB) 63.3 72.4 67.3	LAmax with Time 76.8 dB (10/30/2012 9:57:45 AM) 99.3 dB (10/30/2012 10:54:45 AM) 99.3 dB (10/30/2012 11:22:58 AM) 87.0 dB (10/30/2012 11:22:58 AM) 80.7 dB (10/30/2012 11:24:42 PM) 78.3 dB (10/30/2012 12:26:45 PM) 80.0 dB (10/30/2012 2:26:45 PM) 80.0 dB (10/30/2012 3:29:42 PM) 107.7 dB (10/30/2012 4:37:28 PM) 79.5 dB (10/30/2012 5:02:26 PM) LAmax with Time 80.2 dB (11/12/2012 9:54:14 AM) 92.7 dB (11/12/2012 11:16:43 AM) 103.3 dB (11/12/2012 11:59:47 AM)	51.0 dB (10/29/2012 6:07:23 PM) LAmin with Time 45.1 dB (10/30/2012 9:17:09 AM) 45.5 dB (10/30/2012 10:20:30 AM) 46.0 dB (10/30/2012 11:58:39 AM) 46.4 dB (10/30/2012 1:42:03 PM) 44.9 dB (10/30/2012 1:42:03 PM) 47.2 dB (10/30/2012 3:28:46 PM) 47.1 dB (10/30/2012 3:59:32 PM) 47.1 dB (10/30/2012 4:56:55 PM) LAmin with Time LAmin with Time 41.9 dB (11/12/2012 10:26:48 AM) 41.3 dB (11/12/2012 11:35:54 AM)	80.0 dB LCeq 71.3 dB 72.3 dB 74.0 dB 72.7 dB 74.3 dB 75.2 dB 75.2 dB 75.2 dB 73.3 dB 74.7 dB 74.7 dB LCeq 74.1 dB 75.8 dB 79.7 dB	8.6 dB LCeq-LAeq 14.2 dB 14.7 dB 5.1 dB 12.5 dB 14.3 dB 12.7 dB 15.4 dB 4.1 dB 14.2 dB LCeq-LAeq 10.8 dB 10.5 dB 7.3 dB	10/29/2012 18:11 End Date & Time 10/30/2012 10:16 10/30/2012 11:16 10/30/2012 12:17 10/30/2012 13:17 10/30/2012 13:17 10/30/2012 15:44 10/30/2012 15:44 10/30/2012 15:44 10/30/2012 15:44 10/30/2012 15:44 10/30/2012 15:44 10/30/2012 15:44 11/12/2012 12:24 End Date & Time 11/12/2012 12:14	10/29/2012 17:12 Calibration (Before) Date 10/30/2012 9:16 10/30/2012 9:16 10/30/2012 9:16 10/30/2012 9:16 10/30/2012 9:16 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 11/12/2012 9:27 11/12/2012 9:27 11/12/2012 9:27	114.0 dB Calibration (Before) SPL 114.0 dB 114.0 dB	10/29/2012 18:11 Calibration (After) Date 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:42 10/30/2012 17:24 Calibration (After) Date 11/12/2012 12:16 11/12/2012 12:16	Calibration Drift 0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.7 dB -0.7 dB Calibration Drift 0.3 dB 0.3 dB -1.3 dB
Start Date & Time 10/30/2012 9:16 10/30/2012 10:16 10/30/2012 11:17 10/30/2012 12:17 10/30/2012 13:17 10/30/2012 14:17 10/30/2012 15:17 10/30/2012 15:46 10/30/2012 16:46 Start Date & Time 11/12/2012 9:27 11/12/2012 11:27 11/12/2012 11:27 11/12/2012 12:16	Total Time 8:04:58 Duration 1:00:00 1:00:00 1:00:00 1:00:00 1:00:00 1:00:00 0:27:04 1:00:00 0:37:43 Total Time 8:04:47 Duration 1:00:00 0:46:43 1:00:00	Site 7 Notes Site 8 Site 8 Site 8 Site 8 Notes	Daily Avg. 70.7 Laeq (dB) 57.1 57.6 68.9 60.3 600 58.2 59.8 69.2 605 Daily Avg. 61.4 Laeq (dB) 63.3 65.3 72.4 67.3 67.1	LAmax with Time 76.8 dB (10/30/2012 9:57:45 AM) 83.3 dB (10/30/2012 10:54:45 AM) 99.3 dB (10/30/2012 11:22:58 AM) 87.0 dB (10/30/2012 11:22:58 AM) 80.7 dB (10/30/2012 12:26:45 PM) 80.7 dB (10/30/2012 2:26:45 PM) 80.0 dB (10/30/2012 4:37:28 PM) 107.7 dB (10/30/2012 4:37:28 PM) 79.5 dB (10/30/2012 5:02:26 PM) LAmax with Time 80.2 dB (11/12/2012 9:54:14 AM) 92.7 dB (11/12/2012 11:16:43 AM) 103.3 dB (11/12/2012 11:159:47 AM) 94.7 dB (11/12/2012 11:05:03 PM)	51.0 dB (10/29/2012 6:07:23 PM) LAmin with Time 45.1 dB (10/30/2012 9:17:09 AM) 45.5 dB (10/30/2012 10:20:30 AM) 46.0 dB (10/30/2012 10:20:30 AM) 46.4 dB (10/30/2012 10:20:30 AM) 46.2 dB (10/30/2012 10:20:30 AM) 46.2 dB (10/30/2012 10:20:30 PM) 47.2 dB (10/30/2012 10:20:30 PM) 47.2 dB (10/30/2012 3:28:46 PM) 46.5 dB (10/30/2012 3:28:46 PM) 47.1 dB (10/30/2012 3:59:32 PM) 47.1 dB (10/30/2012 4:56:55 PM) LAmin with Time LAmin with Time 41.9 dB (11/12/2012 10:26:48 AM) 46.0 dB (11/12/2012 11:35:54 AM) 46.6 dB (11/12/2012 12:46:17 PM)	80.0 dB LCeq 71.3 dB 72.3 dB 74.0 dB 72.7 dB 74.3 dB 75.2 dB 75.2 dB 73.3 dB 74.7 dB 74.7 dB 74.7 dB 75.8 dB 75.8 dB 79.7 dB 77.9 dB	8.6 dB LCeq-LAeq 14.2 dB 14.7 dB 5.1 dB 12.5 dB 14.3 dB 12.7 dB 15.4 dB 4.1 dB 14.2 dB LCeq-LAeq 10.8 dB 10.5 dB 7.3 dB 10.6 dB	10/29/2012 18:11 End Date & Time 10/30/2012 10:16 10/30/2012 11:16 10/30/2012 12:17 10/30/2012 13:17 10/30/2012 15:47 10/30/2012 15:47 10/30/2012 15:47 10/30/2012 17:24 10/30/2012 17:24 End Date & Time 11/12/2012 10:27 11/12/2012 12:14 11/12/2012 12:14	10/29/2012 17:12 Calibration (Before) Date 10/30/2012 9:16 10/30/2012 9:16 10/30/2012 9:16 10/30/2012 9:16 10/30/2012 9:16 10/30/2012 15:46 10/30/2012 15:46 Calibration (Before) Date 11/12/2012 9:27 11/12/2012 9:27 11/12/2012 9:27	114.0 dB Calibration (Before) SPL 114.0 dB 114.0 dB	10/29/2012 18:11 Calibration (After) Date 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 17:24 10/30/2012 17:24 Calibration (After) Date 11/12/2012 12:16 11/12/2012 12:16 11/12/2012 12:16	Calibration Drift 0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB -0.7 dB -0.7 dB Calibration Drift 0.3 dB 0.3 dB -1.3 dB -1.3 dB
Start Date & Time 10/30/2012 9:16 10/30/2012 10:16 10/30/2012 11:17 10/30/2012 12:17 10/30/2012 13:17 10/30/2012 14:17 10/30/2012 15:17 10/30/2012 15:46 10/30/2012 16:46 Start Date & Time 11/12/2012 9:27 11/12/2012 9:27 11/12/2012 11:27 11/12/2012 12:16 11/12/2012 12:17	Total Time 8:04:58 Duration 1:00:00 1:00:00 1:00:00 1:00:00 1:00:00 1:00:00 1:00:00 0:27:04 0:07:03 Total Time 8:04:47 Duration 1:00:00 0:46:43 1:00:00 1:00:00 1:00:00	Site 7 Notes Site 8 Site 8 Site 8 Site 8 Notes	Daily Avg. 70.7 Laeq (dB) 57.1 57.6 68.9 60.3 60 58.2 59.8 69.2 60.5 Daily Avg. 61.4 Laeq (dB) 63.3 65.3 72.4 67.1 66.5	LAmax with Time 76.8 dB (10/30/2012 9:57:45 AM) 83.3 dB (10/30/2012 10:54:45 AM) 99.3 dB (10/30/2012 11:22:58 AM) 87.0 dB (10/30/2012 11:22:58 AM) 80.7 dB (10/30/2012 12:23:56 PM) 80.7 dB (10/30/2012 12:24:42 PM) 78.3 dB (10/30/2012 12:26:45 PM) 80.0 dB (10/30/2012 4:37:28 PM) 107.7 dB (10/30/2012 4:37:28 PM) 79.5 dB (10/30/2012 4:37:28 PM) 79.5 dB (10/30/2012 5:02:26 PM) LAmax with Time 80.2 dB (11/12/2012 9:54:14 AM) 92.7 dB (11/12/2012 11:16:43 AM) 103.3 dB (11/12/2012 11:59:47 AM) 94.7 dB (11/12/2012 1:50:03 PM) 82.7 dB (11/12/2012 1:54:07 PM)	51.0 dB (10/29/2012 6:07:23 PM) LAmin with Time 45.1 dB (10/30/2012 9:17:09 AM) 45.5 dB (10/30/2012 10:20:30 AM) 46.0 dB (10/30/2012 11:58:39 AM) 46.4 dB (10/30/2012 12:52:50 PM) 46.2 dB (10/30/2012 1:42:03 PM) 44.9 dB (10/30/2012 2:28:39 PM) 47.2 dB (10/30/2012 2:28:39 PM) 47.2 dB (10/30/2012 3:59:32 PM) 47.1 dB (10/30/2012 3:59:32 PM) 47.1 dB (10/30/2012 4:56:55 PM) LAmin with Time 41.9 dB (11/12/2012 10:26:48 AM) 46.0 dB (11/12/2012 11:35:54 AM) 46.6 dB (11/12/2012 12:26:44 PM)	80.0 dB LCeq 71.3 dB 72.3 dB 74.0 dB 72.7 dB 74.3 dB 70.9 dB 75.2 dB 73.3 dB 74.7 dB 74.1 dB 75.8 dB 79.7 dB 77.9 dB 77.9 dB	8.6 dB LCeq-LAeq 14.2 dB 14.7 dB 5.1 dB 12.5 dB 14.3 dB 12.7 dB 15.4 dB 14.2 dB 14.2 dB LCeq-LAeq 10.8 dB 10.5 dB 7.3 dB 10.6 dB 10.7 dB	10/29/2012 18:11 End Date & Time 10/30/2012 10:16 10/30/2012 12:17 10/30/2012 12:17 10/30/2012 13:17 10/30/2012 15:17 10/30/2012 15:17 10/30/2012 15:44 10/30/2012 15:44 10/30/2012 17:24 End Date & Time 11/12/2012 10:27 11/12/2012 11:27 11/12/2012 13:16 11/12/2012 14:17	10/29/2012 17:12 Calibration (Before) Date 10/30/2012 9:16 10/30/2012 9:16 10/30/2012 9:16 10/30/2012 9:16 10/30/2012 9:16 10/30/2012 9:16 10/30/2012 15:46 10/30/2012 15:46 Calibration (Before) Date 11/12/2012 9:27 11/12/2012 9:27 11/12/2012 12:16	114.0 dB Calibration (Before) SPL 114.0 dB 114.0 dB	10/29/2012 18:11 Calibration (After) Date 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 17:24 10/30/2012 17:24 Calibration (After) Date 11/12/2012 12:16 11/12/2012 12:16 11/12/2012 12:16 11/12/2012 17:36 11/12/2012 17:36	Calibration Drift 0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.7 dB -0.7 dB -0.7 dB -0.7 dB -0.7 dB -0.3 dB 0.3 dB 0.3 dB -1.3 dB -1.3 dB
Start Date & Time 10/30/2012 9:16 10/30/2012 10:16 10/30/2012 11:17 10/30/2012 12:17 10/30/2012 13:17 10/30/2012 15:17 10/30/2012 15:46 10/30/2012 16:46 Start Date & Time 11/12/2012 10:27 11/12/2012 10:27 11/12/2012 13:17 11/12/2012 13:17 11/12/2012 13:17 11/12/2012 13:17	Total Time 8:04:58 Duration 1:00:00 1:00:00 1:00:00 1:00:00 1:00:00 1:00:00 0:27:04 1:00:00 0:37:43 Total Time 8:04:47 Duration 1:00:00 0:46:43 1:00:00 1:00:00 1:00:00 1:00:00	Site 7 Notes Site 8 Site 8 Site 8 Site 8 Notes	Daily Avg. 70.7 Laeq (dB) 57.1 57.6 68.9 60.3 60 58.2 59.8 69.2 60.5 Daily Avg. 61.4 Laeq (dB) 63.3 65.3 72.4 67.1 66.5 73.4	LAmax with Time 76.8 dB (10/30/2012 9:57:45 AM) 83.3 dB (10/30/2012 10:54:45 AM) 99.3 dB (10/30/2012 11:22:58 AM) 87.0 dB (10/30/2012 11:22:58 AM) 80.7 dB (10/30/2012 11:24:42 PM) 78.3 dB (10/30/2012 2:26:45 PM) 80.0 dB (10/30/2012 2:26:45 PM) 107.7 dB (10/30/2012 4:37:28 PM) 107.7 dB (10/30/2012 4:37:28 PM) 79.5 dB (10/30/2012 5:02:26 PM) LAmax with Time 80.2 dB (11/12/2012 9:54:14 AM) 92.7 dB (11/12/2012 11:16:43 AM) 103.3 dB (11/12/2012 11:59:47 AM) 94.7 dB (11/12/2012 1:55:03 PM) 80.6 dB (11/12/2012 3:05:49 PM)	51.0 dB (10/29/2012 6:07:23 PM) LAmin with Time 45.1 dB (10/30/2012 9:17:09 AM) 45.5 dB (10/30/2012 10:20:30 AM) 46.4 dB (10/30/2012 11:58:39 AM) 46.2 dB (10/30/2012 12:52:50 PM) 46.2 dB (10/30/2012 12:25:30 PM) 47.2 dB (10/30/2012 2:28:39 PM) 47.2 dB (10/30/2012 3:28:46 PM) 46.5 dB (10/30/2012 3:59:32 PM) 47.1 dB (10/30/2012 3:59:32 PM) 47.1 dB (10/30/2012 4:56:55 PM) LAmin with Time 41.9 dB (11/12/2012 10:26:48 AM) 41.3 dB (11/12/2012 10:26:48 AM) 46.6 dB (11/12/2012 11:35:54 AM) 46.0 dB (11/12/2012 12:46:17 PM) 49.0 dB (11/12/2012 12:46:44 PM) 50.6 dB (11/12/2012 12:854 PM)	80.0 dB LCeq 71.3 dB 72.3 dB 74.0 dB 72.7 dB 74.3 dB 70.9 dB 75.2 dB 73.3 dB 74.7 dB 74.1 dB 75.8 dB 79.7 dB 77.9 dB 77.9 dB 77.9 dB	8.6 dB LCeq-LAeq 14.2 dB 14.7 dB 5.1 dB 12.5 dB 14.3 dB 12.7 dB 15.4 dB 14.2 dB 14.2 dB LCeq-LAeq 10.8 dB 10.5 dB 7.3 dB 10.6 dB 10.7 dB 11.4 dB	10/29/2012 18:11 End Date & Time 10/30/2012 10:16 10/30/2012 11:16 10/30/2012 12:17 10/30/2012 13:17 10/30/2012 15:17 10/30/2012 15:14 10/30/2012 15:44 10/30/2012 15:44 10/30/2012 17:24 End Date & Time 11/12/2012 10:27 11/12/2012 12:17 11/12/2012 13:16 11/12/2012 15:17 11/12/2012 15:17	10/29/2012 17:12 Calibration (Before) Date 10/30/2012 9:16 10/30/2012 9:16 10/30/2012 9:16 10/30/2012 9:16 10/30/2012 9:16 10/30/2012 9:16 10/30/2012 15:46 10/30/2012 15:46 Calibration (Before) Date 11/12/2012 9:27 11/12/2012 9:27 11/12/2012 9:27 11/12/2012 12:16 11/12/2012 12:16	114.0 dB Calibration (Before) SPL 114.0 dB 114.0 dB	10/29/2012 18:11 Calibration (After) Date 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 17:24 Calibration (After) Date 11/12/2012 12:16 11/12/2012 12:16 11/12/2012 12:16 11/12/2012 17:36 11/12/2012 17:36 11/12/2012 17:36	Calibration Drift 0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.7 dB -0.7 dB -0.7 dB -0.7 dB -0.7 dB -0.3 dB 0.3 dB 0.3 dB 0.3 dB -1.3 dB -1.3 dB -1.3 dB
Start Date & Time 10/30/2012 9:16 10/30/2012 10:16 10/30/2012 11:17 10/30/2012 13:17 10/30/2012 13:17 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 16:46 Start Date & Time 11/12/2012 9:27 11/12/2012 11:27 11/12/2012 11:27 11/12/2012 13:17 11/12/2012 14:17 11/12/2012 15:17	Total Time 8:04:58 Duration 1:00:00 1:00:00 1:00:00 1:00:00 1:00:00 1:00:00 0:027:04 1:00:00 0:37:43 Total Time 8:04:47 Duration 1:00:00 0:46:43 1:00:00 1:00:00 1:00:00 1:00:00 1:00:00	Site 7 Notes Site 8 Site 8 Site 8 Site 8 Notes	Daily Avg. 70.7 Laeq (dB) 57.1 57.6 68.9 60.3 60 58.2 59.8 69.2 50aily Avg. 61.4 Laeq (dB) 63.3 65.3 72.4 67.3 67.1 66.5 73.4 70	LAmax with Time 76.8 dB (10/30/2012 9:57:45 AM) 83.3 dB (10/30/2012 10:54:45 AM) 99.3 dB (10/30/2012 10:54:45 AM) 99.3 dB (10/30/2012 11:22:58 AM) 87.0 dB (10/30/2012 11:24:42 PM) 78.3 dB (10/30/2012 2:26:45 PM) 80.0 dB (10/30/2012 3:29:42 PM) 107.7 dB (10/30/2012 3:29:42 PM) 107.7 dB (10/30/2012 3:29:42 PM) 107.7 dB (10/30/2012 3:02:26 PM) 	51.0 dB (10/29/2012 6:07:23 PM) LAmin with Time 45.1 dB (10/30/2012 9:17:09 AM) 45.5 dB (10/30/2012 10:20:30 AM) 46.0 dB (10/30/2012 11:58:39 AM) 46.4 dB (10/30/2012 12:52:50 PM) 46.2 dB (10/30/2012 12:20:30 PM) 47.2 dB (10/30/2012 2:28:39 PM) 47.2 dB (10/30/2012 3:28:46 PM) 46.5 dB (10/30/2012 3:28:46 PM) 47.1 dB (10/30/2012 3:59:32 PM) 47.1 dB (10/30/2012 4:56:55 PM) LAmin with Time 41.9 dB (11/12/2012 10:26:48 AM) 41.3 dB (11/12/2012 10:26:48 AM) 46.6 dB (11/12/2012 11:35:54 AM) 46.6 dB (11/12/2012 12:46:47 PM) 50.6 dB (11/12/2012 12:46:47 PM) 50.6 dB (11/12/2012 12:46:47 PM) 50.6 dB (11/12/2012 12:46:47 PM)	80.0 dB LCeq 71.3 dB 72.3 dB 74.3 dB 74.3 dB 70.9 dB 75.2 dB 73.3 dB 74.3 dB 74.3 dB 74.4 dB 74.4 dB 74.4 dB 74.5 dB 74.7 dB 77.9 dB 77.9 dB 77.9 dB 77.9 dB 77.9 dB	8.6 dB LCeq-LAeq 14.2 dB 14.7 dB 5.1 dB 12.5 dB 14.3 dB 12.7 dB 15.4 dB 4.1 dB 14.2 dB 14.2 dB LCeq-LAeq 10.8 dB 10.5 dB 7.3 dB 10.5 dB 7.3 dB 10.7 dB 11.4 dB 5.6 dB	10/29/2012 18:11 End Date & Time 10/30/2012 10:16 10/30/2012 11:16 10/30/2012 13:17 10/30/2012 13:17 10/30/2012 15:17 10/30/2012 15:14 10/30/2012 15:44 10/30/2012 15:44 10/30/2012 17:24 End Date & Time 11/12/2012 10:27 11/12/2012 12:14 11/12/2012 13:17 11/12/2012 15:17 11/12/2012 15:17	10/29/2012 17:12 Calibration (Before) Date 10/30/2012 9:16 10/30/2012 9:16 10/30/2012 9:16 10/30/2012 9:16 10/30/2012 9:16 10/30/2012 9:16 10/30/2012 15:46 10/30/2012 15:46 Calibration (Before) Date 11/12/2012 9:27 11/12/2012 9:27 11/12/2012 9:27 11/12/2012 9:27 11/12/2012 12:16 11/12/2012 12:16	114.0 dB Calibration (Before) SPL 114.0 dB 114.0 dB	10/29/2012 18:11 Calibration (After) Date 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 17:24 Calibration (After) Date 11/12/2012 12:16 11/12/2012 12:16 11/12/2012 17:36 11/12/2012 17:36 11/12/2012 17:36 11/12/2012 17:36	Calibration Drift 0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB -0.7 dB -0.7 dB -0.7 dB -0.7 dB -0.7 dB -0.3 dB 0.3 dB 0.3 dB -1.3 dB -1.3 dB -1.3 dB -1.3 dB -1.3 dB
Start Date & Time 10/30/2012 9:16 10/30/2012 10:16 10/30/2012 11:17 10/30/2012 13:17 10/30/2012 13:17 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 12:16 11/12/2012 9:27 11/12/2012 11:27 11/12/2012 11:27 11/12/2012 14:17 11/12/2012 15:17 11/12/2012 15	Total Time 8:04:58 Duration 1:00:00 1:00:00 1:00:00 1:00:00 1:00:00 1:00:00 0:27:04 1:00:00 0:37:43 Total Time 8:04:47 Duration 1:00:00 0:46:43 1:00:00 1:00:00 1:00:00 1:00:00 1:00:00 1:00:00 1:00:00 1:00:00	Site 7 Notes Site 8 Site 8 Site 8 Site 8 Notes	Daily Avg. 70.7 Laeq (dB) 57.1 57.6 68.9 60.3 60 58.2 59.8 69.2 50aily Avg. 61.4 Laeq (dB) 63.3 65.3 72.4 67.3 67.1 66.5 73.4 70	LAmax with Time 76.8 dB (10/30/2012 9:57:45 AM) 99.3 dB (10/30/2012 10:54:45 AM) 99.3 dB (10/30/2012 11:22:58 AM) 87.0 dB (10/30/2012 11:22:58 AM) 80.7 dB (10/30/2012 11:24:42 PM) 78.3 dB (10/30/2012 2:26:45 PM) 80.0 dB (10/30/2012 3:29:42 PM) 107.7 dB (10/30/2012 3:29:42 PM) 107.7 dB (10/30/2012 3:29:42 PM) 107.7 dB (10/30/2012 3:29:42 PM) 107.7 dB (11/2/2012 4:37:28 PM) 79.5 dB (10/30/2012 5:02:26 PM) LAmax with Time 80.2 dB (11/12/2012 9:54:14 AM) 92.7 dB (11/12/2012 11:16:43 AM) 103.3 dB (11/12/2012 11:59:47 AM) 94.7 dB (11/12/2012 11:55:49 PM) 80.6 dB (11/12/2012 3:55:49 PM) 105.4 dB (11/12/2012 3:27:19 PM) 90.9 dB (11/12/2012 4:44:18 PM)	51.0 dB (10/29/2012 6:07:23 PM) LAmin with Time 45.1 dB (10/30/2012 9:17:09 AM) 45.5 dB (10/30/2012 10:20:30 AM) 46.0 dB (10/30/2012 10:20:30 AM) 46.4 dB (10/30/2012 11:58:39 AM) 46.4 dB (10/30/2012 12:52:50 PM) 46.2 dB (10/30/2012 2:28:39 PM) 47.2 dB (10/30/2012 3:28:46 PM) 46.5 dB (10/30/2012 3:28:46 PM) 47.1 dB (10/30/2012 3:59:32 PM) 47.1 dB (10/30/2012 4:56:55 PM) LAmin with Time 41.9 dB (11/12/2012 10:26:48 AM) 41.3 dB (11/12/2012 10:26:48 AM) 46.0 dB (11/12/2012 11:35:54 AM) 46.0 dB (11/12/2012 12:46:17 PM) 49.0 dB (11/12/2012 12:46:44 PM) 50.6 dB (11/12/2012 12:44:59 PM) 52.3 dB (11/12/2012 3:44:53 PM) 53.3 dB (11/12/2012 4:23:17 PM)	80.0 dB LCeq 71.3 dB 72.3 dB 74.0 dB 72.7 dB 74.3 dB 75.2 dB 73.3 dB 74.7 dB 75.2 dB 73.3 dB 74.7 dB 75.8 dB 79.7 dB 77.9 dB 77.9 dB 77.9 dB 77.9 dB 81.9 dB	8.6 dB LCeq-LAeq 14.2 dB 14.7 dB 5.1 dB 12.5 dB 14.3 dB 12.7 dB 15.4 dB 4.1 dB 14.2 dB 14.2 dB LCeq-LAeq 10.8 dB 10.5 dB 10.5 dB 10.6 dB 10.7 dB 11.4 dB 5.6 dB 11.9 dB	10/29/2012 18:11 End Date & Time 10/30/2012 10:16 10/30/2012 11:16 10/30/2012 12:17 10/30/2012 13:17 10/30/2012 13:17 10/30/2012 15:14 10/30/2012 15:44 10/30/2012 15:44 10/30/2012 15:44 10/30/2012 17:24 End Date & Time 11/12/2012 10:27 11/12/2012 13:16 11/12/2012 13:17 11/12/2012 15:17 11/12/2012 15:17 11/12/2012 15:17 11/12/2012 17:17	10/29/2012 17:12 Calibration (Before) Date 10/30/2012 9:16 10/30/2012 9:16 10/30/2012 9:16 10/30/2012 9:16 10/30/2012 9:16 10/30/2012 9:16 10/30/2012 15:46 10/30/2012 15:46 Calibration (Before) Date 11/12/2012 9:27 11/12/2012 9:27 11/12/2012 9:27 11/12/2012 12:16 11/12/2012 12:16 11/12/2012 12:16 11/12/2012 12:16	114.0 dB Calibration (Before) SPL 114.0 dB 114.0 dB	10/29/2012 18:11 Calibration (After) Date 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:44 10/30/2012 17:24 10/30/2012 17:24 Calibration (After) Date 11/12/2012 12:16 11/12/2012 12:16 11/12/2012 17:36 11/12/2012 17:36 11/12/2012 17:36 11/12/2012 17:36 11/12/2012 17:36 11/12/2012 17:36	Calibration Drift 0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB -0.7 dB -0.7 dB -0.7 dB -0.7 dB -0.7 dB -0.3 dB 0.3 dB 0.3 dB -1.3 dB -1.3 dB -1.3 dB -1.3 dB
Start Date & Time 10/30/2012 9:16 10/30/2012 10:16 10/30/2012 11:17 10/30/2012 13:17 10/30/2012 13:17 10/30/2012 15:17 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 12:16 10/30/2012 12:21 11/12/2012 9:27 11/12/2012 11:27 11/12/2012 12:16 11/12/2012 14:17 11/12/2012 15:17 11/12/2012 15	Total Time 8:04:58 Duration 1:00:00 1:00:00 1:00:00 1:00:00 1:00:00 1:00:00 0:00:00 1:00:00 0:37:43 Total Time 8:04:47 Duration 1:00:00 0:04:43 1:00:00 1:00:00 1:00:00 1:00:00 1:00:00 1:00:00 0:00:00 1:00:00 0:00:00	Site 7 Notes Site 8 Site 8 Site 8 Site 8 Site 9 Site 9	Daily Avg. 70.7 Laeq (dB) 57.1 57.6 68.9 60.3 60 58.2 59.8 69.2 60.5 Daily Avg. 61.4 Laeq (dB) 63.3 65.3 72.4 67.3 67.1 66.5 73.4 70 69.6	LAmax with Time 76.8 dB (10/30/2012 9:57:45 AM) 83.3 dB (10/30/2012 10:54:45 AM) 99.3 dB (10/30/2012 11:22:58 AM) 87.0 dB (10/30/2012 11:22:58 AM) 80.7 dB (10/30/2012 12:26:45 PM) 80.0 dB (10/30/2012 2:26:45 PM) 80.0 dB (10/30/2012 3:29:42 PM) 107.7 dB (10/30/2012 4:37:28 PM) 79.5 dB (10/30/2012 5:02:26 PM) 20.7 dB (10/30/2012 5:02:26 PM) 20.7 dB (11/12/2012 9:54:14 AM) 92.7 dB (11/12/2012 11:16:43 AM) 103.3 dB (11/12/2012 11:15:03 PM) 82.7 dB (11/12/2012 11:50:37 PM) 82.7 dB (11/12/2012 11:50:37 PM) 82.7 dB (11/12/2012 3:05:49 PM) 105.4 dB (11/12/2012 3:27:19 PM) 90.9 dB (11/12/2012 4:44:18 PM) 82.3 dB (11/12/2012 5:25:45 PM)	51.0 dB (10/29/2012 6:07:23 PM) LAmin with Time 45.1 dB (10/30/2012 9:17:09 AM) 45.5 dB (10/30/2012 10:20:30 AM) 46.0 dB (10/30/2012 10:20:30 AM) 46.4 dB (10/30/2012 11:58:39 AM) 46.4 dB (10/30/2012 12:52:50 PM) 46.2 dB (10/30/2012 2:28:39 PM) 47.2 dB (10/30/2012 3:28:46 PM) 46.5 dB (10/30/2012 3:28:46 PM) 47.1 dB (10/30/2012 3:59:32 PM) 47.1 dB (10/30/2012 4:56:55 PM) LAmin with Time 41.9 dB (11/12/2012 10:26:48 AM) 41.3 dB (11/12/2012 10:26:48 AM) 46.0 dB (11/12/2012 11:35:54 AM) 46.0 dB (11/12/2012 12:46:17 PM) 49.0 dB (11/12/2012 12:46:44 PM) 50.6 dB (11/12/2012 12:44:59 PM) 52.3 dB (11/12/2012 3:44:53 PM) 53.3 dB (11/12/2012 4:23:17 PM)	80.0 dB LCeq 71.3 dB 72.3 dB 74.0 dB 72.7 dB 74.3 dB 75.2 dB 73.3 dB 74.7 dB 75.2 dB 73.3 dB 74.7 dB 75.8 dB 79.7 dB 77.9 dB 77.9 dB 77.9 dB 77.9 dB 81.9 dB	8.6 dB LCeq-LAeq 14.2 dB 14.7 dB 5.1 dB 12.5 dB 14.3 dB 12.7 dB 15.4 dB 4.1 dB 14.2 dB 14.2 dB LCeq-LAeq 10.8 dB 10.5 dB 10.5 dB 10.6 dB 10.7 dB 11.4 dB 5.6 dB 11.9 dB	10/29/2012 18:11 End Date & Time 10/30/2012 10:16 10/30/2012 11:16 10/30/2012 12:17 10/30/2012 13:17 10/30/2012 13:17 10/30/2012 15:14 10/30/2012 15:44 10/30/2012 15:44 10/30/2012 15:44 10/30/2012 17:24 End Date & Time 11/12/2012 10:27 11/12/2012 13:16 11/12/2012 13:17 11/12/2012 15:17 11/12/2012 15:17 11/12/2012 15:17 11/12/2012 17:17	10/29/2012 17:12 Calibration (Before) Date 10/30/2012 9:16 10/30/2012 9:16 10/30/2012 9:16 10/30/2012 9:16 10/30/2012 9:16 10/30/2012 9:16 10/30/2012 15:46 10/30/2012 15:46 Calibration (Before) Date 11/12/2012 9:27 11/12/2012 9:27 11/12/2012 9:27 11/12/2012 12:16 11/12/2012 12:16 11/12/2012 12:16 11/12/2012 12:16	114.0 dB Calibration (Before) SPL 114.0 dB 114.0 dB	10/29/2012 18:11 Calibration (After) Date 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:46 10/30/2012 15:44 10/30/2012 17:24 10/30/2012 17:24 Calibration (After) Date 11/12/2012 12:16 11/12/2012 12:16 11/12/2012 17:36 11/12/2012 17:36 11/12/2012 17:36 11/12/2012 17:36 11/12/2012 17:36 11/12/2012 17:36	Calibration Drift 0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.7 dB -0.7 dB -0.7 dB -0.7 dB -0.7 dB -0.7 dB -0.3 dB 0.3 dB 0.3 dB 0.3 dB -1.3 dB -1.3 dB -1.3 dB -1.3 dB

									Calibration (Before)	Calibration	Calibration (After)	Calibration
Start Date & Time	Duration	Notes	Laeq (dB)	LAmax with Time	LAmin with Time	LCeq	LCeq-LAeq	End Date & Time	Date	(Before) SPL	Date	Drift
11/5/2012 10:19	1:00:00	Site 10	65.4	86.7 dB (11/5/2012 10:25:16 AM)	43.4 dB (11/5/2012 10:20:33 AM)	76.4 dB	11.0 dB	11/5/2012 11:19	11/5/2012 10:19	114.0 dB	11/5/2012 13:54	10.5 dB
11/5/2012 11:19	1:00:00		68.1	96.0 dB (11/5/2012 11:50:37 AM)	46.5 dB (11/5/2012 11:29:19 AM)	78.5 dB	10.4 dB	11/5/2012 12:19	11/5/2012 10:19	114.0 dB	11/5/2012 13:54	10.5 dB
11/5/2012 12:19	1:00:00		67.2	88.2 dB (11/5/2012 12:47:53 PM)	48.9 dB (11/5/2012 12:34:22 PM)	78.9 dB	11.8 dB	11/5/2012 13:19	11/5/2012 10:19	114.0 dB	11/5/2012 13:54	10.5 dB
11/5/2012 13:19	0:34:14		68.7	93.0 dB (11/5/2012 1:44:15 PM)	44.1 dB (11/5/2012 1:36:54 PM)	81.2 dB	12.5 dB	11/5/2012 13:53	11/5/2012 10:19	114.0 dB	11/5/2012 13:54	10.5 dB
11/8/2012 13:24	1:00:00		68.9	83.7 dB (11/8/2012 1:50:20 PM)	52.6 dB (11/8/2012 2:10:12 PM)	81.5 dB	12.6 dB	11/8/2012 14:24	11/8/2012 13:21	114.0 dB	11/8/2012 17:56	5-0.2 dB
11/8/2012 14:24	1:00:00		70	87.7 dB (11/8/2012 2:53:46 PM)	53.6 dB (11/8/2012 3:17:00 PM)	81.3 dB	11.3 dB	11/8/2012 15:24			11/8/2012 17:56	-0.2 dB
11/8/2012 15:24	1:00:00		71.2	92.0 dB (11/8/2012 4:07:17 PM)	52.2 dB (11/8/2012 3:30:34 PM)	80.9 dB	9.7 dB	11/8/2012 16:24	11/8/2012 13:21	114.0 dB	11/8/2012 17:56	5-0.2 dB
11/8/2012 16:24	1:00:00		73.9	102.9 dB (11/8/2012 5:15:05 PM)	52.1 dB (11/8/2012 4:37:28 PM)	81.5 dB	7.6 dB	11/8/2012 17:24	11/8/2012 13:21	114.0 dB	11/8/2012 17:56	5-0.2 dB
11/8/2012 17:24	0:30:56			89.7 dB (11/8/2012 5:29:52 PM)	52.6 dB (11/8/2012 5:54:12 PM)	81.5 dB	10.2 dB	11/8/2012 17:55	11/8/2012 13:21	114.0 dB	11/8/2012 17:56	5-0.2 dB
	Total Time	Site 10	Daily Avg.									
	8:05:10	Site 10	69.3									
Start Date & Time	Duration	Notes	Laeq (dB)	LAmax with Time	LAmin with Time	LCeq	LCeq-LAeq			Calibration (Before) SPL	Calibration (After) Date	Calibration Drift
10/17/2012 9:22	1:00:00	Site 11	69.7	100.4 dB (10/17/2012 9:32:26 AM)	45.8 dB (10/17/2012 9:30:44 AM)	78.8 dB	9.1 dB	10/17/2012 10:22	10/17/2012 9:21	4440 JD		50.4 dB
10/17/2012 10:23	1 00 00							10/1//2012 10/22	10/1//2012 9.21	114.0 dB	10/17/2012 16:45	
	1:00:00			87.9 dB (10/17/2012 11:12:38 AM)	46.9 dB (10/17/2012 10:51:46 AM)		12.3 dB	10/17/2012 11:23			10/17/2012 16:45	
10/17/2012 11:29	1:00:00		66.1		46.9 dB (10/17/2012 10:51:46 AM) 48.3 dB (10/17/2012 11:37:27 AM)	78.4 dB			10/17/2012 9:21	114.0 dB		50.4 dB
10/17/2012 11:29 10/17/2012 12:30			66.1 66.7	87.9 dB (10/17/2012 11:12:38 AM)	48.3 dB (10/17/2012 11:37:27 AM)	78.4 dB	12.3 dB	10/17/2012 11:23	10/17/2012 9:21 10/17/2012 9:21	114.0 dB 114.0 dB	10/17/2012 16:45	5 0.4 dB 5 0.4 dB
	1:00:00		66.1 66.7 67.5	87.9 dB (10/17/2012 11:12:38 AM) 90.1 dB (10/17/2012 12:01:02 PM)	48.3 dB (10/17/2012 11:37:27 AM)	78.4 dB 79.7 dB	12.3 dB 13.0 dB	10/17/2012 11:23 10/17/2012 12:29	10/17/2012 9:21 10/17/2012 9:21	114.0 dB 114.0 dB 114.0 dB	10/17/2012 16:45 10/17/2012 16:45	0.4 dB 0.4 dB 0.4 dB
10/17/2012 12:30	1:00:00 1:00:00		66.1 66.7 67.5 67	87.9 dB (10/17/2012 11:12:38 AM) 90.1 dB (10/17/2012 12:01:02 PM) 91.1 dB (10/17/2012 1:13:46 PM)	48.3 dB (10/17/2012 11:37:27 AM) 48.8 dB (10/17/2012 1:29:20 PM) 47.2 dB (10/17/2012 1:52:41 PM)	78.4 dB 79.7 dB 78.1 dB	12.3 dB 13.0 dB 10.6 dB	10/17/2012 11:23 10/17/2012 12:29 10/17/2012 13:30	10/17/2012 9:21 10/17/2012 9:21 10/17/2012 9:21	114.0 dB 114.0 dB 114.0 dB 114.0 dB	10/17/2012 16:45 10/17/2012 16:45 10/17/2012 16:45	0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB
10/17/2012 12:30 10/17/2012 13:31	1:00:00 1:00:00 1:00:00		66.1 66.7 67.5 67 66.3	87.9 dB (10/17/2012 11:12:38 AM) 90.1 dB (10/17/2012 12:01:02 PM) 91.1 dB (10/17/2012 1:13:46 PM) 90.6 dB (10/17/2012 1:41:32 PM)	48.3 dB (10/17/2012 11:37:27 AM) 48.8 dB (10/17/2012 1:29:20 PM) 47.2 dB (10/17/2012 1:52:41 PM) 48.4 dB (10/17/2012 2:48:23 PM)	78.4 dB 79.7 dB 78.1 dB 78.5 dB	12.3 dB 13.0 dB 10.6 dB 11.5 dB	10/17/2012 11:23 10/17/2012 12:29 10/17/2012 13:30 10/17/2012 14:31	10/17/2012 9:21 10/17/2012 9:21 10/17/2012 9:21 10/17/2012 9:21 10/17/2012 9:21	114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB	10/17/2012 16:45 10/17/2012 16:45 10/17/2012 16:45 10/17/2012 16:45	0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB
10/17/2012 12:30 10/17/2012 13:31 10/17/2012 14:31	1:00:00 1:00:00 1:00:00 1:00:00		66.1 66.7 67.5 67 66.3 67.5	87.9 dB (10/17/2012 11:12:38 AM) 90.1 dB (10/17/2012 12:01:02 PM) 91.1 dB (10/17/2012 1:13:46 PM) 90.6 dB (10/17/2012 1:41:32 PM) 85.5 dB (10/17/2012 2:53:18 PM)	48.3 dB (10/17/2012 11:37:27 AM) 48.8 dB (10/17/2012 1:29:20 PM) 47.2 dB (10/17/2012 1:52:41 PM) 48.4 dB (10/17/2012 2:48:23 PM)	78.4 dB 79.7 dB 78.1 dB 78.5 dB 77.9 dB	12.3 dB 13.0 dB 10.6 dB 11.5 dB 11.6 dB	10/17/2012 11:23 10/17/2012 12:29 10/17/2012 13:30 10/17/2012 14:31 10/17/2012 15:31	10/17/2012 9:21 10/17/2012 9:21 10/17/2012 9:21 10/17/2012 9:21 10/17/2012 9:21 10/17/2012 9:21	114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB	10/17/2012 16:45 10/17/2012 16:45 10/17/2012 16:45 10/17/2012 16:45 10/17/2012 16:45	0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB
10/17/2012 12:30 10/17/2012 13:31 10/17/2012 14:31 10/17/2012 15:31	1:00:00 1:00:00 1:00:00 1:00:00 1:00:00		66.1 66.7 67.5 67 66.3 67.5 68.5	87.9 dB (10/17/2012 11:12:38 AM) 90.1 dB (10/17/2012 12:01:02 PM) 91.1 dB (10/17/2012 1:13:46 PM) 90.6 dB (10/17/2012 1:41:32 PM) 85.5 dB (10/17/2012 2:53:18 PM) 88.4 dB (10/17/2012 4:03:16 PM)	48.3 dB (10/17/2012 11:37:27 AM) 48.8 dB (10/17/2012 1:29:20 PM) 47.2 dB (10/17/2012 1:52:41 PM) 48.4 dB (10/17/2012 2:48:23 PM) 48.7 dB (10/17/2012 3:54:56 PM)	78.4 dB 79.7 dB 78.1 dB 78.5 dB 77.9 dB 79.0 dB	12.3 dB 13.0 dB 10.6 dB 11.5 dB 11.6 dB 11.5 dB	10/17/2012 11:23 10/17/2012 12:29 10/17/2012 13:30 10/17/2012 14:31 10/17/2012 15:31 10/17/2012 16:31	10/17/2012 9:21 10/17/2012 9:21 10/17/2012 9:21 10/17/2012 9:21 10/17/2012 9:21 10/17/2012 9:21	114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB	10/17/2012 16:45 10/17/2012 16:45 10/17/2012 16:45 10/17/2012 16:45 10/17/2012 16:45 10/17/2012 16:45	0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB
10/17/2012 12:30 10/17/2012 13:31 10/17/2012 14:31 10/17/2012 15:31 10/17/2012 16:31	1:00:00 1:00:00 1:00:00 1:00:00 1:00:00 0:11:15	Site 11	66.1 66.7 67.5 67 66.3 67.5 68.5	87.9 dB (10/17/2012 11:12:38 AM) 90.1 dB (10/17/2012 12:01:02 PM) 91.1 dB (10/17/2012 11:33:46 PM) 90.6 dB (10/17/2012 11:41:32 PM) 85.5 dB (10/17/2012 21:33:18 PM) 88.4 dB (10/17/2012 41:33:16 PM) 83.2 dB (10/17/2012 41:34:39 PM)	48.3 dB (10/17/2012 11:37:27 AM) 48.8 dB (10/17/2012 1:29:20 PM) 47.2 dB (10/17/2012 1:52:41 PM) 48.4 dB (10/17/2012 2:48:23 PM) 48.7 dB (10/17/2012 3:54:56 PM) 50.0 dB (10/17/2012 4:42:42 PM)	78.4 dB 79.7 dB 78.1 dB 78.5 dB 77.9 dB 79.0 dB 79.6 dB	12.3 dB 13.0 dB 10.6 dB 11.5 dB 11.6 dB 11.5 dB 11.1 dB	10/17/2012 11:23 10/17/2012 12:29 10/17/2012 13:30 10/17/2012 14:31 10/17/2012 15:31 10/17/2012 16:31 10/17/2012 16:42	10/17/2012 9:21 10/17/2012 9:21 10/17/2012 9:21 10/17/2012 9:21 10/17/2012 9:21 10/17/2012 9:21 10/17/2012 9:21	114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB 114.0 dB	10/17/2012 16:45 10/17/2012 16:45 10/17/2012 16:45 10/17/2012 16:45 10/17/2012 16:45 10/17/2012 16:45 10/17/2012 16:45	0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB

SCA-LA ENVIRONMENTAL, INC.

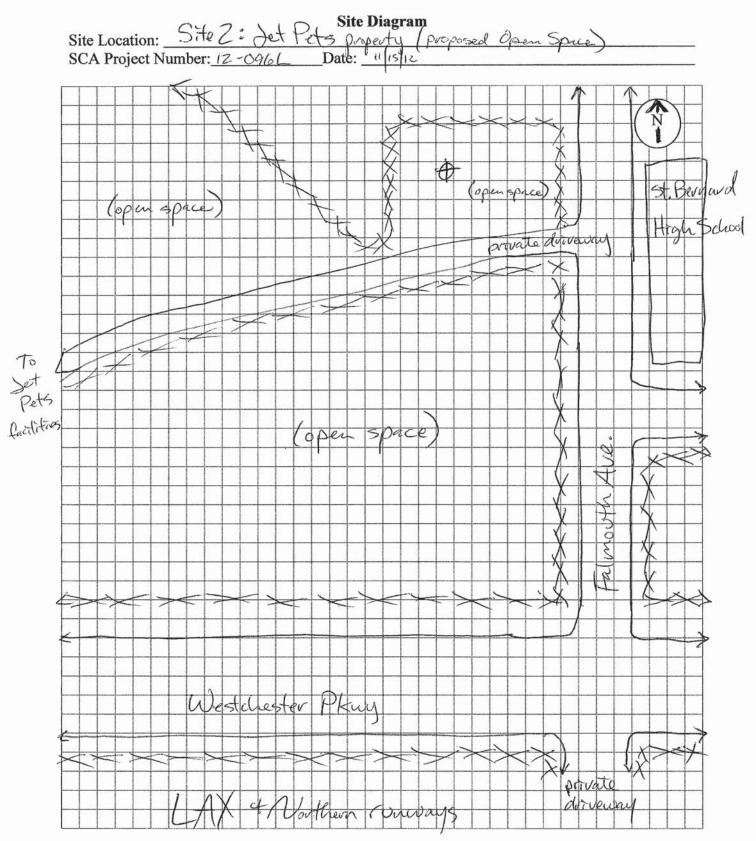
Site Diagram

CA Proj	ect Nu	imber	#/:88 r:	76L	-	Dat	te: _	10	16	12	-			_	-	_	-	_
				1 1			-	-	-	_	-	_	1 1	TT		1 1	-	_
										-	-						Th	5
		-1				+				-	-					++(N	}
	T					++			-	-	-		+ +	++			1	1
		11		1		1	-			-			++-				_	_
_		1			-	+		3		-	-					++	-	-
			R		-	1.		>	-		-						_	
		_	8	M	ani	106	25	5										_
	-				-	+	7	1_		_								
	Ĩ			-		1	11			_								
		1			4	1	1										_	
	4	1						-		->	1							
	1					T												
	[]					ľ												
	4						P	laya										
			6					Ŋ										
	1		136					Seri	ana	4	pt.							
			12			1					1					11		
			Speed (mit				18	828	Pau	shin	D	2						
	1	1	red		Ð	1	C	000	100		2	1.1				11		
aterrie	, Gt	-	(35)		Y	1							++			++	-	
CITY VICE	~ ~.	5		1		1	-	-	-	⇒ –	-					+	-	
				1		-			+		+							
AX	4	XV			X	×	×	X		<	*					-		
		Ŕ			+		-	-	-		+			+				
		-6-	C		$\left(+ \right)$		-		-	-	+		+					
1110		6	A	1	\leftarrow		-				-		++			+		
batter-fl	4	X		-		1					-		++			+++		-
pres	erve	X	2	-	1	10	pe	~ \$f	macion and a second	5			++			1		
		JX_	Peashit		$\left\{ + \right\}$	_	-							+ +	_			
		X	Š														_	
		K	4		N												_	
		V		1 S	(_	
		1)	4	1	-		1	-								
		X				~		~	1	Y								
		X		N					1									
		X	a						2									
		V			W	. W	rest	ches	fer	PK	wa							
			0						5		11		1					

	Name: 24	rah Woodard		Project Nu Project Na		12-096L A Northside Noise Mon	itoring
		: 8828 Perstring Dr.					
Time	Type of Reading	Perstring De + Waterrieu Source(s)	Distance from Source	Sampler Direction of from- Source	ey Herght: Wind Speed & Direction	N 5-H. Additional Weather Conditions	Comments
1:50	Califoration	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	Couroo	Couroo			- (not recorded)
10:07	~77	jet taking off (w)	13000-ft.	5	0.0	73.0°, 30,1%	
6:09	~77	1 100	2000A.	S	1	-	WOTE: Wind is minin
0:14	280	large truck (N)	nist.	w	-	-	and swirling; meter
10:16	280	SW jet TO (W)	~2000A.	5	-		wind speed Autostes
0:17	285	traffic (N)	15-25.44.	W	-	-	passing trattic.
0:22	~77	traffic (N)	~15ft.	W	-	-	
0:35	77.0	jet TO (w)	22000-	S	-	-	
10:40	78.7	int TO (w)	1 3000A	1	-		
10:42	79.6	set TO (W)			-	-	
10:45	78.8	o l		1	-	-	
10:46	79.8	modified rav (N)	~15A.	W	-	-	
0:50	78.2	jet TO (w)	22000	5	-		
10:51	77.4	0 1	\downarrow	X	-	-	
10:59	81.1	jet TO(W) Y Van(N)	2000/2014	5/w	-		
11:03	79.6	jet 70 (w)	n 2000-ft	5	-	-	
11:04	76.6	0			-	-	
11:08	78.7	1	V		-	-	
11:26	280	jet TO (W) + firstrucked	2000/30	S/W	11/ Swilling	78.0°, 36.5%	WOTE No Strang
11:40	82.5	jet TO (W)	~2000	S	0.0	80.40, 38.5%	
11:53	77.1		1	5	-	-	
11:55		Cars (N,S)	15-80-A	W	-		1. Commence
11:56	78.3	yet 70 (w)	~2000	S	1.2 mph (NE) 79.2° 37.7%	
11:58	85.4	garbage truck (N)	NIS	W	-	-	
11:59	78.5	jet TO (W) + Cars(N)	2000/15-3	0 5/W	-	-	
12:00	84.4	motorcycle (3) + cars(N)	15-804		-	-	A
12:01	78.3	jet TO (w)	n 2000-94	5	-	-	
12:03	79.7	Cars (N)	~15A.	W	-	-	
12:12	78.6	jet 70 (w)	~2000A.	5	-	~	
12:13	79.0	iet TO (w) + ravs (N)	2000/15	5/w	-		

Shed lof 4

	Date: $(o i$	avah Woodavd		Project Nu Project Na		12-096L A Northside Noise Moni	itoring
		: 8828 Pershing Dr.	10				
Time	Type of Reading	Pershing Dr. V Watervi Source(s)	Distance from Source	Direction of from Source	Wind Speed & Direction	Additional Weather Conditions	Comments
2:14	80.6	jet TO (w)	~20004.	5	(L		
2:15	80.6	Sw jet TO (W)	V		-	-	
2:18	77.8	jet TO (W)	n 3000AT.		-	-	
2:19	83.3	SW jet TO (W)	~ 1500.44.		~	1	
2:22	81.4	jet TO(w)	22000	V	1.4mph (SE)	75.10,60.8%	
2:24	78.1	garbage truck (5)	n 60ft.	W	-	1	
2:26	86.6	cement fruck (N)	usfi.		ł	1	
12:30	85.9	V	~(5A.		-	I	
2:40	81.3	Cars (N) + jet TO (W)	15-30/200	w/s	1,6 (SE)	74.0°, 64.9%	
2:44	79.3	Jeep (5)	rbott.	W	1	1	
2:47	79.1	jet TO (w)	~ Z000	5	+	1	
1:53	79.2	0 L	J.	5	(.8 (E)	74.40,66.42	
2:57	~80	lavage truck (N)	215	W	-		
1:01	79.1	set TO (w)	2 2000	5	1.9 (E)	74.7°,66.920	
1:04	83.9	SW jet TO (w)	~1500	5	2.3 Surling	72.20, 69.22	
:14	82.6	Ì	1		- /	-	
1:15	81.6			2	[1] Swithman	75.2°, 68.0%	
:18	Calibrat	on			,		passed
:23	82.1	jet TO (w)	~2000.44.	5	2.3	74.4° 70.5%	NOTE: Increasing mar
:26	85.8	0	~15004.	1	-	-	layer.
:30	80.2		L		-		
:32	185	motorcycle (5)	260ft.	W	-	-	
1:34	84.1	jet TO (W)	~1500ft.	5	3.8(5)	71.10,76.28, 29.	79 m Hay
1:39	86.5	old car (N)	~15ft.	W	-		NOTE: Due to marme layer
:44	81.9	unseen jet to (w)	NIA	5	~	-	most jets are not visible at the site.
1:51	79.9	0	1-1	1	0.5(5)	72.70 70.9%	James and the second second
1:55	83.0			\downarrow	-	-	
2:06	84.9	unseen it TO (w) + caus	U)+15A	5/W	Jelemph (5)	73.0°, 72.420	
2:09	81.4	vuseen jet TO (W)	NA	3	-	-	
2:10	80.1	J.	L	1	5.3	68.6,76.320	


Sheet 2014

ampling [116/12		Project Na	me: LAW	A Northside Noise Mon	itoring
sampling S	Site: SHel	: 8828 Pershing Dr.					
Time	Type of Reading	(Pershing Dr. + Watervin Source(s)	Distance from Source	Direction from Source	Wind Speed & Direction	Additional Weather Conditions	Comments
2:20	79.7	jet TO (w)	~2000ft.	S	-	-	
2:21	80.1	0 1	ł	5	0.9	73.30, 69.8%	
2:23	81.2	sports car (5)	~ 60ft.	W	-	-	
2:26	81.5	unseen jet To(W)	NIA	5	1	-	
2:29	80.3	jet TO (w)	12000	S	-	-	
2:31	85.1	° J	~ 2000	5	-	-	
2:40	78.0	Cave (N)	~15-30ft	W	2.2	72.40, 74,0%	
2:41	79.9	fruck (N)	nisft.	W	-	-	
2:45	79.0	V	1154.	w	-	-	
2:46	81.4	old car (N)	~ 30ft.	W	3.0	70.30, 77.6%	
2:58	78.5	motorcycle (5)	260A.	W	1.8	72.8 73.120	
3:01	79.8	unseen jet to(w)+cars/A) ~15H+	3/W	-	-	
3:06	81.2	lauge fruck (N)	~15-30ft.	W	-	-	
3:07	84.7		1	1	1.2	73.90, 67.420	
3:13	79.8	L L			-	- '	
3:16	78.8	unseen jet 70 (w) tras/N	+15ff.	s/w	1.8	75.5° 64.0%	
3:22	79.5	CAVE (NJS)	~15-80H.	W		-	
3:23	79,9	unseen jet TO(w)	NA	5	0.0	74.5° 66.2%	
3:28	81.3	unseen jet 70 (w) 4 cars	+154.	s/w	-	-	
3:41	78.9	, l	J	s/w	1,2(5)	74.90, 59.5%	
3:42	79.7	unseen jet TO (W)	NA	S	-	-	1
3:47	80.8	jet to (w) + caus (N)	2000/15-30	slu	-	-	[NOTE:] Decreasing clouds,
3:57	78.8				0.0	75.8°, 57.3%	shifting south; sunny as
4:01	78.1	V			-	-	
4:06	77.1	1	V		1.3	75.70,55.4%	
4:08	78.2	France jet TO (W)	~2000.14.	S	-	/	
4:16	79.3	jet TO (W) + caus (N,S)	2000/15-80	s/w	1.3	78.50, 52.7%	
4:19	81.3	France jet TO(W)+ cars/N)	2000/15-20	slw	-	1	
4:23	78.8	jet TO (w)	2000A.	5	-	-	
4:28	180	motorcycle (5)	260A.	w	-		

Shet 3 of 4

ampling D	Date: 10	wah Weedavd		Project Nu Project Na		12-096L A Northside Noise Moni	toring
ampling S	Site: Sofe l	· 8828 Pershing Dr.	et s				
Time	Type of Reading	Source(s)		Direction √ from Source	Wind Speed & Direction	Additional Weather Conditions	Comments
4:29	79.3	set TO (W) & cours (N)	2000/15-3	5/W	-	-	
4:33	280	old car (N)	~ 30ft.	W	-	-	5
4:36	79.9	large truck (N)	~15ft.	N	1	-	
4:43	74.6	SW jet TO (W)	21500ft.	5	0.8	79.10, 48,620	
4:46	77.9	SW jet 70(w) + caus (N)	1500/15-30	3/W	-	1	
4:55	78.5	Cars (NIS)	-15-80A.	W	1.0	73.90, 53.4%	
4:59	83.2	ict to (w)	~2000A.	S	1	-	
5:01	79.2	Jet TO(W) + cars(N)	2000/15-30	SIW	1	1	
5:06	79.0	Sports car (S)	260A.	ω	6.3	79.60, 48.8%	Worker Equipment in such
5:11	81.7	jet TO (w)	~2000 ft.	3	-	-	
5:15	79:3	motorcylle (5)	~70-ft.	W	1.3	80.2°, 50.8%	
5:20	77.7	Caus (N,S)	~15-80A.	W	ľ		
5:27	Calibrat	on (batteries died)					- passed
5:29	78.9	Cours (N)	115-304	W	0.8	73.0°, 68.7%	WOTE: Equipment in sh
5:32	79.8	large truck (N)	rist.	W	1	1	
5:35	79.5	ict TO (w) + caus (5)	~2000/40-8	os/w	-	-	
5:36	79.0	Virgin jet TO (w)	~1500	5	-	-	
5:38	81,1	jet TO (W) + old car (N)	2000/15	S/W	-	-	
5:43	79.4	it TO(w)+ caves (N)	2000/15-30	5/w	ł	-	
5:44	81.3	° V	2	slw	1	-	
5:45	83.7	modified car (S)	~60ft.	W	1	-	
5:50	78,9	Caus (NIS)	15-80ft.	w	0.0	71.10,78.1%	
5:52	79.2	cars (N) + jet TO(W)	15A1./2000	w/s	-	-	
5:54	80.1	motorcycle (N)	~15.4.		-	-	
5:56	79.9	truck (N)	230A.	W)		
5:58	83,1	Caus (NIS)	~15-80A.	W	0.8	70.8°, 80.4%	
6:01	76.1	jet TO(W) + cars(N)	2000/15-30	S/W	1.8	70.70,81.0%	
6:04	83.2	motorcycle (5)	170A.	in	-	-	
6:05	Calibra						-pressed > off

	Sampling Sampling	Date: 11 Site: Site Z	15/12 : Jet Pets property (propos	ed open Sp	Project Na		A Northside Noise Moni pling headul: Ne	
	Time	Type of Reading	Source(s)	Distance from Source	Direction of Source	Wind Speed & Direction	Additional Weather Conditions	Comments
2	8:22	Calibra	tion					-passed
- F	8:25	75.8	Artran jet taking off (w)	~1500ft.	S		4	WOTE) (loudy , coo
ſ	8:28	80.4	Canada jet TO (w)	~1500 ft.	Ì	0. Ouple	61.00, 70.320, 30	1
	\$:29	82.5	SW get TO (W)	~1000-ft.		-	· ·	5
	8:33	76.5	Virgin jet To (w)	~1000-ft.		1.4 mph (NW)	59.6, 71.5%	
	8:40	79.6	Delta jet 70 (w)	~ 1500 A.			58.8° 74.120	
Γ	8:42	75.2	jet landing	unknown		0.0	59.6°, 73.52e	
ſ	\$:43	78.6	SW jet TO (W)	~1400 ft.		-	-	
	8:44	84.5	Int'l jet landong (w)	~2000A.		-	1	
Γ	8:46	74.0	United jet TO (w)	~ 1500 ft.		0.0	59.0°, 73.320	
ſ	8:53	72.6	Virgin Jet TO (w)	~1000-ft.		-	<u>,</u>	
ſ	8:56	84.6	HI jet TO (w)	~1000 ft.		-	-	
ſ	8:57	79.0	jet landing (w)	unterrown		2.3 (NW)	58.9° 72.2°20	
	8:58	73.6	SW set TO (w)	~1000ft.			58.9°, 72,0%	
	9:03	84.4	Quantas jet TO (w)	~1000 A.			59.20, 72.22.	
	9:07	79.9	United jet TO (w)	~1500A.		0.0	59,10, 72.6%	
	9:11	81.3	Quentas iet landons	~2000ft.		-		
	9:12	80.4	Delta jet TO (w)	~1000ft.		1.4 (NW)	58.9°, 71.320	
	9:17	80.1	U.S. Arrways jet TO (w)	~1500 ft.		3.9	59.10, 170.5%	LARS: ~66dB
	9:22	79.7	AA jet TO (W)	~1500-ft.		4.8	59.20, 70.370	L
3[9:23	74.9	Swiget TO (W)	~1000 ft.		-	-	
	9:24	78.9	AA jet TO (w)	~1500.ft.		5.0 (NW)	59.4°, 70.0%	
	9:33	80.9	Int' jet Danding (w)	^2000A.	\vee	-	_/	
	9:35	Calibrato	on (battaries died) -					- passed
{[9:36	76.0	Sw jet TO (w)	~1500ft.	S	-	<u> </u>	
	9:37	75.2	Virrigen Jet TO (w)	~1500ff.	1	5.8 (w)	60.5°, 65.9%	
	9:39	77.0	United jet TO int	~1500-ft.		3.3	60.50, 66.3920	
	9:40	80.Ce	USPS jet landing (w)	~1500-ft.		1.7	61.40, 66.120	
	9:43	75.2	AKjet TO (w)	ruscoff.		4,3	(01,3°, 64.1%	
	9:48	75.7	SW jet TO (w)	~1000-A.		4.1	61.5°, 62.7%	
	9:56 10:07	75.9 78.5	SW get TO (w) SW get TO (w)	~1000 ft.		3.2 (w) 2.4	62.20, 55.9 %	
	10:09	80.0 77.7	AK set TO (w)	~1500 ft.		-	67.10,55.0%	Sheet 1

5	Sampling D	Date: // (rah Woodard 15/12		Project Nu Project Na		12-096L A Northside Noise Mon	itoring
ſ	Time	Type of Reading	Set Pets property (prope Source(s)	Distance from	Direction of	Wind Speed & Direction	Additional Weather Conditions	Comments
$\left \right $	10:15	75.5	jet landing (w)	Source	Source		62.6°, 55.5%	
F	10:18	75.9	US Arriveys jet TO (w)	1	1		62.3, 53.320	1
	10:25	76.8	Asta jet landing (w)			0.9 mph (w)		
Г	10:30	82.0	Korea jet To (w)	~1500 ft.		0.0	64.59, 50.8%	LAcq: ~64dB
ĿГ	10:42	77.9	HI jet TO (w)	~1500 ft.		0.0	64.0°, 53.5920	
Γ	10:47	79.7	AAjet TO (W)	11500A.			61.9°, 56.8%	
	10:50	77.9	SWSet TO (W)	~1000-ft.		-	-	
	11:01	75.2	SW jet TO (W)	~1000fl.		0.0	64,6° 53.920	
	11:07	75.3		~1000/20.5m	:	and the second second	- '	
	11:10	76.3	Mexico jet TO (w)	~1500 At.		-	-	
	11:11	75.8	Virgin jet to (w)	21500A.		0.0	62.4°, 55.6%	
	11:14	76.9	SW get TO IW)	~1000 ft.				
	11:24	77.1	Mexico jet TO (w)	~ 1500-A.		0.0	64.1°, 53.6%	NOTE: Scattered ratin a
	11:27	75.3	SW jet TO W)	~ 1000-Ft.		-		Note: Scattered rain O equipment under vinbrella
	11:36	77.5	Korea jet To (w)	~1000A.		0.2 (w)	66.0°, 52.0°20	LARA: ~63dB
۶L	11:42	79.8	US Arrways jet TO (w)	~1500 ft.		0.0	67.20, 51.0%	L
	11:53	76.2	jet TO (w)	~1500ft.		6.0	65.60, 51.9%	NOTE: No rain
L	12:19	82.6	Allegant jet TO (w)	~1000 A.		0.0	66.70, 45.1%	NOTE:) scattered rain
	12:23	78.4	Canada jet TO W)	~1500A.		-		equipment unde
	12:35	83.4	Canada jet TO (w)	NISOOA.		0.0	64.80, 49.1%	
Ļ	12:37	81.2	JAL jet TO (w)	~1000fl.		-		L'Aug: ~64 dB
	Statistical and Statistical an	76.1	Vivan set TO (w)	~1500A.		0.0	67.30 48.1%	
	12:47	18:1	LAN jet TO (w)	21500fti			<u> </u>	
\vdash	12:49	~10	settive set 10 (w)	へ1500件.		-		
	12:50	76.8	AK jet TO (w)	~1000 ft.		~		
	12:51	83.2	Thai get TO (w)	ricosff.				(NOTE) No rain
	12:57	755	Virgin jet To (w)	~1000ft,		-		
	12:58	765	Canada jet TO (w)	risooft.		0.0	68.1°, 45.320	
4	12:59	78.2	US Arrways Jet TO (w)	~1500A.		1.1 (w)	66.9°, 44.590	
L	1:23	77.0	jet TO (w)	~1500ft.	L.	0.0	66.30, 45.9%	
	1:28	76.0	SW get TO (W)	~1000 H,	1	~	-	

Sampling	Date: 11/1	vah Woodard 5/12 2: Set Pets property (propor	sed Open S	Project Nu Project Na	The second s	12-096L A Northside Noise Mon	itoring
Time	Type of Reading	Source(s)	Distance from Source	Direction of Source	Wind Speed & Direction	Additional Weather Conditions	Comments
1:33	75.9	SW jet TO (W7	~1000 ft.	5	0.0 mph	66.10, 44.8%	LAeg: ~65dB
18 1:43	77.1	US Arrways jet TO (w)	~1500 ft.		1.4 uph (w)	66.7°, 43.5%	C
1:44	76.2	SW jet TO (w)	~1000 ft.		0.9mph(w)	66.20, 43.7%	
1:52	76.3	Mexico jet TO (w)	risooft.				
2:03	75.9	AK jet TO (w)	~1000 ft.		0.0	GA.3°, 39.3%	
2:06	76.7	AA yet TO (w)	~1000 ft.		-		
2:20	75.4	US Areways jet TO W	~ (scoff.		1.3 (w)	67.20, 42.0%	NOTE:) Slight sun; so
2:23	84.4	KLM ist TO (W)	~1000ff.		3.7 (NW)	66.9°, 41.920	breaks m clouds
2:34	175.5	SW get TO (w)	~1000A.		3.9 (NW)		
2:42	77.8	Singapore jet TO (W)	~1000 ft.		2.2	67.90, 37.3%	LARG: ~ UHdB
19 2:51	75.7	AK get TO (w)	~1000 A.		4.9	66.50, 42.7%	
2:53	76.7	SW jet To (w)	~1500 A.		3.3	66.30, 44,1%	
2:55	77.3	Att jet landing (w)	~1000 ft.		2.7	67.0°, 46.820	
3:09	75.2	Delta vet TO (w)	~1500-A.				
3:10	78.5	HI jet landing	~1000 fl		3.8 (NW)	66.2°, 49.4%	
3:21	76.1	. Jet Blue jet TO (w)	~15coff.		1.8 (NW)	66.50 46.5%	
3:22	75.7	Delta jot TO (w)	~1500 ft.		2.4	66.70, 46.32.	
3:24	76.8	AA jet TO (W)	riscoft.		4.0	66.7°, 46.1%	
3:26	76.7	Delta jet TO (w)	~1500ft.		-		
3:29	77.3	SW jet TO W)	~ 1000 ft.		-		
3:30	75.9	AA jet TO (w)	NISOOft.		5.9 (NW)		
3:32	83.3	Int'l set TO (w)	NI000ft.	V	6.7	665 44120	
3:33	86.9+	deg barking	~5A.	W	4.8	66.50, 43.6%.	LARG: ~64dB
00 4:00	80.8	SW set TO (W)	~iocoff.	5	2.3	65.20, 51.4%	
4:02	79.4	AA jet TO (w)	~ 1500 ft.		3.9	65.10, 52.7%	
4:07	75.0	Canada jet TO (w)	~ 1500 ft.		5.1	65.10, 52.2%	
4:25	75.0	Virgin jet TO (w)	~1500 A.				
4:26	77.7	Virgin jet TO (w)	~1500 At		3.5	64.90, 52.1%	
4:27	75.5	jets TO + landing (w)	~1500 ft.		4.9	64.8 52.8%	
4:28	81.7	NZ jet TO (w)	~1500 ft.	V	2.3	64.6 53.270	A
4:30	(batter	ies clied)			i and a second secon		>01

Sheet 3af 3

0	CI	~1	1_1	1
1	S	Jr	7-1	7
E	INVIRON	MENTAL	. INC.	

S	CA	Pı	oj	ect	N	um	be	r:	12	-0	96	L		_I	Dat	e:	1	iag ali	8	(2	-	-	-			_		-		-	-	-	
	>		\$		(0p	er		3p/	l l l l l l l l l l l l l l l l l l l)	X		X	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					Falmouth due.				XXXXXX	for s	en o	50	Jac	ie) X	~		(T)	TIT TIN
														\$			1						1	1		-	-				-	+	
Im	éde	ar		T	2	D	4																							11	77	7/16	111
					u)ee	te	he	51	er	F	ki	04		(5pe	ed	(17	nit	5	6												
>	~		\$	Y		V	X		X			<	X	X	X		XXX				7	13			Ŵ	V	X	*		\$	8	+	I VV I
																		~	V	iv(-	-	2										
	4	V I														Ć	2	L	A	X	PIV	PP V	ed.	1	r)							-	
								Nor	the	in						5	LA	X	rov	NU	ay	5)		>									

	Date: 10 Site: Site	18 12 3:Westchester Pkuy + Fal	mouth Are	Project Na	me: LAW	A Northside Noise Mon	itoring
Time	Type of Reading	Source(s)	Distance from	Samplor Direction from	Wind Speed	Additional Weather	Comments
			Source	Source	& Direction	Conditions	
10:04	Calibrate	d					- prssed
10:05	81.1	CAUS (W)	~15-30ft.	S	6.7mph (NW	73.5° 70.920,3	0. Ottartla
10:08	74.1	SW jets (2) Indrastation of	f~2.000ft.		-	-'	NOTE: Moudy, breeze
10:10	77.7	jet + cars (E) (W)	2000/15-30		3.4 mph (NW)	73.3°, 11.7%	NOTE: Planes ded
10:13	79.9	cars (W)	15-30ft.		-		NOTE: Planes are tak
10:15	77.6	jet landing (E)	~1500		-	-	off tounds E and
10:16	81.5	jet taking off (E)	~ 2000		4. Ough (NW)	\$ 73.5°, 71.5%	landing from W; aty
10:19	75.4	AK jet landing (E)	~ 2000	1.1	-	-	due to wind shift.
10:19	82.3	jet (TO) + caus (E)(W)	2000/15-30		6.6 (NW)	73.10, 71.9%	NOTE: Landscapton mai
10:24	81.2	old truck (w)	~30ft.		8,2 (NW)	73.5° 67.4%	activities 10-11ml nu intersection.
10:25	81.7	old van (w)	~15ft,		-	2	
10:27	70.2	Frontier jet landing (E)	~3000		-	-	
10:28	81.1	AA jut(TO)(E)	21500	1001	-	-	
10:30	81.8	diesel truck of triler (is	0~15		55 (NW)	74.3°, 67.3%	
10.31	34.2	Industrial 18-wheeler (W)	~15		3.7 (NW)	74.7°, 66.5%	WOTE: Patchy clouds
10:33	82.4	Crane leaving LAX (215		-		
10:34	78.8	caus (w) + SW jet (TO, E)	15-30/2000		6.9 (NW)	74.9°, 66.420	
10:37	74.6	AWA jet landing (E)	~ 3000		7.1 (NW)	75.10, 65,4%	
10:42	72.8	Continuital set (TO) (E)	~ 1500		-	-	11
10:45	79.4	Cement truck Entering LAX/SU				-	
10:46	81.5	18 wheder leaving LAX (w)	~15		-	~	
10:47	82.7	speeding car (w)	~30		55 (Nii)	74.20 65.5%	
10:50	80.1	18-wheeler (W)	~30		9.4 (NW)	75,66,65.620	
10:55	83.8	industrial 18-wheter (w)	115		3.7 (NW)	75.30, 64.220	
10:57	76.8	Chinase ist landbay (E)	~3000			_	
10:58	79.0	Continuented jet (TO,E)	~ 2000	-	6.3 (NW)	75.4° 64.020	
11:04	84.3	Javious trucks (E,W)	~15-100	12.52	4.7	75.7°, 63.390	INOTE: Cloudy
11:08	80.5	motorcycle (w)	130	1. m. m	7.4	75.50, 62.4%	
11:11	84.4	modified truck (w)	NIS		-	-	
(1:1)	~85.0	speeding police car (w)	~30	0.12	-	-	
11:13	80.3	Continental get (TO,E)	~1500		-	-	
11:14	82.3	domp truck (W)	~ 30		-	-	
11:15	80.7	truck (w)	~15		5.2	75.8°, 62.320	
11:14			215	. 1		-	

Technician Name: Barah Woodard	Project Number:	12-096L	_
Sampling Date: 10/18/12	Project Name:	LAWA Northside Noise Monitoring	
Sampling Site: Site 3: Westchester Phay + Falmenta Ave.			

	Time	Type of Reading	Source(s)	Distance from Source	Direction from Source	Wind Speed & Direction	Additional Weather Conditions	Comments
	11:17	81.3	Ambulance (no stren) (w)	~15A.	15	6.4 moli(NW)	74.90, 63.2%	
	11:21	84.1	industrial truck (w)	~ISA.			76.2°, 62.2%	
	11:23	84,0	domp truck (w)	~ 30 ft.			/	
	11:24	82.8	sports car (w)	~ 30 ft.				
	11:24	85.1	fire touches (2) (w)	~30ft.		5.0	76.20, 61.820	
	11:27	86.0	various fructs (w)	15-30ft.			T	Long-Sold Market
	11:28	80.9	Air NZ jet landing + trucks	1500/15-30				
	11:29	82.2	truck (w)	~ 15A.				
	11:31	81.9	various envis (trucks (W)	~15A.		5.7	76.5°, 60.9%	
	11:34	82.4	50V (w)	~15-Ft.			1	
1.1	11:42	74.1	United jet Inding (E)	~ 3000		3.2	76.30, 59.320	
	11:44	76.2	jet (TO,E)	~1500		9.5	76.30 59.220	
	11:49	78.6	AA jet (TO,E)	~1500		3.9	77.8 58.32	
1.1	12:01	81.8	18-wheeler (w)	~30		8.4	76.1°, 58.5%	
R23	12:06	80.5	motorcycle (W)	215		4.6	74.80 57.5%	
	12:12	85.9	modified SUV (W)	~15		8.0	78.10, 55.1%	NOTE: Pautly Cloudy
	12:18	83.7	sports car (w)	215		3,1	77,10, 55.5%	
	12:20	83.6	Persent truck leaving LAX	~15			-	1
	12:21	91.6	motorcycle	~30		6.7	77.9° 56.0%	
1	12:33	81.9	firetrucks (3) (E)	~100)	
	12:33	83.8	15-wheeler (w)	NIS		5.2	77.30, 55.32	
	12:36	84.1	Fed Ex truck	~15	2.1.2.	8.1	76,70, 54,820	
14	12:14/	78.8	Withousa landing (E)	~1500			/	
- 1	12.44	285.5	streetsweeper (W)	NIS				
	12:52	74.4	Singapore int landing (E)	~1500		6.3	78.5° 52.0%	
	12:55	81.4	truck (w)	~15	Sul In		/	
	12:58	281.0	Cars (w)	~15-30		11.1	78.6°, 49.9%	
	1:02	78.6	Fiji jet landing (E)	21500	100	6.3	79,10 51.920	NOTE: Mostly sunny
R-24	1:08	97.9	motorcycle (w)	~15		5.3	78.90, 51.620	
	1:09	90.7	18-wheder leaving LAX(w)	NIS			/	
	1:19	82.3		~15		3.2	79.20, 51.6%	
	1.1	282.0		~15	V	10.0	80.80, 49,120	

	Sampling	Date: 10	nrah Wondaval		Project Nu Project Na		12-096L A Northside Noise Moni	toring
	Sampling	Site: Site3	Westchester Pkuy + Falmo	oth Ave.			and the second second	
	Time	Type of Reading	Source(s)	Distance from Source	Direction from Source	Wind Speed & Direction	Additional Weather Conditions	Comments
[1:29	85.2	Cement truck leaving LAX	215-14.	S	8.3 (NW)	81.90, 46.0%	
	1:35	~83.0	car horn (w)	~15ft.		7.5 (NW)	81.0°, 48.6%	
	1:37	174.2	Int.) jet (andory (E)	~1500		-	-	
	1:47	81.8	truck leaving LAX (W)	~15		8.1 (N)	80.8°, 48.0%	
	2:00	78.6	Swit (and most caus (w)	2000/15-30		-	-	
	2:01	81.2	streetsweeper + cars(w)	NIS		1.9 (N)	79.9° 53.8°Zo	
	2:02	~85	modified car (w)	NIS	2012.0	-	-	
5	2:07	70.4	United yet (TO, E)	~2000		5.0 (N)	76.6 55.2%	
	2:15	98.5	motorcycle (W)	215		3.4 (NE)	77.5°, 57.3%	
	2:21	85.1	cement truck leaving LA	X 215		7.7 (NE)	75.9°, 60.1%	
	2:25	79,1	Int jet landing + cars (w)	2000/15-30		4.5(NE)	76.70, 59.62	
	2:28	285.0	sports car (w)	NIS		-	-	
	2:32	83.1	Industrial trucks (2) (w	~15-30		3.4 (NE)	78.7°, 56.320	
	2:38	82.9	18-wheeler leaving LAX (w)	15		-		
	2:39	283.0	Car peelinorout	~ 30H.		6.7 (NE)	78.70, 55.420	
	2:49	74.2	United jut (FO,E)	~ 2500		12.3 (NE)	78.80 57.12	1.2.2.2.2.2.2.2
	2:52	77.4	jet (TO,E)	12500	3103	6.8 (NE)	77.3°, 58.5%	
	2:55	83.1	industrial truck	~15			'	
	2:58	82.3	18-wheeler (w)	~30				
	3:04	84.7	motorcycle (w)	~15	V	6.2 (NE)	76.7°, 61.3%	
0	3:08	Calibra	ion (batteries died)			/	- passed
	3:22	74.Le	Int'l fet landing (E)	~2000	5	3.2 (NE)	77.2°, 59.820	
	3:34	182.5	large truck (w)	~15	1	6.7 (NE)	76.8°, 58.0%	
	3:38	83.4	large truck (w)	~30		7.3 (NE)	75.80, 60.620	1
	3:43	81.3	Luffansa jet (TO, E)	~1500		2.6	77.80, 58.320	
	3:44	90.3	motorcycle (w)	~15		5.8	763, 58.0%	A contract of the
	3:46	~86.5	sports car (w)	~30		~	-	
	3:49	77.9	United jet (TO,E)	~2000		3.7	74.7° 58.6%	
	3:54	83.3	AA jet (TO, E) toports carw)	2000/ 30		7.5	75.80, 57.320;	gusts to 11.2 mpt
1	4:04	83.4	18-wheeler (w)	~15	V	4.9	75.3°, 60.420	

Sheet 3of 4

Sampling I	Date: 10	oah Woodavd 118/12 S: Westchester Phury + Fal	Quarte Ad	Project Na	me: LAW	A Northside Noise Mon	itoring
Time	Type of Reading	Source(s)	Distance from Source	Direction from Source	Wind Speed & Direction	Additional Weather Conditions	Comments
4:12	84.1	Crane truck & get (TO) (W)	the second se	S	4.3 mph ~)	74.7°, 64.1%	WOTE: Planes han
4:15	84.4	jet (TO, W)	2000ft.				reverted back to t
4:15	87.1	motorcycle (E)	~804.				directions; TO to the
4:18	81.9	jet (TO, W)	3000		3.9 (NE)	75.40, 59.9	
4:21	83.4	SW jet (TO, W)	2000				
4:22	83.3	KLM jet (TO, W)	3000	1000			
4:24	82.4	2 jets (70, w)	4000		5.0 (NE)	76.3°, 61.6%	
4:31	86.1	modified truck (w)	130			76.50, 61.8%	
4:33	82.9	jet (TO)(W)	3000	1			
4:34	82.1	Virain jet (TO) (w)	3000	-	3.6 (NE)	75,10, 61.6%	The second second
4:35	83.0	18-wheeler leaving LAX(")	NKS				
4:41	87.1	sports car (W)	NIS		2.7(E,NE)	74.60, 64.92	
4:43	283	Air France jet (TO, W)	~ 1500	1			
4:50	61.1	jet (TO) w) + cars (w)	2000/10-30		6.6 (E,NE)	74.9°, 64.5%	1
4:57	80.6	SW jet (TOXW)	3000	1		1	
4:58	80.3	Sal jot (TO(W)	3000		319 (E.NE)	75.4°, 65.8%	
5:11	84.9	Air NZ xt (TO) (W)	2000		3.4 (NE)	79.8° ,55.2%	
5:12	81.4	AA jet (To)(w)+ cars(w)					
5:16	89.0	AA jet (TO) (W) + Car3(E,W)	1		3.9 (NE)	75.5° 64.9%	
5:17	82.6	jut (to)(w)	3000		6.8 (NE)	73.8°, 67.9%	
5:26	82.6	motorcycle (W)	~30		/	73.30, 71.120	
5:28	86.0	Virgin jet (TO) (W)	-1500			1	
5:28	85.5	motoraycles(2)(w)	~15-20		4.9 (NE)	728°, 72.2%	
5:45	81.9	jet (TO)(W)	~2000			71.90, 75.690	
5:48	86.1	large truck (w)	115		and the second se	71.60 76.8%	
5150	84.7	SUV (W) + SW jet (W)			2.9	71.70 77.22	
5755	80-4	SW jet (TO) (W)	22000		4.1	71.10 79.2%	
5:56	81.8	SW jet (TO) (W)	12000				
5:57	87.0	industrial truck (W)	~15				
5:58	84.7	sports car (w)	~15		2.7	71.10, 79.0%	
5:59	the second second second	sports car (w)	~15		-	-	
6:03		motorcycle (E)	~100		2.5	19.9 81.920	

Sheet 40/4

CA P	ocation roject	Nu	mbe	r:	12-	090	6L	-		Date	: _	10	119	11.	2			-		-		-	-	-			_
							-		1		1	-	Ħ												1	AN	1
											1				1										$\left \right\rangle$	4	/
	(Spea	e U tim	ait a	25)			600)		Por Dr		6	1	21	27	5	t,				>						
		4		F			11			Lawa		+				1					~	<u>}</u>					
				L			1			5				-													
~~~		~	*	**	*	**	XXXXX				_	\$	X	4	×	*	~		×	X	×						
							XXXXXX					XXXXXX															
				X	*		XXXX			~		XXXX						<pre>k</pre>	**	4	4						_
4			-				R	est.	ric.	fe	2	Ă¢.	ea	-(	120	lan	)	-	7	~~	~						
~						_		1				-	-	+		-			>								
								1																			
								d			-																
							,	/			2																
						-	-					n								1							-

Sampling D	Date: 10	unh Woodard 19/12 4: 91st St. & Staumoor		Project Nu Project Na	me: LAW	A Northside Noise Mon	itoring
Sampling S	onte: Site	4: 11 St. + STAMMOON	Ur.	Supling	Height: no	SA.	
Time	Type of Reading LAF	Source(s)	Distance from Source	Direction of from Source	Wind Speed & Direction	Additional Weather Conditions	Comments
9:40	Calibrat	on					- passed
9:41	75.4	Quarters jet taking offlie	~0.5mi	AS	2.3 mph (NE)	70.3° 75.0%	NOTE: Mostly SUMMy
9:47	76.0	5W jet (TO) (W)	20,500	3	ŝ	-	- / /
9:50	71.2	Virgin jet TO (W)	~0.5mi	)	-	-	
9:51	69.1	distant jet TO (w)	Zlui	201	43	71.4°, 73%, 29	.95 mtg (9:35)
9:55	69.0	jet To (w)	n/mi		-		2
9:56	74.3	jet TO (w)	20.500		5.9	71.00, 74.52	NOTE: Nearby Crowsc
10:03	72.3	jet TO (W)	no.Sin		-	_	1
10:04	70.3	Swjet TO (W)	20.5.		-	-	Note Sound of jets /
10:05	71.8	Swifet TO (W)	20.5mil	119	3.6	73.3°, 65.5%	
10:11	~70,0	Set jet TO (w)	~0.5ml		5.2	72.10, 65.6%	NOTE: Nearly crows a
10:20	74.1	jet TO (W)	NO.5mi.		4.3	71.2° 66.820	NOTE: Marthe layer approx
10:32	73.9	Virgin jet TO (W)	rd.Sui		3.7	71.20, 69.820;	gusts at 10.9 mph
10:39	73.1	SW set TO (W)	~0.500		5.1	71.50, 71.220	WOTE: Partly cloudy; c
10:43	72.0	Viran jet TO (W)	~ 0.5mi		9.1	71.20, 68.120	See forther jetspa the time.
10:44	76.2	SW jut TO (W)	40, Sui		0.8	74.70, 65.420	the time 0
10:46	74.7	HI get TO (W) (100)	20.5.		3.2	72.00, 66.6%	
10:47	66.8	jet 70 (w)	21.000			-	· · · · · · · · · · · · · · · · · · ·
10:48	74.4	AA xt TO (W)	~0. Sui		6.0	72.5 , 65.6%	
10:50	75.1	Virgin jet TO (w)	10.5mi		7.7	71.6, 66.620	Harris and
10:51	72.8	SW Set TO(W)	20.5mi		-	1	
11:02	71.7	Vivain jet TO (W)	no. Sui		5.3	71.19,63.08	
11:03	73.4	SW-yet TO(W)	NO.Sim		-	-	1
11:06	73.9	Virgin jet TO (w)	20.5000		4,3	72.8°, 63.8%	
11:10	73.7	Virgin jet TO(w)	20.5.00		0.8	77.10, 59.52	1
11:14	74.4	set TO (W)	20.5.00		1.7	74.10, 62.420	Sector Sector
11:21	71.6	jet TO (W)	20.500		8.4	71.7°, 66.0%	
11:24	74.3	jet TO (W)	20.5mi	1	10-2	71.60, 67.62	
11:29	71.6	jet TO (w) + bird (N)	20,5 /20At.	S/N	-		
11:30	74.2	Jet TO (w)	20.500	S	1.5	75,3,64,6%	and the second se
11:31	70.8	dog barking (E)	~19ft.	E	-	-	
11:37	73.8	SW jet (w)	20.500	S	~	-	
11:35	727	Sw Jet (w)	~0.5m.	3	4.0	72.6", 65.62e	

Technician Name:	50	wal	r Woodard
Sampling Date:	10	119	12
Sampling Site: Si	te 4	(: )	91st St. + Stanmoor Dr.

Project Number: Project Name: LAW

12-096L

LAWA Northside Noise Monitoring

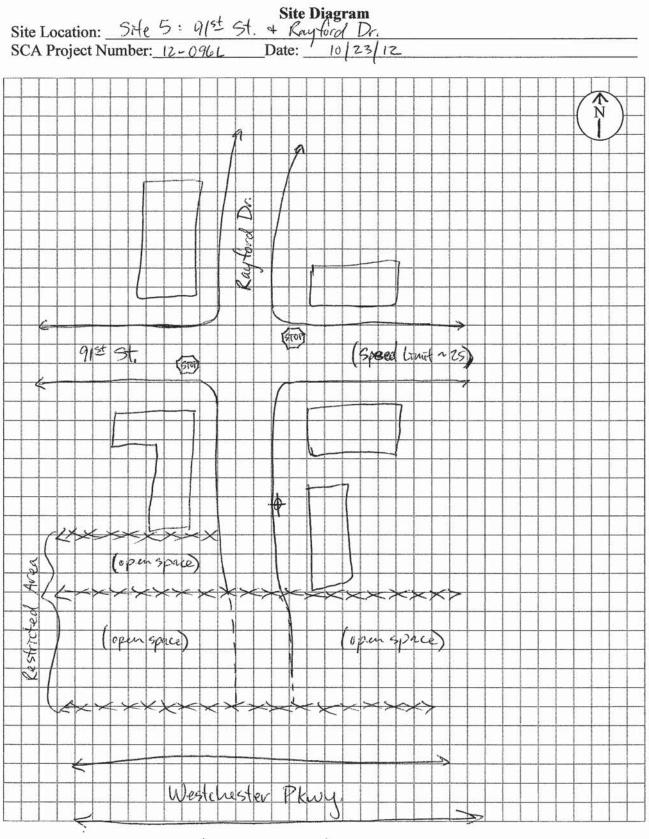
11:36			from Source	f-frem Source	Wind Speed & Direction	Additional Weather Conditions	Comments
11+1/1	74.5	Virgin jet TO (w)	~0.Sun	S	0.0	74.40, 65,67.	
1.76	77.7	jet To (W)	NO.SWE	5	7.4 mph (NE		
11:49	74.3	Sw jet TO (W)	No.S.i.		12.6	70.6° 68.0%	
11:53	79.2	Injet TO (W)	20.500		6.0	70.30, 68.0%	
12:01	79.8	Intret TO (W)	20.500		5.9	70.3°, 68,3%	
12:12	74.1	SW jot TO (W)	NO.Sui		8.6	109.90, 71.120	NOTE Mostly cloudy; leatblower (NW).
12:16	77.2	SW 2 TO (W)	20.500		5.%	72.40,68.0%	leafblower (NW),
12:18	75.5	jet TO (w)	vo.Sui		7.6	72.10, 67.5%	
12:22	75.6	United set TO (W)	20.544		85	19.8°, 69.620	
12:24	76.9		20.500		5.0	70.0°, 70.5%	
12:29	74.7		20.500		6.5	69.70 70.3920	
12:36	72.1		~0.5.00		\$.7	70.39 71.5%	
2:37	73.7	SW Jot TO (W)	~0.5mi		5.2	71.40 70.4%	
12:40	74.4	SW jet TO (W)	~0.500		9.2	69.9% 72.0%	
12:42	73.1	SW jet TO (W)	no.Smi		•	. (	
12:54	71.1	Koven jet 10 + truck 1er	~0.5/80H		8.7	68.50, 730%	
12:58	17.7	SW jet TO (W)	20.5ml		7,9	69.00, 72.4%	
1:00	76.6	5W jet TO (W)	NO. Suit		5.2	70.90,70.62	
1:01	82.3	Intil jet TO (W)	~0.5mi		6.8		
1:05	73.0	SW jet TO (W)	NO.Smi		-		
1:07	74.0	U	20.5000		-	-	
1:11	80.0	SAL jet TO (W)	~0.5m		4.5	69.3°, 70.9%	
1:27	74.6		20.5mi		8.9	69.70, 71.420	
1:31	82.0		NO. Sini	1-1-	7.3	68.6, 73.5%	
1:36	73.1		21.9 19		31	69.30, 72.120	
1:28	73.9	0	20.5002	V	7.5	70.40,70.0%	
1:45	Calibrati			-		- (iarthe	resolved) passed
1:50		5W Jet 70 (w)	no. Sui	9	6.1	69.0° 70.5%	//
1:51	80.7		No.Smi	5	1.5	,	
1:53	77.7	AK jut TO (w)	20.5 mi	9	-	-	
1:54	72.3	school bus (Sw)	~100ft.	N	4.1	70.5° 69.620	
	11:53 12:01 12:12 12:14 12:18 12:22 12:24 12:24 12:29 12:29 12:30 12:40 12:40 12:40 12:58 1:00 1:01 1:05 1:07 1:07 1:07 1:07 1:11 1:27 1:31 1:36 1:36 1:56 1:56 1:51	:53 $79.2$ $ 2:0 $ $79.8$ $ 2:12$ $74.1$ $ 2:12$ $74.1$ $ 2:12$ $75.6$ $ 2:22$ $75.6$ $ 2:22$ $75.6$ $ 2:24$ $74.7$ $ 2:29$ $74.7$ $ 2:29$ $74.7$ $ 2:37$ $73.7$ $ 2:42$ $73.1$ $ 2:42$ $73.1$ $ 2:42$ $73.1$ $ 2:58$ $17.7$ $1:00$ $76.6$ $1:01$ $82.3$ $1:05$ $73.0$ $1:07$ $74.0$ $1:11$ $80.0$ $1:27$ $74.6$ $1:31$ $82.0$ $1:31$ $82.0$ $1:326$ $73.9$ $1:45$ $73.9$ $1:53$ $77.7$	11:49       74.3       Sw jet To (w)         11:53       79.2       Initiat TO (w)         12:01       79.8       Initiat TO (w)         12:12       74.1       Sw jet TO (w)         12:18       75.5       jet TO (w)         12:22       75.6       United jet TO (w)         12:24       76.9       Sw jet TO (w)         12:29       74.7       jet TO (w)         12:29       74.7       jet TO (w)         12:29       74.7       jet TO (w)         12:30       72.1       Virgin jet TO (w)         12:47       73.1       Sw jet TO (w)         12:42       73.1       Sw jet TO (w)         12:42       73.1       Sw jet TO (w)         12:42       73.1       Sw jet TO (w)         12:58       17.7       Sw jet TO (w)         12:58       17.7       Sw jet TO (w)         1:00       76.6       Sw jet TO (w)         1:01       82.3       Int1 jet TO (w) <td>11:49       74.3       Sw jet To (w)       No.5min         11:53       79.2       Juliet To (w)       No.5min         12:01       79.8       Juliet To (w)       No.5min         12:12       74.1       Sw jet TO (w)       No.5min         12:12       74.1       Sw jet TO (w)       No.5min         12:12       74.1       Sw jet TO (w)       No.5min         12:18       75.5       jet TO (w)       No.5min         12:22       75.6       United jet To (w)       No.5min         12:24       76.9       Sw jet TO (w)       No.5min         12:29       74.7       jet TO (w)       No.5min         12:29       74.7       jet TO (w)       No.5min         12:36       72.1       Viroja jet TO (w)       No.5min         12:42       73.1       Sw jet TO (w)       No.5min         12:58       17.7       Sw jet TO (w)       No.5min         12:58       17.7       Sw jet TO (w)       No.5min         12:58       17.7       Sw jet TO (w)       No.5min         1:00       76.6       Sw jet TO (w)       No.5min         1:01       82.3       1.ett jet TO (w)       No.5min         <t< td=""><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td></t<></td>	11:49       74.3       Sw jet To (w)       No.5min         11:53       79.2       Juliet To (w)       No.5min         12:01       79.8       Juliet To (w)       No.5min         12:12       74.1       Sw jet TO (w)       No.5min         12:12       74.1       Sw jet TO (w)       No.5min         12:12       74.1       Sw jet TO (w)       No.5min         12:18       75.5       jet TO (w)       No.5min         12:22       75.6       United jet To (w)       No.5min         12:24       76.9       Sw jet TO (w)       No.5min         12:29       74.7       jet TO (w)       No.5min         12:29       74.7       jet TO (w)       No.5min         12:36       72.1       Viroja jet TO (w)       No.5min         12:42       73.1       Sw jet TO (w)       No.5min         12:58       17.7       Sw jet TO (w)       No.5min         12:58       17.7       Sw jet TO (w)       No.5min         12:58       17.7       Sw jet TO (w)       No.5min         1:00       76.6       Sw jet TO (w)       No.5min         1:01       82.3       1.ett jet TO (w)       No.5min <t< td=""><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td></t<>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

1:55 81.2 United jut to (W) ~0.5mi 5 5.9 70.90 69.220

Technician Name: Sarah Woodard Sampling Date: 10/19/12 Sampling Site: Site 4: 9154 St. of Stammon Dr.

Project Number: 12-096L Project Name:

LAWA Northside Noise Monitoring


	Time	Type of Reading	Source(s)	Distance from Source	Direction of from Source	Wind Speed & Direction	Additional Weather Conditions	Comments
	1:57	73.3	jet TO (w)	20.500	5	6. Inph (NE)	69,50, 70,1%	
	2:00	78.7	AA jet TO(W)	NO. Suri				
	2:03	74.9	Virgm jet TO (w)	NO.Sui.		2.4	69,3°,70,3%	
L	2:05	79.0	Canada jet 70 (w)	20.500	2	7.3	70.60, 70.2%	
L	2:08	74.4	SW jet TO (W)	N0.5mi	1	-	-	
	2:10	73.3	jet TO (w)	20-Sui		3.8	71.30,68.1%	
	1:22	77.6	KLM jet TO (W)	20.500		3.4	109.90,70.020	
	2:26	73.5	Counda jet TO (w)	NO.Sui		6.5	71.3,68.5%	
	2:27	77.1	Int'l jet to (w)	20.5m		8.2	695°, 69,9%	
	2:28	76.2	SW jet TO (w)	No.Suri		-	-	
	2:38	77.8	Int'/ jet TO (W)	NO.Swi		2.2	189.3°, 70.7%	WOTE: Alearly leafblow
5	2:48	75,9	SW jet TO (W)	No.Smi		3.8	68.40,71.5%	1/
	2:50	78.0	just TO (W)	20. Seni	1	-	-	
	3:12	75.5	SW jet TO (W)	20.5mi		5.1	69.0°, 73.92	
1.8.1	3:13	73.4	1 L	1		7.4	68.10 76.0%	NOTE: Very cloudy; ou
	3:15	74.2		V		-		Morthernmost jets ar
	3:31	76.4	Vergen jet TO (w)	NO:500		6.7	69,20,75,626	the site.
	3:42	70.4	SW jet TO (W)	20.5mi		2.0	68.90 76.92	
1	3:43	76.2	Delta jet TO (W)	10.500		7.0	68.30, 76.6%	
6	3:51	73.2	Viram jet TO (W)	NO.Suri	1	4,4	64.20, 77.3%	
	3:58	73,5	SW Jet TO (W)	NO.Sui		7.3	68.00, 78.8%	
	3:59	75.9	Canada jet TO (w)	20.500		-	1	
	4:00	73.8	SW jet TO (W)			-	-	
	4:01	75.9	jet TO (W)			6.8	67.8°, 78.52	
	4:09	75.3	Swiet TO/W)	20.500		6.1	68.7°, 78.0%	
	4:10	73.9	jet to (w)			4.8	68.40 78.12	
	4:11	78.2	Int'l jet TO (W) (anada jet TO (W) SW jet TO (W)			-	1	
	4:19	73.0	(anada jet TO (w)			6.5	67.60, 79.62	
	4:31	74.4	SW jet TO(W)			4.1	67.90 80.0%	
	4:40	74.7	yet TO (W)	-		0-8	68.10 79.92	

Set 3 of 4

Time	Type of Reading	Source(s)	Distance from Source	Direction from Source	Wind Speed & Direction	Additional Weather Conditions	Comments
4:50	76.9	Int'l jet TO (w)	22000ft.		1.6 (NE)	68.20, 79.62	
4:51	73.7	SW jut TO (W)	1	F	2.9	67.8°, 79.9%	
5:02	76.2	Su) jut TO (w) SW jut TO (w)	~1500A.		6.9	1010.70 82.420	
5:03	75.7	NZ ja TO (W)	~2000ff.		-		
5:04	75.0	Int'l jet TO (W)	~2000 A.		7.5	66.6° 82.920	
5:06	73.2	set TO (w)			2.6	66.6°, 82.920	
5:33	75.2	χίλ ΤΟ (ω) SW χίλ ΤΟ (ω)			-	-	
5:34	73.4		1		4.1	67.0°, 83,7%	
5:41	Calibra	tion					-passed ->

Sheet 4 of 4



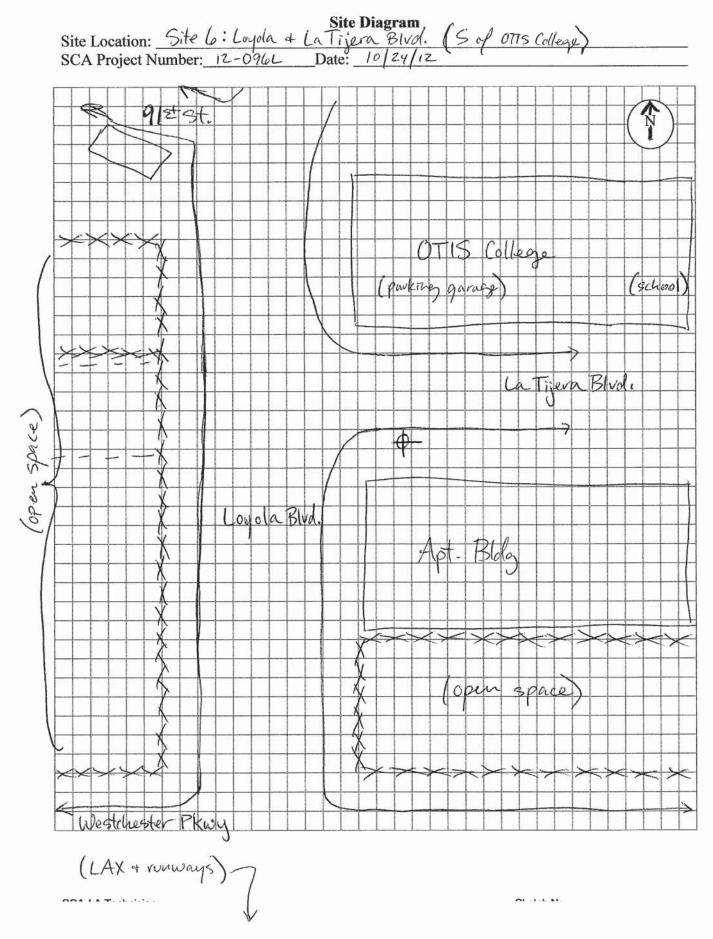


(LAX + runways)

.

	Technician	Name: Sa	ah Woodaval		Project Nu		12-096L	
		Date: 10/1			Project Na	me: LAW/	A Northside Noise Moni	itoring
	Sampling S	site: Site 5	: 915t St. 4 Rayford Dr.		Samplin	g Heroglat:	25H.	
	Time	Type of Reading	Source(s)	Distance from Source	Direction P-from- Source	Wind Speed & Direction	Additional Weather Conditions	Comments
R38	9:22	Calibrat	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					Passed
	9:24	72.3	jet taking off (To) (W)	N. p. Sini	5	3. (uph(NE)	63.1° 54.0%	NOTE: Mostly sunny.
	9:27	77.9	5W jet TO (W)	~2000 Ff.	1	i	-	
	9:29	74,5	jet TO (w)	~ 0.5mi		1	-	
	9:31	74.1	iet TU (W)	n1.0mi		0.0	63.8°, 53.8%,	29,95 mHg
	9:35	87.1	Int'l jet to (w)	~3060ft.		1	- /	NOTE Early, low TO.
	9:37	75.3	SW jet TO (W)	~2000ft		-	-	
	9:38	77.4	Virgin jet TO (w)	~3000 Ft.		1.3 mph (NE)	64.3° 53.72	
	9:58	77.9	Sw jet TO (W)	~2000ff.		1	tts -	
	9:59	75.3	jet 70 (w)	Nzocof4.	V	1.6	65.6. 47.8%	
-	10:03	~ 80	backfire of vehicle?	<1000ft	NE	2.5	64.4° 53.6%	
	10:15	76.8	jet 70 (w)	NZCCOA.	S	-	-	
	10:16	77.4	Korean jet landerog (w)	Macoff.	1	2.8	64.90 54,1%	LAcy: S. 6dB
R39	10:24	77.1	SW it TO (W)	~ 2000ft,		2.4	67.5, 51.7%	L L
	10:32	72.3	jet TO (W)	NO.Sui		3.7	63.8°, 52:7%	
	10:38	79.0	SW jet TO (W)	~2000 A		3.2	64.70, 51.8%	
	10:47	82.8	SW yet TO(W)	nzcooff.		2.4	65.90 52.4%	NOTE: Bankary Secul
	10:52	78.5	SW jet TO (W)	~2000A.		3.3	64.9°, 50.5%	· · · ·
	11:05	79.8	Virgn jet TO (W)	~ 2000A.		5.6	64.6°, 51.5%	
	11:06	73.4	Virginized TO (W)	2200A.		MEX	,	
	i1:10	71.8	int TO IW)	NI.Ouri		7.5	63.40 52.2%	
	11:12	75.9	jet TO (W)	nzocoff.			~	
	11:13	80.7	Int'l jet TO (W)	N3000A.		6.0	64.7°, 52.7%	
	11:14	76.1	Sal jet TO (W)	2000A.			-	
	11:23	80.3	Korean jet TO (w)	~ 3000 A.		1.5	66.10, 49.4%	LAeg: 60.1 dB
R40	11:25	76.9	Swjet TO (w)	~2000fl.		3.2	65.90, 49.8%	C
2	11:26	75.8	Virgin jet to (w)	~2000A.		6.1	64.62 50.320	
	11:34	73.6	Wram it to (w) SW jet TO (W)	recorft.		4.4	1,7.30, 45.7%	
		75.8	Siv ist TO (w)	~ 2000 At.		4.0	66.30, 50.2%	
	11:45	~75	SW jet TO (W)	12000ft		-	-	
	11:46	77.3	SW jt TO (W) jet To (W)	13000 ft.	4	2.6	65.6°, 50.7%	

Set 1 of 4


			wah Woodard	-	Project Nu		12-096L	
	Sampling Sampling S	Date: 10	23/12 3: 915 St. 4 Raylord Pa	- /i	Project Na	me: LAW/	A Northside Noise Moni	toring
	Time	Type of Reading	Source(s)	Distance from Source	Direction Afrom- Source	Wind Speed & Direction	Additional Weather Conditions	Comments
	11:51	74.9	SW jet TO(w)	12000A.	S	7. Ymph (NE)	64.8°, 49.9%	
	11:55	75.9	Canada jet TO (W)	2 3000 A.			65.70, 50.8%	
	11:58	78.8	Koven jet TO (w)	~ 3000ft.		6.0	65.60, 48,6%	
	12:05	74.4	FW jet to (W)	~2000ff		th 2.1	66.10, 49.9%	
	12:09	78.8	United jet TO (W)	~ 3000ft		~	-	
	12:10	75.9	SW jet TO (w)	1 2000 A.		1.5	67.0°, 49.2%	
	12:12	78.0	SW jet TO (W)	~2000A.		7.9	6620, 49.2%	
	12:18	77.2	Canada jet TO(W)	2000ft.	$\checkmark$	3.2	67.4°, SO.22	LAeq: ~ 61.0ds
41	12:22	Calibra	tron (batteries d	ied) -				) passed
	12:23	74.2	Virgin jet TO (w)	~zocoff.	S			/
	12:24	78.8	Int'l jet TO (w)	1300A.		0.8	66.5° 49.1%	
	12:25	76.1	jet to (w)	23000ft	V	4.8	66.9°, 48.620	
	12:30	~75	car door	~10ft	W	-	, '	
	12:38	80.6	jet TO (w)	~20004.	S	31	67.5°, 47.3%	
	12:48	76.8	SW jet TO (W)	NZODOFF.		5.6	66.0°, 48.22	
	12:53	76.9	Virgon jet TO (W)	~200A.		1.9	67.3°, 49.0%	
	12:58	~76	jet TO (W)	~1.0mi		0.0	66.5°, 47.0%	
	1:01	77.5	jet TO (W)	13000ff.			1	
	1:02	78.1	AK jet TO (w)	~2000A.		2.3	68.10, 47.82	
	1:04	77.4	jet TO (W)	n 3000ft.		5.5	65.70, 48.3%	
	1:14	76.2	it to (w)	NI, Omi		6,9	67,30, 48.2%	
	1:20	77.3	Swjet TO (w)	12000At.		8.3	107.90, 47.9%	
	1:21	75.7	SW jet TO (W)	22000A.		7,6	168. 65.8°, 48.3°	6 LAeg: 62.3d
242	1:28	78.1	SW jet TO (W) jet TO (W)	~2000A.		-	<u>~_</u>	c
	1:29	78.4	Fet TO (w)	~ 3000ft.		5.2	106.0°, 46.5%	Justs @ ~10.0 mp
	1:36	76.3	$(\Lambda N) = f + f (\omega)$	~3000ff		8.3	66.0° 46.5% 65.6° 47.6%	
	1:41	75,5	AK Let TO (W)	~3000 ft		-	-	
	1:42	80.8	SW jet TO (w) jet TO (w) SW-jet TO (w) jet TO (w)	12000ft.		9.6	66.4°, 47.8%	
	1:43		jet TO (w)	Niomi				
	1:44		SW-jet TO (w)	12000-ff.		6.8	68.20, 46.7%	

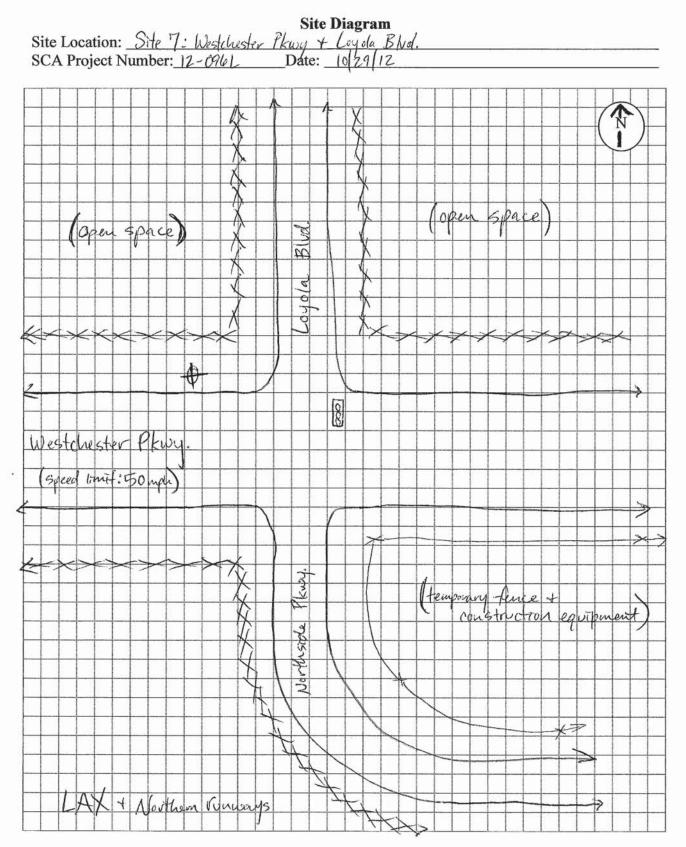
Sheet 2014

Sampling	Date: 10	rah Woodavd 23/12	•3	Project Nu Project Na		12-096L A Northside Noise Moni	toring		
Sampling	Site: Site	23/12 5: 915t St. + Raytord	Dr.						
Time	Type of Reading	Source(s)	Distance from Source	Direction A from Source	Wind Speed & Direction	Additional Weather Conditions	Comments		
1:50	~76	jut TO (W)	13000 ft.	S	7.5 mph (NE)	67.40, 45.320			
1:55	~72	Int'l jet landing + SWjet T	~ 2000 44 D(W)	1	5.1	68.9, 43.9%	State of the second		
1:58	81.9	jut TO (W)	1 3000ft.		11.8	68,0°, 43.32			
2:09	75.3	SetBlue TO (W)	~2000 H.			-			
2:10	82.1	Canada jet TO (W)	23000A.		5.9	68.50, 42.920			
2:11	76.5	SW jet TO (W)	~2000A.		-	ر د			
2:12	76.1	jet TO (W)	~3000.ft.		3.	71.4°, 39.3%			
2:15	80.8	KLM jet TO (W)	12000ft.		10.17	69.00, 41.7%			
2:17	77.7	SW get TO (W)	2 2000A						
2:18	77.5	yet TO (w)	~2000A		3,5	72.20, 39.8%			
2:19	75.6	Sw get TO [W]	12000A		-	<u>/</u>			
2:21	79.9	SW jet TO (W)	~2000A.		4.0	72,9°, 39.9%	LAeg: 65.30		
2:30	75.1	SW set TO (W)	2000 ft.		2.3	73,10, 39,2%	L		
2:3	75.2	jet TO(w)	N3000ft			_			
2:45	85.2	SW jet TO(w)	22000A.		5.6	71.2°, 40.2%			
2:49	77.2	SW jet TO (W)	nzocoff.		7.6	69.70, 41.720			
3:06	81.6	Int'l set TO (W)	~2000A,	1 1	3.3	70.10, 40.920			
3:08	80.6	Jet Blue TO (W)	~3cooff.		1.4	72.8°, 39.7%			
3:15	81.4	jet TO (W)	22000A.		6.6ET	6930 39,2%			
3:19	77.0	SU) jet TO (w)	~Zocoff.		5.7 (E)		and a second		
3:22	78.7	Sal set TO (w)	~2000 A		2	/	LAcg: 63.8 d		
1 3:23	77.2	SW get TO (W)	1 2000 A.		9.9 (=)	\$0.70.90 40.42	l		
3:24	~75	Canada jet TO (w)	~ zocoff.		-				
3:34		SW jet TO (w)	12000 A		-	-			
	784	Virgin jet TO (w)	~3000fl		5.8 (E)	71.10, 41.770			
	77.4	Canada jet TO (w)	~3000ff		-				
3:38	78.3	500 jet 70 (w)	12000 H.		6.9 (NE)	68.7°, 41.0%			
3:51	76.4	Sw jet to (w) Jet TO (w)	~3000 ff.		2.5 (E)				
3:53	1 11-7 -	SW jet TO (w)	~2000H		4.5 (E)	70.20, 42.220			
	74.6	(wi) of to (w)	NIOmi		3.7 (5)	70.8°, 43.4%			
	79.3	Virgin jet TO (w) SW jet TO (w)	~20002ft.		-	_			
	82.0	912 - + TO (w)	vzcooft.		5,5	69.70, 46.420			

	Sampling [	Date: 10/2	wah Woodard	8	Project Nu Project Na	Construction of the owner	12-096L A Northside Noise Moni	itoring
		Type of	5': 912 St. + Rayta	Distance	Direction	Wind Speed	Additional Weather	
	Time	Reading	Source(s)	from Source	from Source	& Direction	Conditions	Comments
	4:03	78.2	Virgin jet TO (W)		S	5		
	4:04	76.9	FedEx jet TO (W)	~2000ff			70.36,44.82	
	4:07	77.1	STRAAPORE jet TO (W)	~3000ft.		9, Omph(NE)	67.8°, 46.120	
	4:13	76.9	JetBlue TO (W)	~3000ft.			- '	
	4:15	79.0	SW jet TO (W)	22000ft.	·	5.4 (NE)	70.1°,45.920	1.4
0	4:22	77.5	jet to (w)	~ 3000A.			-	LAcy: 61.0dB
R45	The same	78.8	Sw jet TO (W)	~2000ff.		3.9 (E)	69.38 46.2%	
	4:29	75.1	France jet to (w)	~3000H.		5.2 (E)	68.50 45.9%	
	4:41	79,5	SW jet To (w)	2000A.		4,9 (6)	69.16, 48.72	
	4:42	75.2	AA jet landing (w)	~1000ft.		3.8 (E)	17110 110 700	
	4:45	76.2	Vingin jet TO (w)	~3000H.		2.8 (C)	67.40,48.72	
	4:46 4:51	82.0	Init jet TO (W) SW jet TO (W)	~20004.		7.1(E)	6.8°, 48,1%	
53	4:54	77.7	0	~3000ft.		4.7 (NE)		
	4:58 4:58	78.2	NZ it TO (W) Swiet TO (W)	rzavoff.		5.2 (E)	67.7°, 48.0%	
	5:15	76.2	Ser yet TO (W)	~ 3000A.		6.8 (E)	67.40, 48.82	
	5:16	75.2	jet TO (w)	~ 3000 Ft.		0.0(0)	01.7, 10.00	
	5:17	82.1	Sev jet TO(W)	nzocoA.		5.9 (E)	67.3°, 48.2%	
	5:19	74.5		~ 3000At.				
	5:21	76.4	Vorzn jet TO (W) jet TO (W)	13000A.		4.6 (E)	67.0°, 50.8%	LAcq: ~64 dB
R46	5:26	76.4	Put'I get TO (W)	n 3000ff.			1065 54.7%	and and and
	5:32			-		6.8 (NE)	66.5°, 54.2% 106.3°, 54.4%	(Aeg: 58.0dB
	5:33	Calibra	tron				,	passed -> off






Samplir	ng Date: 10 2			Project Nu Project Na		12-096L A Northside Noise Mon	itoring
Samplir	ng Site: Site	6: Loyola + La Tijura Blue S of OTIS College)	<u>.</u>	Samplize	Herght: 1	-SA.	
Time	Type of	Source(s)	Distance from Source	Direction of Source	Wind Speed & Direction	Additional Weather Conditions	Comments
8:45	Calibra	tron					passed
8:54	73.5	sports car acceleration	~ 80ft.	NW	0.0	62.40, 50.920	NOTE Mostly sunny; equipment in shade
8:57	82.0	motorcycle (NE)	~15ft.	N	-	'	equipinent in shade
8:58	75.4	SUV (S)	~80.74.	W		870 may	
9:02	76.8	skaleboarder (NE)	~6.7.	S	0.0	62.10, 48.2%	NOTE Welvele adjuity is
9:12	~70	AA jet landrow(w)		S	5	-	Hyper observed, More
9:14	60.0	2'jets taking off (w)			0.0	62.40, 48.6%	student & vehicle acts in relation to class times.
9:17		largetruck (E)	~10ff.	N	-		11711273.
9:19		Delta jet lund The (W)		S	2.3mph(w)	63.2°,44.2%	
9:20		18-utreeler (N)	r.60ft.	W	-	-	
9:3		Z trucks turning (E)		N	2.5 mph(w)	64.50, 41.4%	1.1. 500.0.12
9:38		loud pedestrians (W)	rlett.	5	- (N(4))	-	LAeg: 59.0dB
9:40		UPS truck + school bus			2.3 mol(NW)		
9:4		jet TO (W)	>1.0mi	SW	7.7. mph (SE)	66.0° 36.3%	
10:0		old truck (S)	~ 80ft.	W E	1.1 mph(w) 7.2 (SE)		
10:15		nearby garbage truck loads	260H.		2.8 (5)	67.40, 34.420	
10:23		jet to (W)	r O. Suri	NSW	3.4 (E)	67.3°, 36.8%	
10:29		Intil jet Indiana (W)		S	4.3 (E)	107.2°, 37.0°%	
10.2		diasel truck (N)	~60ft.	N	-	-	
10:3		from (batteries die					- Jassed
	1 ~70	SW jet TO (W)	~ 2000 A	S		-	
	8 77.4	Construction truck	~ 60ft.		4.4 (SE)	67.00, 42.320	
10:41		various vehicles				66.00 41.520	
10:47	~ ~	SW jet TO (W)	~2000 ft.	Śŵ		-	
10:4	7 74.1	HIN TO W)	~ 2000-14.	S	6.7 (E)	67.00 43.0%	
10.5	7 274	jet land they (w)	~1500-ft.	S	8.2 (NE)	106.70, 42.420	
11:03		helicopter (NW)	<1000ft.		3.8 (E)	67.10, 43.6%	
11:13		jet TO (W)	~ 2000 Att			67.1°, 45.0%	
11:3	0 83.1	LAX 18-wheeler	~60ft.		3.5 (SE)	64.50, 47.2%	
11:3	1 76.3	SW jet TO (W) SW jet TO (W)	~2000ft ~2000fl	. sw		66.3, 47.1%	
10.2	53 74.R	large truck (E)	~154.				

Sheet 1 of

			avah Woodavd		Project Nu	and the second se	12-096L	
	Sampling E		24   12 0 : Loyola + La Tijera B	alud	Project Na	me: LAW/	A Northside Noise Moni	toring
	Camping C	JIC. /112 (	(S of OTIS College)	2001.				
	Time	Type of Reading	Source(s)	Distance from Source	Direction of Source	Wind Speed & Direction	Additional Weather Conditions	Comments
	11:35	75.0	SWit TO (W)	~zwoAt.	SW	5.7mpldse	66.30,46:7%	
	11:36	79.8	modified cov (E)	$\sim$ isff.	N		-	LAcq: 65.6dB
R50	11:39	75.9	iet TO (W)	~3000ft.	SW	S.S. moh(E)	68.0°, 48.7%	L
	11:46	72.5	jet landing (w)	~iscoft.	S	(0,5 (E)	66.80, 51.9%	
	11:47	72.7	Virgin jet TO (w)	nzocoff.	SW	7.7 (NE)	11	
	11:50	~73.0	LAX truck doors	~ 100ft.	W	4.4 (5)	67.20, 49.8%	
	12:04	~80.0	I dropped my clipboard	~1fi.	E	)	1	
	12:20	74.0	garbage truck (N)	~40ft.	W	-	-	
	12:21	76.1	traffic + jet TO (N, W)	20-80ft./200	W/SW	9.5 (NE)	66.5°, 44.1%	
	12:23	74.7	traffic (N)	15-40-44.	w.	-	-	LAeg: 63.9dB
	12:24	77.1	garbacy truck (NE)	~15A.	NW	5.9 (NE)	67.5°, 43.2%	Justs@11.8.mph(NE)
R51	12:39	81.1	Int'l jet Inding (W)	~1500ft.	S	9.1 (NE)	67.3°, 42.6%	
	12:44	79.0	AWA jet TO (iv)	~2000ft.	SW	10.2 (NE)	67.8, 42.0%	
	12:47	75.8	LAX truck (N)	~40ft.	W	11.2 (N)	69.20, 43.2%	
	12:50	80.6	motorcycle (N)	~30fl.	W	54 (N)	666,45.8	
	12:51 -	579.1	honking truck (N	~4oft.	W	1.tuph(N)	67.8 46.3%	
	12:57	75.1	jet landing/turning 15	~ Zoouff.	560	5.8 mph(N)		2o
	12:59	75.1	Tow truck	~4oft.	W	9.2 (N)	67.3°, 47.6%	
	1:04	78.0	jet TO (W)	~3000ft		6.5 (N)	67.70, 46.9%	
	1:10	78.1	Rovean jet TOt cours	~1.0ut 40f	SWW	7.3 (NE)	68,1°, 46,1%	
	1:12	~76.0	shopping cart (N)	~614.	N	-	2010	
	1:16	80.9	motorcycle (S)	~Soff.	W	10.3 (N)		
	1:26	81.5	France jet /andra (W)	niscoft.	5/5W		67.2°, 44.7%	
	1:30	and the second second	motorcycle (NE)	~10ff.	Ň.		67.70,46.5%	
0	1:37	75.1	jet TO (w) (10m)	23000 ft.	SW	1.6 (NE)	68.30, 48,1%	LAcq: ~64 dB
152	and a strength	75.5	jet TO (W)	71.0mi	SW	2.5 (E)	70.50, 47.0%	
	2:00	75.4	Int'l jet lendorg (w)	~ 2000ft.	SW	3.9 (SE)	67.3 49.0%	
	2:02	75.2	yet TO (w)	~ isooft.		9.8 (E)	68.0°, 50.2%	
	2:03	76.8	School bus (N)	~Soft.		4.6 (E)	67.0°, 49.5%	
	2:07	75.8	jet TO (W) (low)	>1.0mi	30	-		
	2:08	82.1	AA get landing (w)	) 22000ft.	SW	0.8	74.0°, 41.6 Ze	
	2:09	81.7	Fed Ex (E)	~ 20ft.	$\mathcal{N}$	-	-	

Technician		wh Woodard		Project Nu Project Na		12-096L A Northside Noise Moni	toring
Sampling E		24/12 10: Loyala & La Tijera Blu	d.	FIUJECINA	IIIe. LAW	A NOTITISIDE NOISE MOTI	toning
Time	Type of Reading	(S'of OTIS College) Source(s)	Distance from Source	Direction of Source	Wind Speed & Direction	Additional Weather Conditions	Comments
2:10	77.7	school bus (N)	n5off.	W	1. Zmph(NE	70.6,42.72	
2:16	83.6	FedEx truck (NE)	~10.ft.	N		69.2°, 43.420	Gusta @ ~ 1/mphils
2:19	76.2	school bus (N)	rsoft.	W	4.6 (E)	18.10, 46.32	5 /
2:23	74,3	jet TO (W)	~ 3000ff.	SW	5.8 (SE)	67.40, 45.620	
2:27	76.6	modified (ar (E)	NIOAL.	N	2.9 mold NE)	69.70, 45.1%	LAeg: 64.2dB
2:42	78.3	modified truck (N)	~60ft.	W	3.6min (SE)	70.10, 42.9020	
2:44	74.S	Police truck (5)	~80ff.	W			
2:46	74,6	modified truck (5)	~ 80.ft.	W	4.7 (NE)	69.30, 41.42	
2:47	the design of the second s	traffic (N)	20-60ff.	W	-		
2:48	76.9	Int' jet inding (w)	~150074	S	5.2 (N)	69.7°, 41.520	Justs @ ~ 9 mph (si
3:02	80.7	modified an (N)	~50ff.	N	3.0 (5)	71.0°, 40.6%	V .
3:15	76.4	old car (E)	NISFT.	N	6.1 (NE)	68.60, 43.420	
3:18	84.2	matified, diesel trucker	NISA.	N	4.5 (E)	70.60, 38.82	721
3:23	74.5	SW jet TO (w)	~2000ft.	SW	2.7 (E)	72.10 40.120	LAcq: 62.8 dB
3:46	75.1	SW jet TO (w)	~2000 ft.	500	-	<u>_</u>	
3:47	81.6	motoraycles (2) (N)	~ 40.14.	W	7.4 (E)	68.80, 40.62.	
3:49	74.7	Sa) jet TO (w)	nzocoff.	SW			
3:53	74.5	jet TU (w) + traffic (N)			10.6 (NE)		
3:59	76.7	Int list TO (W)	riscoft.		8.4 (NE)	68.6 , 46.2%	
4:02	80.1	FedEx truck (5)	~60-Soft		3.3(N)	69.00, 47.8%	
4:14	79.9		~1500 ft.	SW	4.2 (SE)	70.20, 44.920	
		truck w trailer	280ft.	W	10.3(N)	69.50, 47.920	
4:23	76.9	motorcycle (NE)	~ist.	N	-		
4:34		Sunss jet landing (w)	~1500ff		4.6 (SE)	70.80, 44,0 %	LAen: 65.9 dB
4:40	79.9	China jet landeza (W)			2.3 (E)	70.70, 44.120	
4:46	75.3	SW jet TO (W)	2000A.	SW	4,3(5)	70.50, 48.7%	
4:56	Calibra	tion					-presed-> off





	Date: 10/2	vah Woodard		Project Nu Project Na		12-096L A Northside Noise Mon	itorina
Sampling	Site: Site	7: Westchester Pkwy of	Loupola Blud			ght:~54.	loring
Time	Type of Reading LAF	)	Distance from Source	Direction of Source	Wind Speed & Direction		Comments
10:01	Calibrat	for					-passed
10:03	76.4	traffic (W)	15-40-A.	S	2.7mph (E)	16.5°, 62.8%,	30.06mth
10:04	81.6		~15-40ft.	1	1		NOTE: Sunny; slight
10:05	76.2	LAX Construction touck	~80A.			-	
10:07	87.9		$\sim$ 15 $H$ ,		-	-	
10:08	80.8	Kovean jet landing (w)	~300ft.		3. Suph(E)	66.6°, 62.5%	
10:11	79.6	sports car (w)	nzoft.				
10:12	81.3	AK jet landing (w)	~300A,		5.0 mgh /E7	106.2°, 64.3%	
10:13	80.5	traffic (w)	~15-40 14,		-		2 1 2 MIA 22
10:15	79,2	Inroje truck (W)	NZOFF.		-	-	
10:16	80.3	Construction truck (w)	~ 40A.		1.6 (E)	66.9°, 66.5%	
10:17	84.3	Ý,	~ 40ff.		8	-	
10:21	84.4	Cars (w)	~15ft.		1.3 (三)	68.20, 63.9%	
10:25	82.8	LAX construction truck	~15·H.		~		
10:26	81,4	SUV (w)	NISF4.		4.9 (E)	65.70,68.120	
10:27	86.1	Construction truck (w)	~154.		0.0	67.0°, 66.8%	
10:29	82.5	SUV + frattic (w)	~15-40A.		Ļ	-	
10:31	84.2	modified car (w)	NISA.		0.0	69.3°, 61.7%	
10:34	80.9	traffic (w)	~15-40A.		;		
10:38	81.2	truck (w)	uist.		5		
10:40	80.3	Caus (W)	~15-40ft.		Z.Z (NE)	68.8° 60.8%	
10:44	82.6	sports car (W)	NSA.		0.0	169.70, 60.1%	
10:46		luxwy car (W)	~15ft.		2.6 (NE)	67.10,64.520	
10:48		SUV (W)	~1sft.	V	5	_	
10:53	N65-73	Industrial truck reverse (N)	~ 150ft.	SÉ	7.2 (NE)	67.60, 65.1%	LAEq: ~68.0 dB
11:03	81.4	Construction truck (w)	~ISA.	S	~		C.
11:06	80.0	traffic (w)	~15-40 ft.		6.0	67.0°, 67.5%	
11:08	81.6	Street sweeper (w)	~ISA.	S	6.5	66.20, 68.7%	
11:11		on (batteries died)					passed
11:13	80.3	traffic (w)	~15-40ff.	S	6.7	65.9°, 69.0°Ze	

Technician Name: Savah Woodard	Project Number:	12-096L
Sampling Date: 10 29/12	Project Name:	LAWA Northside Noise Monitoring
Sampling Site: Site 7: Westchester Phuy + Loyola Blud.		

Time	Type of Reading	Source(s)	Distance from Source	Direction f from Source	Wind Speed & Direction	Additional Weather Conditions	Comments
11:18	82.6	Industrial truck (w)	~15+14,	S	4.8 mph (E)	67.70, 66.2020	
11:18	85.9	water truck (w)	NISA.		- '	Ţ	
11:19	82.9	modified car (w)	~15A.		5.6 mph (E)	67.10, 66.5%	
11:21	83.4	motorcycle (W)	~30A.		7.7 (E)	66.40, 67.3%	
11:22	82.6	large truck (W)	~15.ff.		~		
11:25	81,5	traffic (w)	~15-40ft.		8.8 (E)	66.20, 68.7%	
11:33	81.7	traffic (w)	~15-40A.		5.8 (E)	65.90, 69.420	
11:36	81.9	50V (W)	~1541.		6.0 (E)	65.10, 69,42	
11:37	83.8	traffic (w)	~15-110ft.		6.8 (E)	1	
11:39	81.2	5UV (w)	~ISA.				
11:43	83.6	Sports au + landing it	15ft/300ft,		5.7 (E)	65.6°, 69.1%	
11:46	84.6	sports car (w) + traffic	115-40ft.		7.0	64.9°, 69.8%	
11:49	82.6	Fed Ex truck (w)	~15A.		3.8	65.60, 69.820	
11:52	88.2	motoraycle (W)	nzoft.		7.5	66.20, 69.5%	
11:56	82.7	SUV (W)	NISA,		7.9	65.10, 70.220	
12:02	83.9	Swit tatite ff(w)	~ 600 ft.		9.2	65.0, 68.9%	
12:05	81.9	traffic (w)	~15-40 ft.		-	-	
12:07	81.4	50V (w)	~15ff,		6.9 (E)	63.90, 72.0%	LAcq: ~69.0dB
12:14	85.5	Construction-truck (W)	~15A.		78 (NE)	65.1°, 70.5%	
12:19	83.4	traffic + AK jet landing	15-40/300ft		6.3	64.00, 72.120	
12:21	82.7	Construction truck (w)	NISH.		-	-	
12:22		Industrial truck (w)	~1SA.		5.1	65.20, 71.3%	
12:23	82.7	large truck (W)	~15fl.				
12:27	82.5	traffic (w)	MS-YOH.		7.3 (E)	65.5°, 70.520	
12:29	93.4	honking ravs(w)	~15A.		-	-	
12:41	83.3		~15-40A.		8,0	67.2°, 68.226	
12:44	85.4	large truck, traffic(W)	~15-40ft.		7.1	65.3°, 70.4%	
12:45	86.4	construction truck (w)	~15A.		8.7 (NE)	65.5°, 70.4°C	
12:55	85.6	FedEx truck (w)	nisft.		4.3	67.1°, 67.6%	
1:02	83.1	KLM jet of traffic (w)	300/15-405	ł.	6.6	67.8° 63.4%	
1:04	82.9	Construction truck (W)	visfl.	$\checkmark$	2.7	67.9°, 64.0°20	

R59

Sheet Zol 5

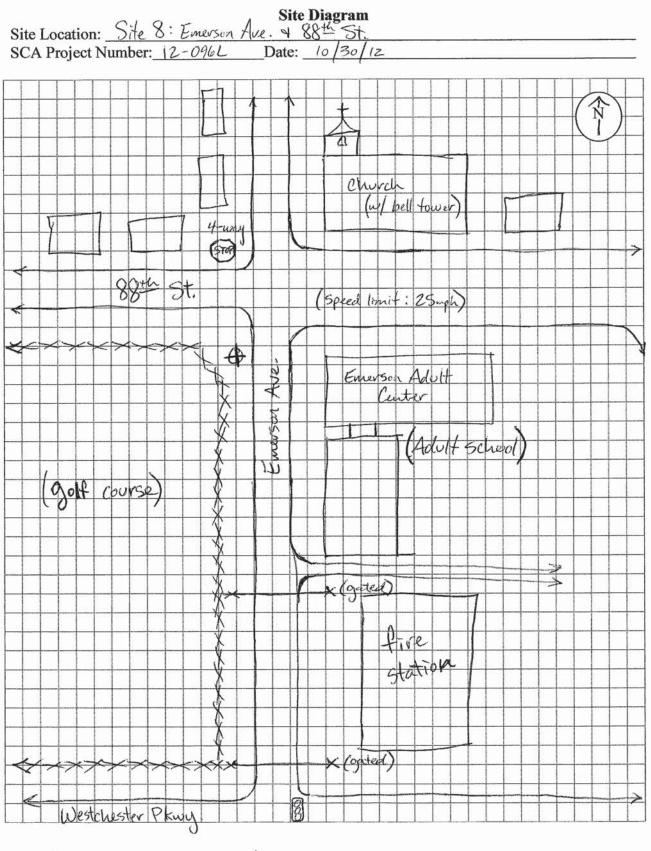
Technician Name: Sanh Wordawd Sampling Date: 10/29/12

Project Number: 12-096L Project Name:

LAWA Northside Noise Monitoring

Sampling Site: Site 7: Westchester Phuy & Loyola Blud.

	Time	Type of Reading	Source(s)	Distance from Source	Direction from- Source	Wind Speed & Direction	Additional Weather Conditions	Comments
	1:08	85.6	Construction truck (w)	~15A.	S	3.0 uph(E)	68.70, 64.82	
	1:11	82.4	Construction truck (W)	~154.			67.70, 106.20%	LAcg: 70.1 dB
R60	1:18	82.0	traffic (w)	~15-40A.			67.0°, 66.9%	L
	1:19	85,1	Industrial truck (w)	~15A.		-	-	
	1:22	84.2	SUV (w)	NISA.		7.4	67.50, 65.9%	
	1:23	84.4	Industrial truck (w)	~15A.		8.6	66.6°, 66.5%	
	1:25	82.7	SUV (w) + Int'l jet TO	~15/600A.			1	
	1:27	84.8	Construction truck (w)	~15A.		8.5	66.10, 67.3%	
	1:32	83.3	Industrial truck (w)	NISA.		7.2	65.4", 69.520	
	1:37	86.8	old truck (w)	~isft.		9.8	(d. 2°, 69.8%	
	1:38	83.1	diecel truck (w)	~1564,		9.6	64.70, 70.4%	
	1:39	83.8	Construction trucks (3)(W)	~15-4044.		7.7	65.2°, 70.920	
	1:44	82.1	Industrial truck (w)	ristt.		9.1	63.40, 72.2%	
	1:45	82.6	traffer (w) + trucks	~15-40ft.		8.0	104.50, 71.8%	
	1:52	82.0	traffic (w)	~15-40ff.		6.6	63.80, 73.1%	
	1:56	89.9	cement voller (w)	~10-f4.		8.7	63.70, 73.5%	
	1:58	83.9	lavage touck (w)	~ISA.		-		
	2:01	83.2	Int'l jet landing (w)	~300ft.		~	-	
	2:01	82.6	traffic (w)	~15-40fL		-	-	
	2:02	82.3	diesel truck(w)	~15A.		6.7 (NE)	62.5°, 74.8%	
	2:06	95.2	motoraycle (w)	~10ft.		7.8 (E)	62.40, 73.9%	
	2:09	85.2	construction truck (w)	~15A.		6.4 (E)	62.70, 74.0%	LAeg: 72.6dB
R61		82.2	traffic (W)	~15-40ft.		\$ 9.2 (E)	63.40,76.2.20	
	2:25	84.7	modified truck (w)	$\sim$ 30ft.		8.5 (NE)	(03.30, 75.5%	
		82.8	truck (w)	~15A.			62.40, 76.670	
	2:30	83.9	Industrial touck	~isft.		9.6	63.60, 75.3%	
	2:31	84.0	traffic (E, W), trucks	~15-80ft.		6.2	63.40, 75.2%	
	2:35	82.8	SUV (w)	~15fl.		7.9	63.20, 75.5%	
	2:36	89.0	motoriycle (w)	130ft.		5.8	63.20, 75.6%	
		83.3	-troffic (vi)	~15-40ft		7	_	
	2:38	90.1	sports our (w)	~15ft,	$\checkmark$	6.3	64.70, 73,3%	


57	Technician		rah Woodevol	0	Project Nu		12-096L	
	Sampling I	Date: 10 /	29/12 7: Westchester Phuy +1	winter Blue	Project Na	me: LAW/	A Northside Noise Moni	toring
	Time	Type of Reading	Source(s)	Distance from Source	Direction from- Source	Wind Speed	Additional Weather Conditions	Comments
	2:40	83.2	Korean jet landing + Cars	~300/15-40	S	5.9.non (NE)	64.0°, 74.8%	
	2:42	~85	heating car (w)	~15-304	SE	-	, 	1.000
	2:51	85.3	SUV (w)	~154.	S	7.3 mph (E)	65.20, 70.2%	
	2:54	83.3	traffic (w)	-15-40ft.		د '		
	3:00	82.2	water truck (w)	$\sim$ 30ft.		4. Turch (E)	(d. 7°, 62.3%	
	3:03	82.7	truck(W)	~15ft.		7.0	65.10, 67.620	
	3:07	89.3	LAX truck honking (w)	~30ff.		5.8	65.90, 66.620	
	3:08	86.4	Industrial truck (w)	~15ft.				LAeg: ~70.0
62	3:12	86.0	Construction truck (w)	NISH.		7.9 (NE)	64.8°, 69.0%	
	3:15	84.8	SUV, trucks (w)	~ 15-40ft.		8.1 (NE)	64.9°, 69.3°Zo	
	3:16	82.6	traffic (w)	~15-40ft.			-	
	3:22	82.7	diesel truck (w)	NISA.		~	-	
	3:23	82.3	jet landing 1 traffic(w).			8.7 (E)	64.2°, 71.1%	
	3:35	89.8	modified jeep (W)	~ 15A.		7.5	64.40, 70.420	
	3:36	82.1	traffic (W)	~15-40ft.		-	-	
	3:37	84.4	sports car (w)	~15ff.	-	7.1 (E)	64.5°, 71.8%	
	3:41	82.6	50V(w)	~15ft,		8.7	(65.7°, 77.2%	
	3:43	97.5	LAX fire truck (w)	~15ft.	$\left  \right $	8.3	65.6, 71.5%	
	3:52		raffic (w)	~15-40 ft.	<u>├</u>	7.3	64.5°, 75.2%	
	3:55	82.9	traffic (w) SUV (w)	~15-40ff, ~15ff.				
	4:00	82.3	FedEx truck (w)	NISH.		1. QINE)	63.7°, 76.4%	
	4:01	<u>84.0</u> 89.7				9.1 (E)	64.9", 76.9%	14 . 2710
63	4:11 4:17	94.3	large van of cars (W) Sports car (W)	~15-240F+1 ~15.ft.	1	6.5	64.2°, 77.1%	LAcq : ~71.0
	4:20	84.6	truffic (W)	~15-40ft.		-	111 C 111 C	
	4:21	82.6	sports car (w)	~15ft.		8.0	64.10, 72.2020	
	4:26	83.1	SUY (w)	NISH.		\$ -	-	
	4:27	82.6	USPS truck (w)	~ 30ft.		5.7	65.40, 62.370	
	4:35		modified truck, cars (w)			7.3	65.90, 60.920	
		83.3	truck (ars (w)	~15-40ff			-	

Sheet 4.15

	Fechnician Sampling E	Name: 0	Parati Woodand		Project Nu Project Na		12-096L A Northside Noise Moni	toring
			: Westchester Plany. V Coyola	Blued.	T TOJECT NA			toning
ſ	Time	Type of Reading	Source(s)	Distance from Source	Direction of from- Source	Wind Speed & Direction	Additional Weather Conditions	Comments
	4:43	82.6	SUV (w), cars (w)	~15.A.	S	7.2 mph (E)	64.7°, 63.1%	
	4:58	83.8	UPS truck (w)	NISA.		-		
	4:59	83.4	sports car (w)	NISFF.		2.5	66.70, 60.72	1.1600
L	5:06	82.5	traffic (w)	~15-40#		-	_ /	
	5:07	82.6	SUV, sports car (w)	NISA		6.8	65.80, 63.5%	
L	5:08	83.6	sports lar (w)	~15ft.		5.4	66.2°, 63.3%	
	5:10	82.7	carg(w)	~15-404.	V	-	-	LAeg: ~70.0 dB
	5:12	Calibrati	on (butteries died)					passed
⊢	5:20	80.0	Int' jet TO (w)	~300ft	S	4.9 (E)	64.5°, 67.6%	
	5:22	82.0	sports caur (w)	~15ft.		-		the second s
Ľ	5:23	~83	squealing brakes (E)	~40ft.		4.8	65.1°, 64.7%	
	5:26	82.0	traffic (w)	~15-40ft.		5.7	64.40,68.42	
-	5:27	81.4	Singapore jet landing	~30014.				
-	5:28	82.1	Cars (w)	~15-40ft	100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100	4.4	63.80, 71.120	
-	5:29	83.9	traffic (w)	~15-40ft		-	-	
	5:32	82.2	SUVINO	~15ff.		6.1 (NE)	61.9°, 77.7%	WOTE Marine la approaching
	5:33	83.6	honking truck (w)	~20ft.		6.4 (NE)	62.2°, 78.6%	approxim
	5:38	89.4	motorcycle (w)	~30ft.		3.8 (E)	62.6°, 80.6%	
	5:42	83.1	Int ( jet landing (w)	~300ff.		4,4	61.00, 84.820	
	5:45	83.9	SUVs (2)(w)	~15-40ff.			-	
F	5.46	83.8		-45-40 300		5.6 (E)	(01.3°, 85.3%	
	5:47		traffre (w)	~15-40ft.				
-	5:48		Int'l get lunding (w)	and the second			-	
+		83.2	traffic (w)	~15-40ft		4.6 (E)	60.1, 31,16	(NOTE:) Jets no lo
	5:54	the second distance of	traffic (W)	~15-40ff.		2.8	60.40, 90.4%	visible from site.
ŀ	5:56		sports (av (w)	~ 15.64.		4.3	60.50, 91.0%	
+		82.6	lavor truck (w)	~15ft.			10.60 01000	
$\left  \right $		82.3	old SUV (w)	NISA.		6.4	60.0°, 91.87	
$\left  \right $		85.0	Int'l jet () landing	~ 300ft.		5.8	59.70 92.5%	
L		~84 Calibrati	traffic (w)	15-40.14,		4.3	59.90, 92.9%	-passed -> af

passed -> aff Sheet 5 of 5





(LAX & Northern runways)

		Name: Sa Date: [0] 3	ah Wordard	ić.	Project Nu Project Na		12-096L A Northside Noise Moni	itorina	
	Sampling S	Site: Site &	Emerson Ave. +88th 5	st.	Sampline height: ~5A.				
	Time	Type of Reading	Source(s)	Distance from Source	Direction from_ Source	Wind Speed & Direction	Additional Weather Conditions	Comments	
R 65	9:16	Calibrat	Ton					-passed	
	9:20	74.6	lange van (w)	~15ft.	N	0.0	64.8°, 70.5%	30.02 in Hay	
	9:25	68.1	jet landing (w)	~20004.t	SW	1. Zmph (N)	63.40, 73.820	WOTE Pratchy log ; sol	
	9:27	68.6	0 1 1			2.7 mph (N)	63.0°, 68.5%	son; slight laterze.	
	9:28	68.8	jets (2) landing (w)	V	V	_'	-		
	9:40	71.7	Garbage truck (E)	~40.44.	N	2.5 (N)	65.6°, 66.420		
	9:44	73,1	Industrial truck (E)	~40ft.	N	-	·		
	9:55	71.4	old truck (NE)	~30ft.	NE	2.8	62.3°, 69.5%		
	9:58	75,2	school bus brakestrevi.	~100ft.	NE+5				
	10:00	67.2	jet landing + church bells	2000/150	STINE	0.9	66.2°, 67.0%		
	10:02	72.2	School bus (5)	~20-91.	NE				
	10:08	70.5	4	V	E	2.1	65.4°, 66.0%	Uney: ~57dB	
R66	10:18	72.0	helocopter (SE)	13000+	E		-	č	
	10:19	70.3	garbage truck (E)	~1004.	NE	1.3	158.20, 60.5%		
	10:31	64.4	BW jet landing (w)	~2000+A	SW	3.5	65.90, 59.820		
	10:35	67.5	Sw jet taking off"	$^{\circ}$					
	10:37		Int'I set landing (w)			2.8 (NE)	65.40, 59,120		
	10:49	67.9	United it landize (w) HI get taking off (w)				-		
	10:50	72.3	HI jet taking of (w)	$\downarrow$	$\downarrow$	3.6 (NE)	66.8°, 58.1%		
	10:55	79.4	LAX truck parking	~15A.	E	1.4	71.8°, 52.8%		
	11:00	70.4	church bells + car (E)	~30/150	NE	0.9	74.70, 50.9%		
	11:03	73.4	old truck (w)	~ 40ft.	N	-	_/		
	11:04	71.4	Kovean jet TO (w)	~2000+ff	SW	2:7	69.2°, 55.0%		
	11:09	66.0	SW jet TO (W)			3.2	66.9°, 57.7%	LAeg: ~58dB	
R67	11:21	67.7	United jet TO (w)	4		-	-	c	
	11:22	94.9	Fire Dept. Ambulance(N)	~30ft.	E	3.0	66.9°, 58.2%		
	11:23	96.6	Five Dept. trucks (2)(N)	rzoft.	E	-			
	11:24		school lous (S)	~20ft.	E	-	-		
	11:24	88.7	LAX truck rev. beep(5)	~15ft.	Ē	4.1	66.6°, 55.8%		
	Contraction of the second s	77.3	school bus (5)	nzoft.	E	1	. –		
		68.9	jet landing 4 car (N)	2000/30	SW/E	1.5	67.4°, 58.1%		

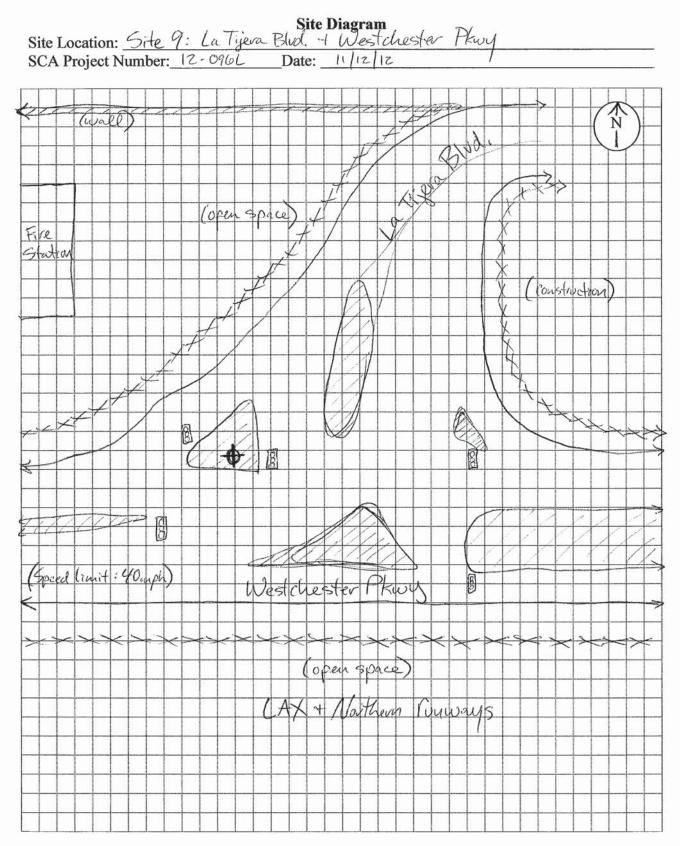
Technician Name: Savah Woodavd	Project Number:	12-096L	
Sampling Date: 10 30 (2	Project Name:	LAWA Northside Noise Monitoring	
Sampling Site: Site 8: Enerson Ave, + 88th St.			

	Time	Type of Reading	Source(s)	Distance from Source	Direction of Source	Wind Speed & Direction	Additional Weather Conditions	Comments
	11:35	76.7	School bus (5)	~15ft.	E	3.7. mph (NE)	63.50, 61.1%	
	11:37	70.5	large truck (E)	~ 100ft:	N	0.0	71.30, 56.1%	Gusts @~ lemph (NE)
	11:54	76.1	modified car (E)	~30ft.	Ë	1. Omph(NE)	70.0, 53.2%	/ /
	12:00	69.7	goif lawn mower+church b		SW/NE	5.2	70.8% 52.0%	
	12:00-12:15		friendy pedetrian	~34.	h	-		
<b>A</b> 10	12:16	70.8	LAX truck (5)	~154.	E		-	LAcq: 159 dB
R68	12:17	74.7	school hus (5)	n 20.ft.	Ē	4.5(NE)	70.90 53.02	
	12:19	67.6	jet to (w)	~2000+ ft.	5W	-		
	12:20	68.6	getf lawn mawer (sw)	~50.94.	5W	3.7	73.1°, 50.9%	
	12:25	72.1	LAX truck (5)	$\sim$ 15f4.	E	5.4	(da. 3°, 56.9%	
	12:38	72.5	Ambulance (no stren)(5)	rist.	Ë	4.7	70.8°, 56.2%	
	12:39	34.8	Ambilance (N)	~ 30ff.	E	2.8	75.6°, 49.320	
	12:41	66.9	SWZet TO (W)	~2000tft.	SW	0.9	78.8°, 47.4%	
	12:52	68.5	AA jet TO (w)			6.0	73.9°, 53.82	
	12:53	70.2	AK get TO (w)	V	<u> </u>	1.8	75.6°, 51.7%	
	12:56	72.5	truck (5)	~20ff	Ē	3.7	70.5,55.2%	11 . (1
R 69	1:08	80.6	School bis(s)	~Zoft		1.3	76.6 50.3%	Key:~ 6/dB
Ner		68.4	United jet TO (w)	~2000+A.	SW	0.0	74.5°, 49.3%	
	1:20	74.4 72.9	school bus (N)	~100A.	NE			
	1:22	75.4	ht// jet to (w)	2000+.ff.	E	3.7	70.8°, 52.5%	
	1:25	80.5	School bus (NE) School bus (N)	~30H.	NE	4.1	68.5°, 55.120	
	1:26	73.6	1	V	NE	-		
	1:28	68.7	SW jet landeray (w)	~2000 ^t A.	SW	3,8	(88,1°,53.8%	
	1:29	70.9	school by (5)	240 ft.	S	-	-	
	1:32	78.2	school bus rev. a (N)	~ 30 ft.	NÉ	0.0	73.6° 51.97.	
	1:40	69.9	LAN jet TO (w)	~2000#	Sw	-	_)	
	1:45	70.2	Ovina jet landing(w)	V	1	3.2	188.8° 53.7%	
	1:53	71.5	That get TO (w)	V		2.5	755, 49.2%	
	2:00	69.0	church bells	~150ff.	NE	3.9	69.3, 50.7	LAcy: ~ 60 dB

Sheet 2093

Technician Name: Savah Woodard Sampling Date: 10/30/12

Project Number: 12-096L Project Name: LAWA Northside Noise Monitoring


Sampling Site: Site 8: Emerson Ave. + 8845 St.

	Time	Type of Reading	Source(s)	Distance from Source	Direction of Source	Wind Speed & Direction	Additional Weather Conditions	Comments
70	2:21	70.0	bus and get landing (4)	100/2000+A.	NE/SW	1. Gingh (NE)	73.5°, 45.820	Gusts @ ~ 10. mail
	2:25	74.2	Korean jet landing (W)		SW	2. Tryph (NE	109.40, 48.4%	0 - 1
	2:26	78.2	school bus (N)	~100ft.	NE			
	2:27	74.1	hot'l jet landing (w)	~20004	SW	6.8 (NE)	73.7°, 47.4%	
	2:32	69.8	school bus (N)	~100ff.	NE	3.1	71.90, 49,120	
	2:38	70.7	FedEx truck (w)	~50ft.	N	2.3	71.5°, 50.1%	
	2:50	69.7	Maxico jet TO (w)	23000+ ft.	SW	4.8	73.6, 47.620	
	3:01	68.2	church bells + caus (E)	150/30-100	NE, N	3.1	69.6, 50.4%	
	3:10	69.1	car alarm	~100 ft.	NW	1.6	77.6°, 47.82	
	3:16	70.0	jet landing (w)	~2000t-ft.	SW	1,0	73.10, 54.82	LAeg : ~ 58dB
71	3:21	71.6	British jet TO (w)	~2000+A.	SW			L
	3.25	73.2	KLM jet TO (w)	1				
	3:26	70.7	jet landing (w)	V		4.1 (NE)	75.8°, 52.1%	
	3:29	79.2	matified truck	~15.4.	E	1.3	(A.1°, 55.4%	
	3:33	73.3	China jet landing (w)	~2000+A.	500	-	-	
	3:38	73.4	Singapore set TO TW)		1	0.0	72.5°, 53.32	
	3:44	71.5	jet landing (10)	4		6.2	66.70, 57.07.	
12	3:46	Calibra	Aion (batteries die	ed)				- passed
	3:47	70.5	jet TO (w)	2000+ff.	SW	3. Comple(NE)	66.9°, 57.4%	Justs Da Hunghel
	3:50	73.5	Sw jet lundara "	2000+14.	SW	1.8	19.5°, 59.0%	).(
	4:12	71.9	HI jet landing + car hanking	2000 / 100tt.	SW/SE	3.9	66.3, 58.220	
	4:16	70.1	jets (2) landine + TO (W)			4.3	65,10, 66.120	
	4:19	69.6	SW jet landing (W)		4	-	_	
	4:37	103.7	Fire truck (N)	~30ft.	E	2.1	64.00, 76.0%	
	4:41	71.1	sports car (5)	~20 ft.	E	-	-	
	4:45	77.7	SW jet TO (w)	2000+ft	SW	2.0	63.9°, 76.2°70	LAR NOIDB
73	4:47		Fire fruck (no stren) (s)		E	3.8	63.8 ,76.820	
	4:55		Sports car (E)	~ 100ft.	NE	0.7	63.40, 77.520	
	5:03		sports car (N)	~ 30ft.	NE	2.3	63.0°, 79.020	
	5:04	71.7	SW jet landing (w)		JW	1.2	62.9°, 79.1%0	

5:04 71.7 SW ist landing (W) ~2000+ A. SW 1.2 5:15 76.6 NZ get TO (W) ~2000+ A. SW 1.9 5:22 73.3 SW jet landing (W) ~2000+ A. SW 2.8 62.6°, 81.2°0 62.4°, 82.420

-passed->off Shut 30/3 5:23 74:7 France get TO (w) 2000+ At. SW 5:24 Calibration ----5:24

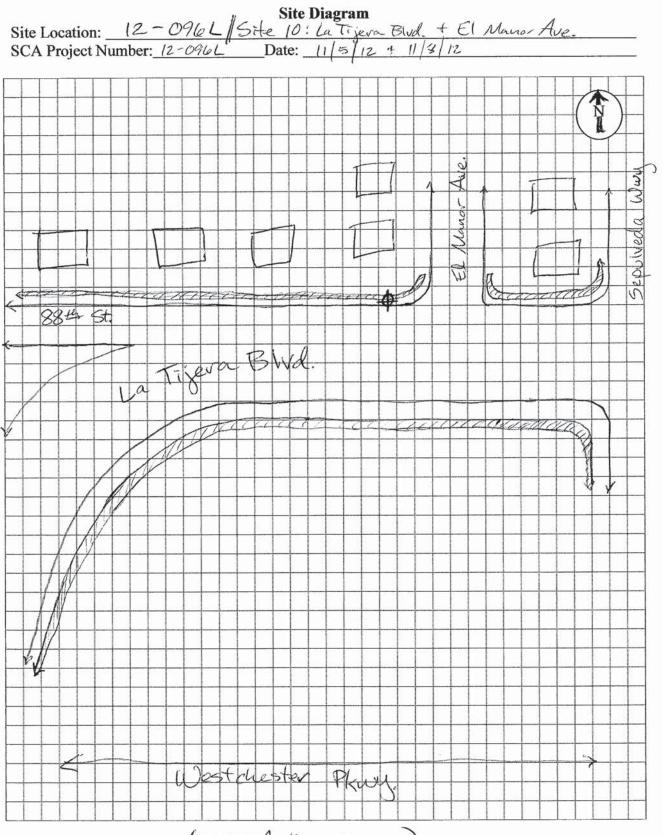




Sampling S		: La Tijera Blvd. + Westcheste	er Placy				
Time							
	Type of Reading	Source(s)	Distance from Source	Direction of Source	Wind Speed & Direction	Additional Weather Conditions	Comments
9:27	Calibrati	on					passed
9:32	70.5	SW jet landing (w)	~1000ft.+	S	7.2 mph (5)	64.10, 17.82, 30.20	Din Ha Nore DSunny, slig
7:35	77.9	AK jet landing (w)	~1000 A.				J
7:39	78.3	SUV, truck (w)	~20-30ft.		6.5 (5)	44.40, 16.5%	
7:48	75.6	old (ar (w)	20ft.		6.3	64.8, 15.72	
9:54	79.2	waste fruck (w)	n 30ft.		4.8	64.9°, 15.2%	
1:57	71.7		~0.5-1mi		-	-	
10:15	76.4	SW et landing & Cars (W)	1.1000/20-30		4.3	70.40 13.2%	
10:21	75.6	Int'I jet landing (w)	~1000ft.		3.8	75.60, 11.520	LAcq: ~64dB
10:27	80.1	Industrial truck (W)	~30.4.		-	-	
10:28	77.1	large van (w)	.120-A.		1	-	
10:29	78.2	police van (w)	n 30ft		5.5 (5)	67.8°, 13.5%	
0:50	75.8	Cars (w)	~20-30A.		1.6 (5)	73.1°, 10.5%	
0:54	75.0	Virginiet landing (w)	~1000ft.t	$\downarrow$	6.3		
0:57	79.2	modified car (NE)	~ 30ft.	E	-	-	
1:12	77.0	old car (w)	~ 30A.	NW	2.2	68.6°, 11.82	
11:17	92.2	modified our (w)	~zoft.	5	2.7		
11:18	\$ 72.6		~20004.				
11:21	76.1	sports car (w)	~ 20A.		1.6 (5)	70.30, 11.2%	
1:26	75.6	Virgin jet landing of cars(w)			0.9		LAeg: ~ WHAB
11:30	76.3	(avs (w)	~20-30A.		3.0	Contract of the second s	
		Fire truck (NE)	~40ft.	SE	-		
11:40	~76.0	Smappore jet (autometw)		S	0.0	74.50, 9.5%	
	76.4						
10		modified truck (w)	~20A.		0.0	73.8°, 10.3%	
and the second	76.8		130/2000A.				
	~77.0	dog back (E)	~15ff.	N	2.2 (switting	574.2 , 10.2%	
11:57	82.4			S		-	
11:58					ggen	-	
12:00			the second second second	SE	2.4 (N)	72.5°, 9,620	
	2:35 3:39 3:48 7:54 7:54 7:57 0:15 0:21 0:27 0:28 0:29 0:50 0:50 0:50 0:54 0:57 1:12 11:17 11:17 11:30 11:32 11:49 11:45 11:45 11:57 11:58	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1:25       77.9       AK jet Indire, (w)       ~1000 A.         1:39       78.3       SUV, truck (w)       ~20-30 A.         1:48       75.6       old car iw)       ~20-30 A.         1:54       79.2       waste truck (w)       ~30 A.         1:57       71.7       jet taking off (w)       ~05-1mi         0:15       76.4       Swith taking off (w)       ~0504         0:27       80.1       Industrial truck (w)       ~20A.         0:28       77.1       large van       (w)       ~20A.         0:54       75.0       Virgin jet landing (w)       ~20-30A.         0:557       79.2       modified car (w)       ~20A.         11:17       92.2       modified car (w)       ~20-30A.         11:17       92.2       modified car (w)       ~20A.         11:17       92.2	1:25       717.9       AK jet Indare, (w)       ~10004.         1:39       78.3       SUV, tauk (w)       ~20-3041.         1:48       75.6       Old Car (w)       ~20-41.         1:54       79.2       wriste truck (w)       ~3041.         1:57       71.7       jet taking off (w)       ~05-1min         0:16       76.4       Swigt landows & curs (w)       ~10004.         0:27       80.1       Industrial truck (w)       ~2041.         0:27       80.1       Industrial truck (w)       ~2041.         0:28       77.1       large var. (w)       ~2041.         0:29       78.2       police var. (w)       ~2041.         0:39       75.0       Virgin jet landirac (w)       ~2041.         0:57       79.2       medified car (w)       ~2041.         0:57       79.2       medified car (w)       ~2041.         1:12       17.0       old car (w)       ~2041.         1:13       8.72.6       V.S. Arways jet faking off       ~20001.         1:12       76.1       sports car (w)       ~2041.       1         1:20       75.6       Virgin jet landirac (w)       ~2041.       1         1:21       76	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

12:06 76.5 JAL jut takong off (w) ~1000ft. 5

Sheet 10/4


	Sampling I	Date: 11/12	imh Woodard 2/12 7 : La Tijora Blud, of U	)estiluister	Project Na	roject Number: 12-096L roject Name: LAWA Northside Noise Monitoring kwy.				
	Time	Type of Reading	Source(s)	Distance from Source	Direction of Source	Wind Speed & Direction	Additional Weather Conditions	Comments		
ł	This	-								
	12:10	76.8	Int'l' at taking off of caus (W)	~1000/20-30	S	Z. 4 mph (NE)	73.50, 10.7%	LAzy: ~68dB		
86	12:16	Calibrat	ion (botterres died).					-passed		
	12:17	76.2	Cars (w)	120-30	S	9. Juph(E)	71.8°, 10.4%	1		
	12:19	78.4	motorcycle (NE)	~30.ft.	SE	6.1 mph(E)	71.5% 11.0%			
	12:27	76.6	caves, sports car (w)	~20-40ft.	S	4.8	71.8 9.6%			
	12:34	76.3	modified car, cars (w)	~20-30ft.		ł	-			
	12:35	77.8	U.S. Arrways jet taking of	0~2000A;+		4.2mph(E)	70.6°, 9.3%			
	12:51	75.2	AA ist taking aff	~ 2000-A.+			74.90, 8.9%			
[	12:54	77.6	(ars (w)	~20-30ft.		-	_			
ſ	12:57	77.2	Viran jet taking aff (w)	NZOODA.		3.7 (NE)	75.2°, 10.6%			
ſ	1:00	81.1	old truck (NE)	~30ft.	SE	5.2 (N)	73.1°, 9.8%	5		
Γ	1:03	76.2	SW it taking off (w)	~7.000 ft.	5		-			
ſ	1:05	94.3	motorcycles(2) (w)	~20ft.	1	1.4 (NE)	78.40,9.0%			
ſ	1:13	77.0	SUV, trucks (w)	~20-30A		5.0 (E)	74.40 9.420	LARY: ~ GlodB		
87	1:17	77.7	NZ jet landing (w)	~1000A.		6.5 (E)	72.40, 10.4%	aniin a sharan a shar		
1	1:22	78.9	modified truck (w)	~20ft.		5.3 (NE)	73.9 10.6%			
ſ	1:24	77.7	50V (w)	~zoft.		7.8 (NE)	1			
Ī	1:28	77.8	Cars (w)	~20-30A.		6.3	72.8°, 11.2%			
Ī	1:30	78.9	old car, cars (w)	~20-30ft.			-			
	1:35	76.2	France jet landing (w)	NZCCOFT. +		7.1 (NE)	71.20, 9.3%			
Ī	1:36	82.5	motorcycle (w)	~ 20.ft.		2.7	74.90, 9.2%			
Ī	1:41	76.6	sports car (w)	NZaft.		7.8	72.3°, 15.3%			
ſ	1:49		Swjet landing + cars (w)			8.3	69.6°, 17.8°C			
T	1:51	77.8	United jet landing (w)	NIOCOA.			_	••••••••••••••••••••••••••••••••••••••		
Ī	1:54	82.1	Korean jet landre (w)			6.9 (E)	69.3°, 27.5%			
Ī	1:57	81.0	Gints rais(in)	~70-30ft		4.2	70.20, 26.9%			
T	2:00	80.1	jets landmer taking officar	~1000-2000/20		8.1	(16.7°, 30.8%			
t	2:02	78.6	Int'l jet landing (w)	~10co-A.		7.3 (E)	69.5°, 31.7%			
f			Asia set landone (W)	~1000A.			-			
L	2:05	178.1		~1500 A.		-				
		76.0	AA jet landing	~1000ft.	$\checkmark$	8.2	67.2°, 29.9%			

			rah Worlavel		Project Nu		12-096L	
	Sampling [ Sampling \$		12 / 12 9: La Tiyeva Blud. + Westili	estar Pturi	Project Na	me: LAW/	A Northside Noise Moni	toring
ſ	Time	Type of Reading	Source(s)	Distance from Source	Direction of Source	Wind Speed	Additional Weather Conditions	Comments
	2:09	77.1	SUV, cars (w)	~ 30ft.	S	Silmph(E)	68.00, 31.0%	
	2:13	78.3	EVA jet landing	~locoft.			70.0°, 29.3%	
	2:16	77.0	Cars (w)	~20-30ft.		5.7 (E)	70.70, 28.820	LAcy: 265dB
8	2:22	77.1	caves (w)	~20-30A.		6.7	67.8, 28.620	, i i i i i i i i i i i i i i i i i i i
	2:31	79.1	Allevant ist landons (w)	AZOCOAL+		8.4	65.90,24.5%	
	2:35	77.1	Cars, SUV and SW jet lands	~20-30/1000		7.0	66.0°, 24.3%	
	2:48	76.9	Ill jet landing (w) .	Liveo-zeooff		8.1	6.3°, 22.9%	
	3:01	77.7	Cars, SUV (W)	~20-30ft.		5.9 (E)	65.6°, 22.82	
	3:06	79.9	old van (NE)	~30ft.	SE	5.0	66.5°, 21.4%	LAeg: ~ 66 dB
59	3:20	94.8	moving van (ii)	~30ft.	S	7.2	64.3°, 24.1%	
	3:26	~80.0	distant five touck hura	Vakaousi	Unknown		<u> </u>	
	3:27	102.3	fire touck - ambulance (NE)		SE	9:7 (E)	64.4°, 21,1%	
	3:28	77.8	Korea jet landone (w)	11000ft.	S	12.8	64.2°, 20.7%	
	3:35	81.1	instoraycle (w)	~100ft.	W	9.2	61.3°, 20.2%	
	3:48	77.7	old truck (NET	~ 30ff.	SE	6.9	64.9°, 19.5%	
	3:51	81.7	motorcycle (NE)	~40A.	SE	4.3	64.90, 20.72	
	3:53	78.0	AAA truck (W)	~20ft.	NW		/	
	4:00	78.0	SUV, cars (w)	30/20-30	S	4.5 (E)	64.90.21.77.	
	4:03	78.1	SW jet landing, ravs (w)	1		6.9	64.70: 23.2%	
	4:09	79.2	SUV, 1945 (W)	20-30ft.	1 1 1	5.7	63.90, 26.8%	
	4:11	75.6	AKjet taking off (w)	~2000+f4				
	4:13	78,1	SUV, Inck Twil	~20-30-A.		2.9	(04,3°, 29,0%	
	4:17	81.3	jeep, ravs (w)	~Z0-30A.		4.3	63.40, 31.0%	LAez: 168 dB
0	4:24	78.4	Cars, SUV (w)	~20-30.H.		-	-	
	4:25	76.1	NZ jet taking off	~2000AL.	$\downarrow$	4.7 (E)	62.8°, 35.5%	
	4:33	80.1	fire truck (no streen) WE		SE	_	-	
	4:34	80.3	modified truck (w)	~30ff.	S	6.3	61.5, 43.7%	
	4:36	the second s	V	~ 30A.		-	-	
	4:37	81.3	EVA jet taking off	NTOODAT.		-	-300-	
ſ	4:38	84.684.0		~2000-f4.+		3,4	61.20 44.22	en a constanta en constante en co

Sheet 30f4

Sampling I	Date: 11/1	rah Wooderd 2/12		Project Nu Project Na		12-096L A Northside Noise Moni	toring
Sampling Sampling	Site: Site ( Type of Reading	i: La Tijern Blui + Wester Source(s)	Distance from Source	Direction of Source	Wind Speed & Direction	Additional Weather Conditions	Comments
4:42	82.4	truck, cars (ii)	~20-30ft.	0		61.10, 44.72	
4:44	~80.0	Skateboarder (E)	~3ft.	N	6. Suppler	60.80, 45.5%	
4:48	80.1	old car, cars (w)	~20-30A.	S	4.1	60.9: 46.2%	
4:55	78.2	aus, SUVS (w)	~20-30ff.		3.5	60.40, 48.3%	
4:59	82.5	time internal true	- ~ 30ft.		ļ	-	
5:00	78.0	Chimajet Inding (W)	~2000.4.		2.6(E)	59.90, 50,620	
5:01	80.5	AA jet Kurding (w)	~2000-A.		3.3	60.2°, 50.5%	
5:07	80.6	Delta jet landing (w)	NZCOOFF.	$\checkmark$	1.3	59.8°, 51.9%	
5:09	78.9	motorcycle (w)	~100ft.	ω	-	_	
5:10	82.1	mudified truck (SE)	~20A.	SE	4.2 (E)	59.9°, 52.8%	
5:12	82.4	HI jet taking off (w)	~1500 ft.	S		-	
5:15	80.7	Int'I get takon aff (w)	~1500 ft.	1	3.7	59.6°, 54.2%	LAeg: 70dB
5:23	78.3	10 1201	. 2.1			-	
5:26	82.2	SW jet taking off, Can	MS00/20-3	0	2.0	58.3°, 56.6%	
5:30	81.9	Int I get landing	nzaoft.		_		
5:32	77.5	jet taking off	MScoff			1	
5:34	80.1	jet taking off	NISCOAL		1.8	Ste. 1º, 102.6%	
5:36	Calibro	from					-passed ->off
							-1
		- 18138. S. H.C					
						na an a	
6470 - Alta I					······		
13. T							
		and the second					
-							
		······································					





(LAX & Northern runways)

-----

•

Sampling	Date: 11 /			Project Nu Project Na	AND DESCRIPTION OF THE OWNER OF T	12-096L A Northside Noise Moni	itoring
Sampling	Site: Site	10: La Tijera Blud. & El	Manor A	ve.	Sam	pling flerget: ~	564.
Time	Type of Reading	Source(s)	Distance from Source	Direction of Source	Wind Speed & Direction	Additional Weather Conditions	Comments
9:18	Calibra	tion					-passel
9:24	85.8	malified truck (w)	~30 ft.	5	0.0	87.3°, 17.6%,	30.02 mHg
9:35	75.2	Inge trucks (2) (10)	~30ft.	5	0.0	86.90, 15.72	NOTE Abt + Sunny; e
9:38	81.7	modified car (w)	~30ft.	1	2.5 mph (Niw)	86.6°, 14.9%	in stude.
9:43	78.8	cars(2)(w)	~12-30ft.		-		
9:44	76.7	fruck (w)	~12ft.		00	87.0, 14.5%	
9:45	76.1	large truck + cars (w)	~12-3oft.				a second
9:46	77.6	old Car + Virgm Jet (w)	12/2000A.		1.Smph (w)	87.0°, 14.32	
9:49	71.9	truck + Quantas jet (w)	80/20coff.			<i>-</i> ́	
9:50	78.0	Cassin	~12-30ft	1	0.0	89.3°, 13.82	
9:57	74.4	Industrial true + 1. t' yet w	80/2000ft.		0.0	89.2°, 13.520	
10:09	79.6	SUN (W)	~12.4.		0.0	90.90, 13.0%	LA09: ~ 64.5dB
10:20	84.6	mudified -louck (w)	~12.17.		1. 8 mpr (NW)	90.2°, 12.420	
10:24	67.4	Int'l jet landing (w)	~ 2000A,		2. Imph (NW)	89.5°, 12.120 88.8°, 12.22	
10:27	80.5	modified touck (w)	~ 30 ft.		3. Smph (Nis)	88.80, 12.22	
10:30	81.1	l l			1.2 (NW)	81.40, 11.9%	
10:32	78.5	dd SUV (W)				-	
10:33	78.5	large touck of school bus	V		1.9 (NW)	88.9°, 11.4%	
10:50	95.6	modified car (w)	~12.ft.		~	~	
10:51	78.7	SUV, van Iw)	n.12-30ft		2.9 (NOW)	90.70,10.4%	
10:56	84.2	School bus (w)	~12.ft.	1	6.7	90.50, 16.62	
11:05	83.5	garbage truck & rev.	~12ft.		3.8	90.3°, 18.1%	
11:15	71.1	truck of Virgin jet landone	~30/2000A	V	-		
11:16	75.7	helocoptor (NW)	~2000ft.	overhead	2.2 (Niv)	92.3° 15.2%	
11:18	80.0	truck (w)	~12A	5	-		LAcz: ~ 68dB
11:21	80.2	fruck (w)	~12.A.		0.0	92.9°, 14.1%	
11:23	67,1	Int'l jet & SWjet lande	g 2000 ft.		-		
11:24	79.6	tow truck (w)	~12.ft.		3.8 (NE)	92.2° 15.9%	
11:34	80.7	modified car (w)	~3oft.		4.5 (NE)		
11:39	81.7	18-wheeler + school bus (~)	130-50ft.			92.20, 17.9%	
11:41	80.7	old Car (w) medified car (SE)	~12.At.		-		

Theat lof 4

Sampling I	Date: //	15/12 + 11/8/12		Project Nu Project Na		A Northside Noise Mon	itoring
Sampling	Site: Site	10: La Tiger-Blud. + El	Manor A	le.			
Time	Type of Reading	Source(s)	Distance from Source	Direction of Source	Wind Speed & Direction	Additional Weather Conditions	Comments
11:50	68.8	Int'l jet (and my (w)	~ 3000 ft.	S		93.9°, 16.4%	
11:59	71.1	Singapore jet (under (w))	13000A.	1	3.0 uph (E)	89.7°, 19.7%	
12:01	78.2	modified truck (w)	~50H.		_		
12:02	78.1	Crusp trucks (w)	~20-50f		2. Oinph (E)	87.9°, 17.4%	
12:05	81.6	sports car (w)	~ 30ft.		-	_	
12:07	81.1	garbage truck (SE)	~zoff.		2.9 mph (NE)	88.10, 19.5%	
12:13	78.0	Sports car, cars (w)	112-30A		2.6	83.8°, 17.4 20	LARY: ~ ColedB
12:20	80.7	largetruck(w)	~12ft.		2.8	90.0°, 16.320	
12:39	79.3	Caves, truckes (w)	~12-30ft	· · · · · · · · · · · · · · · · · · ·	i.`7	90.10, 16.5%	
12:44	92.4	garbrige truck (w)	~12-A.		-		
12:45	82.6 (824	garbage truck (NE)	n 20.ff.		3.4	87.0°, 18.820	
12:48	~80	UPS truck, CAUS (W)	~12-30ft.	$\vee$			
12:54	Calibrat						- passed > off
12:21	Calibrat	on (11/8)					-prissed
12:27	70.7	Int'l jet taking off (w)	~3000+ ft.	5	3.8 mph (NE)	65.1°, 64.9%	NOTE: Cloudy , cool.
12:29	78.4	old van (w)	~12-17.			-	
12:36	80.0	motorcycle (w)	nistt.		2.9	64.50,68520,29.	lo raltoj
12:40	73.8	jet taking off (w)	~2000+ft.		2.3	65.2° 67.8%	
12:44	75.1	SW jet landing (w)	azecot ft.		4:7	64.6°, 68.420	
12:47	78.4	SUN (W)	~30ft.		-	-	
12:50	83.1	Construction truck, rars (w)				-	
12:51	80.5	UPS truck	~ 30ff.		7.3 (NE)	104.50 , 108.120	
12:53	79.5	truck, SUV + car	~30-50ft;	12ft.	-	-	
12:57	79.0	van + Int'l jet talorna of	1-30/2000tf	╉──┤──	2.5	64.9°, 69.4%	
12:59	78.3	School bus, cars (w)	130/12-50f	ų	3.2	65.4°, 69.620	
1:03	81.0	SUV (w)	~ 12.14.		-	-	
1:04	80.0	ravs + frucks (w)	112-50ft		2,3 (NE)	64.60, 70.020	
1:07	71.1	Int'l jet landing (w)	~3000-A.+		-		
1:11	74.1		~ 30 co-ff +		0.8	64.50 70.720	Guipment under unbrel
1:13	79.8	Cars, trucks (w)	~12-50ft.	·	4.6	63.7°, 72.2%	quipment under unbret
1:17	80.5	sports car (w) Industrial truck	~12ft.	And a second second			
1:18	82.5	Industrial truck	~30A	V	3.7	63.8°, 72.82	

Sheet 2 of 4

Technician Name: Sawah Woodard Sampling Date: 11/8/12

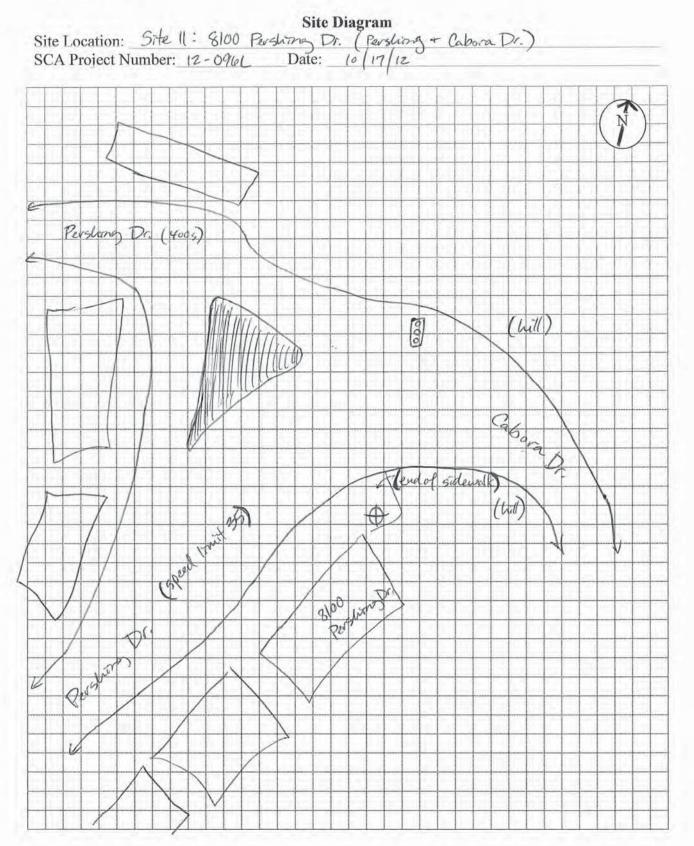
Project Number: 12-096L LAWA Northside Noise Monitoring

Sampling Site: Site 10: La Tijeva Blud & El Manor Ave.

Project Name:

	Time	Type of Reading	Source(s)	Distance from Source	Direction of Source	Wind Speed & Direction	Additional Weather Conditions	Comments
	1:21	80,8	cars, trucks (w)	~12-Soft.	S	2.9 mph(NE)	64.6°, 71.5%	LAug: ~68.1B
£79	1:26	84.6	school bus (w)	~ 30H.			64.30, 73.0%	
	1:27	79.7	cars (w)	~12-50ft.		-	-	
	1:25	80.1	Construction trucklus)	~ 50A.		2.6 (NE)	63.9°, 75.5%	
	1:32	84.2	fore trucks (2) (E)	~80.A.		2.8	(B.5°, 75.5%	
	1:34	80.0	security truck (w)	~ 30ff.		-	/	DOTE:) rainine
	1:35	81.1	medified truck (w)	~30A.				
	1:38	73.5	jet taking aff (w)	~2000\$4.+		2.9	63.0°, 79.42e	
	1:43	80.8	school bus /w)	~ 30A.		4.0	62.9°, 80.5%	
	1:50	74.3	· · ·	13000A.+		-		NorE) Slight drizzle
	1:51	81.3	old truck (w)	~12-ft.		2.2 (NE)	63.0° 81.7%	
	1:53	87.5	school bus, cars (w)	~30/12-50		-	-'	
	1:57	84.4	modified truck, SUV (w)	~30-50ft.		2.9	62.70, 79.5%	
	1:58	84.1	modified truck (w)	nzoff.		-		
	2:00	82.5	school bus (w)	~ 30fl.		1.5	62.8°, 79.0%	
	2:04	80.1	(avs (w)	~12-50.ff.		3.3	63.0°, 78.82.	
	2:07	80.7	Cars (w)	12-Soff.		-		
	2:14	85.3	modified touck, cars (w)	M2-30ff.		1.2 (NE)	62.9°, 80.3%	
	2:20	80.3	large touck (w), cans	N12-30ff.		1.4	63.20 79.20%	
	2:24	86.2	FedEx truck (w)	MZAL.	Ng na 10 Mi	2:7	62.50, 79.9%	LAcq: ~69dB
R80	2:26	75.0	SW jet landing (w)	~ 2000.ft.+		~		
	2:30	80.3	caus, trucks (w)	~12-50-FL.		2.1	62.70, 80.120	
	2:39	84.6	SUV, von, cars (w)	~12-50ff.		3.4	62.2°, 80.220	
	2:40	81.8	SUV, caves (w)	N30-50ff.		1.4 (NE)	62.4°, 80.0%	
	2:42	50.Le	SUV CAVE (W)	~12-30ff.	01 mm	-	'	
	2:44	83.7	The state which the second state is a state of the second state of the second state of the second state of the	12-30ff.		-	-	
	2:46	82.3	modified frick, cass (w)	Niz-Soft.		1.8 (NE)	63.0° 78.220	
	2:48	81.4	SUVS (W)	~12-30ff.	1 1	-	<u> </u>	
	2:50	85.0	modified truck (w)	~12ft.		5.2	62.90, 77.420	
	2:53	90.0	Industrial fourie, SUVS (0)	~12-30A.		-		
	2:55	81-1	cars (w)	~12-30ft.	$\checkmark$	2.1	62.5°, 78.0%	

Sheet 30/4


Technician Name: Sarah Woodard Sampling Date: 11 8 12

Project Number: 12-096L Project Name: LAWA Northside Noise Monitoring

Sampling Site: Ste 10: La Tijera Blud. + El Mamor Ave.

	Time	Type of Reading	Source(s)	Distance from Source	Direction of Source	Wind Speed & Direction	Additional Weather Conditions	Comments
	2:58	85.7	18-ritueler (w)	v soft.	5	1. Zupti (NE)	62.7°, 77.52	
	3:03	70.2	SW jet landing (w)	~ 2000 ff.+		3.8 mph (NE)	62.70 78.0%	
	3:06	81.6	modified truck (w)	~ 30ft.		-	<u> </u>	WOTE ?) raining
	3:07	81.7	V	~12.4.		-		<u> </u>
	3:09	82.0	caves (w)	112-30A.		2.6	62.4°, 82.3%	
	3:10	77.2	jets landing ataking off	~3000A.+			-	
	3.14	81.2	Jeep, SUV (w)	130.40ft.		1.5 (NE)	61.9 33.720	Note: slight drizzle
	3:20	84.6		112-30A.		1.1	61.6° 83.8%	LARY: ~70dB
K81	3:38	82.9	sports car (w)	~12-f4.		1.6	61.6, 84.7%	NOTE:) RATUTING
	3:39	82.1	SUV cars (w)	130-SOA.		2.4	61.30, 84.5%	NOTE:) Slight drizzle
	3:46	81.0	SUV (W)	~30ft.		*		
	3:50	83.5	sports car (w)	~12.A.		1.1 (NE)	61.70, 86.270	
	3:56	82.2	· ↓	~12.ff.		-	-	
	4:03	81.9	modified truck, cars (w)	30/12-50ft.		2.3	61.2°, 85.7%	
	4:06	83.1	modified truck SUVIND	112-30ft.		-		
	4:07	83.5	modified car w)	~ 30.ft.		1.3	61.6°, 86.1%	
	4:10	83.6	Cars, mudified (ar Iw)	~12-30-ft.	the second se	-	-	4142
	4:15	102.2	Ambulance (E)	~80ff.		-		
	4:16	81.1	United jet taking of ( in)	~2000.ft.+		6.0	61.0°, 85.37e	NOTE:) RATHING
	4:18	82.4	Cars, SUVS (w)	112-50A.		6.3	61.10, 86,1%	J
	4:22	83.9	old car, cars (w)	112-30ft.		3.2	60.8° 87.0%	LAeg: ~72.1B
R82	4:29	88.7	modified truck (w)	~ 30A.		0.0	61.10, 86.170	NUTE:) Slight directe
	4:35	81.3	modified touck, cars (w)	~12-30-ft.		0.0	61.30, 84.9%	
	4:37	87.3	modified car (w)	~12.H.				
	4:46	73.9	SW jet landing (w)	n 3000+ ft.		0.5	61.80, 84.8%	
	4:50	75.7	SW jet landing (w) aurs , Tut / jet landing)	12-80/2000+		1.3	61.60, 83.820	
	4:51	82.6	UPS truck (w)	12A.	V	-		
	4:55	Calibrat	ion					- goissed -> off
								V 00
3								





-----

Sampling I		17/12		Project Na	me: LAW	A Northside Noise Mon	itoring			
Sampling \$		2: 8100 Perstong Dr. ng 4 (aborn Dr.)		Herzuit: ~5A.						
Time	Type of Reading	Source(s)	Distance from Source	Direction of from- Source	Wind Speed & Direction	Additional Weather Conditions	Comments			
9:20	Calibration						passed			
9:21	81,1	Cours (N bound)	~10ft.	W	1.5 (5) mola	75.5°, 55.6%	NOTE: Fairly heavy tra			
9:23	85.3	motorcycle (N)	~12A.	w	- 1	-	where a cars vehic			
9:25	78.9	jet (w)		3	-	-	1 1			
9:30	99.8	motorcycle (5)	~30ft.	W	- I.S.	-	NOTE: Equipment in shap			
9:36	77.7	UPS truck (N)	~10	w	0.0 mph	77.6, 50.12	1.1			
9:39	76.6	motorcycle (N)	~10	W	-	~	NOTE: Northbound			
9:41	79.8	WM truck (S)	~30	W	0.0 mph	76.70, 51.7%	traffic deceleration down			
9:43	78.4	UPS truck (N)	~10	W	-		Saithbookd traffic			
9145	70.2	(ars + jet (N)(W)	10/	w/s	-	-				
9:47	82.2	tow truck (5)	~30	W	0.0	77.0° , 30.020 , 29.8	in Ha , 87. H. (9:29			
9:56	65.4	cars + jet (N)(W)	10/	w/s	-	- /	57			
9:57	75.5	large truck (NW)	~20.ft.	W	-					
9:58	81.8	UPS truck (N)	~10	W	3.6	78.2, 47.720				
10:01	'78.9	motorcycle (N)	~10	w	-	-				
10:02	68.5	caves + jet (N/W)	10/	w/s	0.0	79.0°, 46.2%				
10:07	73.3	50V (N)	~10	W	-					
10:08	189.1	Cross + jet (N)(W)	10/	w/s	0.9 (E)	78.40, 57.7%				
10:10	83.7	anstruction truck (N)	rloft.	W	-	-				
10:16	79,1	UPS truck (N)		W	6.0	77.5°, 61.7%				
10:20	76.8	cours + horn (N)		W	-	-				
10:21	84.4	UPS truck (N)		w	0.0	77.8°, 61.320, 29:	SZINTA			
10:23	73.8	sports car (N)	V	W	-	- 1	2			
10:24	77.6	tow truck (S)	n 30ft.	ω	-					
10:27	59,1	jet (NW)		5	0.7 (E)	77.6. 62.4%				
10:33		sports car (S)	~30	W	-	-				
10:36	71.9	caust jet (NYW)	10/	w/5	1.4 (E)	76.5° 65.1%				
10:39	76-8	motorcycle + jet (N)(w)	10/	WIS	-	1				
10:43	78.5	yeep (S)	~30	w	0.9 (E)	77.60, 62.120				
10:44	69.5	cars (N) + Swit (W)	10/	W15	-	1-				
10:48	69.9	Cars (N) + Swjet (W) Cars (N) + jet (W) FedEx truck (N)	10/	wls	~	-				
10:52	75,1	FedEx truck (N)	~10	w	-	-				
10:53	84.0	motorcycle (5)	~30	ŝ	0.0	79.10, 57.82				

	Sampling D		inah Woodard	c	Project Nu Project Na		12-096L A Northside Noise Mon	itoring
		No. of Concession, Name of	1: 8100 Pershing Dr.		r oject Na	Inc. LAV	A NOTITISIDE NOISE MOT	toring
-		(Per	"sling + (abora Dr.)		1			-
	Time	Type of Reading LAF	Source(s)	Distance from Source	Direction from Source	Wind Speed & Direction	Additional Weather Conditions	Comments
	10.59	75.8	garbage truck (NW)	~20ft.	W	0.5(E) uph	79.40, 58.02 (10	:41)
	11:05	64.3	jet (w)		5	-	-	
	11:07	70.9	cars (N) + jet (W)	10/	w/s	H	-	
	11:09	79.5	industrial truck (N)	~10.44.	W	O.I (E) mph	78.4°, 58.22	
	11:12	~ 90.0	truck horn (NW)	~20ft.	W	-	-	
Γ	11:16	~ 80.0	industrial truck (S)	~3oft.	W	0.0 mph	78.90 , 58.62	NOTE: Decreased leve
Γ	11:20	80.4	opendange truck (N)	~10ff,	W	-		Nore: Decreased leve of traffic, but still fre
Γ	11:29	79.6	large truck (N)	~10ft.	W	0.7(E)	79.70 57.920	
	11:38	78.8	garbage truck (N)	~10ft.	W	0.9 (NE)		
	11:40	69.7	jet (w)		S		-'	
Γ	11:44	66.9	Cars (N) + jet (W)	10/	w/s	0.0	84.9°, 49.4%	
Γ	11:48	65.7	jet(w)		5		-	
Γ	11:49	79.3	industrial truck (N)	Maft.	W	1.Z(E)	86.6°, 45.3%	NOTE: Equipment in 3
Γ	11:52	~ 80.0	Carhorn (ND)	NZO.A.	W		-	£ 1
Γ	11:57	79.8	industrial truck (NWW)	220.14	w	0.9(5)	14 -	
Γ	11:59	88.4	métercycle (N)	~10ff.	Ŵ		-	
	12:00	85.1	motorcycle (N)	~10ft.	W	0.0	83.3°, 45.8%	
	12:06	73.3	cars (N) + jet (W)	10/	w/s	0.8(E)	86.6 42.320	
	12:12	80.7	construction trucks(z)(N)	~10-14.	w		1	
Γ	12:18	69.7	Cars(N) + jet (vo)	10/	W/S	0.0	82.20, 48.320	
Γ	12:20	~83.0	car horn (NW)	nzoff.	W		,	
Γ	12:28	65.6	jet (w)		5	0.6(E)	80.20 52.320	
	12:31	71.3	cars(N) + jet(w)	10/	W/S			
Γ	12:35	81.3	motoreycle (N)	~10ft.	N	0.0	80.80 52.0%	
Γ	12:41	68.4	jet (w)		3		1	
Γ	12:47	65.9	jet (w)		5	0.6(E)	83.30, 48.6%	
Γ	12:50	78.8	motoreycle (5)	~30fl.	W		1	
Γ	12:51	84.4	old vain (5)	130ff.	W	2.0 (E)	80.9°, 46.6%	
Г	12:53	85.8	modified car (3)	Noff.	W		1 12 2	
-	12:58	~80.0	awhorn (N)	~18.ff.	W			
-	12:59	185.0	old truck (S)	(~ 30ff.		0.0	80.50, 47.22	
	1:01	79.7	sports car (5)	~ 30.44.	w		1	

Sheet Zof

	Fechnician Sampling D	Humo.	Invah Woodard		Project Nu Project Na		12-096L A Northside Noise Mon	itoring
	Sampling Sampling S	10242502 800	1: 8100 Pershing Pr.		1 TOJOOL ING	Inc. LAW		litoring
-		(Paris	him + Cabora Dr.)					
	Time	Type of Reading	Source(s)	Distance from Source	Direction from Source	Wind Speed & Direction	Additional Weather Conditions	Comments
	1:07	67.1	Cave (N) + jet (W)	10/	W/S	2.8 mph (6)	79.90, 54.32	1
	1:12	79.0	sports car (5)	~30ft.	SW	-	-	
	1:13	89.2	motorcycle (N)	~loft.	W	1.6 mphlE)	77.10, 57.82.	
	1:15	83.7	motorcycle (5)	230ft.	SW	- '	- 1	
	1:17	88.2	street sweeper (5)	130ft.	SW	2.0 mph (5)	76.70, 59.620	
	1:19	80.8	Industrial truck (N)	~10A.	W	j.	-	
	1:25	72.2	OWG (N)(G)	10/30	w	0.9 mph (5)	80.3°, 55.6%,	29.78 mth
	1:26	74.1	jet (w)	1	5		-	5
	1:27	63.0	sports car (NW)	~ 40f1,	W	- (58)	1	
0	1:30	75.6	modefied car (5)	~30A.	W	1.3.mph ()	80.80 56.0%	
	1:33	73.1	helocopter (E)	~200A.	N	-	-	
ſ	(:41	89.7	motorcycle (5)	~ 40ft.	SW.	÷	•	
ſ	1:42	81.9	industrial truck (5)	~50ff.	SW	0.0	84.10, 49.0%	
	1:48	67.8	curs(s) + jet(w)	30/	WIS	0.0	88.3° 37.4%	NOTE : Equipment in s
	1:51	79.0	Jeep (57	~30ff.	500	l.	-	* )
	2:06	80.2	motorcycle (5)	~ 304.	300	0.0	91.8°, 39,1%	
	2:11	85.6	motorcycle (5)	~5off.	SW	0.9(E)	83.5, 47.220	NOTE: Shade
	2:15	80.0	tow truck (5)	~40ft.	SW	1.8 (SE)	81.5°, 49.820	
	2:15	83.2	motorcycle (S)	~50ft.	SW	ł	-	
	2:16	64.7	iet (w)		S	1	¥	
	2:17	81.5	motorcycle (5)	~40ff.	SW	2.1(50)	79.5° 52.5%	
	2:26	77.8	old car (s)	~ 40ff.	SW	0.0	81.30, 52.8%	
	2:29	80.9	construction truck (N)	~10A.	W)	-	-	
1	2:31	79.7	industrial truck (5)	~ 30ft.	SW	1.4 (se)	79.4°. 52.8%	
	2:40	~71.0	horn (car) (N)	~ 20ft			/	
	2:41	~ 80.0	truck (N)	~10.Ft.	W	0.7 (SE)	81.0°, 55.1%	
	2:51	80.7	truck (S)	~30.ff.	SW	1.4 (5色)	79.90, 53.220	
	2:52	85.3	truck up tow (5)	~40ft.	SW		1	
	2:54	64.1	jet (w)		S	1.1 (5)	80.3°, 53.120	
	2:57	70.4	Cars (N) + iet(w)	10/	w/s	0.0	81.6°, 52.220	
-	3:04	67.8	set (w)		3		77.70, 55.3%	
	3:08	~70.0	dogs barking (s)	~30ft	S			

Sheet 30/4

5	Fechnician Sampling D	Date: /	Darah Woodaval		Project Nu Project Na		A Northside Noise Moni	itoring			
5	Sampling S	Site: Site	11: 8100 Pershing Dr.								
[	Time	Type of Reading	Source(s)	Distance from Source	Direction from Source	Wind Speed & Direction	Additional Weather Conditions	Comments			
Γ	3:12	83.5	old van (N)	Noft.	W	2.0.1(N)	79.4°, 55.32				
Γ	3:17	81.4	motorcycles(2)(5)	~40ft.	SW	2.9. m/N)	79.60, 51.22				
	3:19	65.2	iet (w)		5	Į	-				
	3:28	70.4	bus (5)	~40ft.	SW	1.9mph (E)	78.2°, 56.6%				
	3:30	82.4	old truck (5)	~40.4.	SW	5					
	3:32	72.2	old truck (3)	~ 50ft.	SW	1.4mph/E)	79.3°, 54.5%				
	3:40	83.0	motorcycle (S)	~ 40ft.	SW	0.9 (N)	80.8°, 46.9%				
	3:44	69.7	bush and jet (w)	30/	w/s	-					
L	3:47	82.3	tow truck (N)	~Ioff.	w	0.8 (N)	81.2°, 46.2%				
L	3:52	83.4	large truck (5)	nzoft	500	(are)	-				
L	\$ 3:53	85.2	motorcycle (5)	130ft	W	0.0	80.20, 49.0%				
L	3:55	71.0	cars(N) + jet (w)	10/	w/s	-	-				
L	4:02	87.7	motorcycles (2) (5)	~40ft.	SW	1.5 (SE)	81.4°, 52.420				
	4:04	82.3	large truck & motorcycle?	~ 40ft.	SW	5					
L	4:07	75.1	set (w)		5	0.0	80.5°, SI.1%	6			
L	4:17	72.3	Amplance (no swen) (5)	230A.	W	0.0	80.70, 54.720				
L	4:25	77.7	Mail truck (S)	~ 30ft.	W	2.3 (N)	83.1, 52.5%				
L	4:28	67.7	caves (N) + jet (W)	10/	w/s	-	-				
L	4:30	76.6	jeep (N)	rioft.	W	0.7 (N)	79.3°, 58.32				
L	4:36	79.9	motorcycle (5)	~ 40ft.	SW	6.0	78.2°, 59.22				
L	4:37	79.7	motocycle (N)	~10ff.	W						
L	4:38	80.4	SUV (S)	130ft.	SW	(Section 2)					
L	4:44	Calibratio						passed			
L	4:47	76.7	old track (S)	n3oft.	SW	0.0	80.1°, 56.720	1			
L	4:56	78.0	50V (5)	130ff.	W	2.56 (5)	75.20, 63.920				
L	5:03	86.9	motorcycle (S)	~30ft.	SW	11 (5)	81.3°, 66.120				
	5:12	78.6	motorcycle (N)	vioff.	W	0.0	78.1°, 57.1%				
1	5:21	80.1	motorcycle + SUV (5)	230ft.	SW			,			
	5:23	Catibrat	ton					pressed ->0			

Seet 4014

ATTACHMENT C AM AND PM PEAK-HOUR TRAFFIC VOLUMES

# Northside Plan Update EIR 2012 AM Peak Hour Traffic

				Traffic \	Volumes	
Traffic Node	Segment Description	Direction	PCE	Autos	MT	НТ
	Manchester Ave., East of Lincoln Blvd.	WB	751	698	13	2
		EB	597	555	10	2
	Manchester Ave., West of Lincoln Blvd.	WB	472	439	8	2
12		EB	712	662	12	2
	Lincoln Blvd., North of Manchester Ave.	SB	1342	1248	23	4
		NB	1932	1796	33	6
	Lincoln Blvd., South of Manchester Ave.	SB	1413	1314	24	5
		NB	1609	1496	27	5
	Manchester Ave., East of Pershing Dr.	WB	503	468	8	2
		EB	210	195	4	1
	Manchester Ave., West of Pershing Dr.	WB	62	58	1	0
16		EB	61 275	57	1 5	0
	Pershing Dr., north of Manchester Ave.		1156	256 1075	20	1
		NB SB	340	316	6	4
	Pershing Dr., south of Manchester Ave.	NB	929	864	16	3
		WB	230	214	4	
	Westchester Pkwy., East of Pershing Dr.	EB	230		4 5	1
		SB	482	267 448	8	1
17	Pershing Dr., north of Westchester Pkwy.	NB	608	565	10	2
		SB	615	572	10	2
	Pershing Dr., south of Westchester Pkwy.	NB	798	742	10	3
		WB	307	285	5	1
	Manchester Ave., East of Falmouth Ave.	EB	424	394	7	1
		WB	387	394	7	1
	Manchester Ave., West of Falmouth Ave.	EB	394	366	7	1
91		SB	56	52	, 1	0
	Falmouth Ave., north of Manchester Ave.	NB	71	66	1	0
		SB	150	139	3	0
	Falmouth Ave., south of Manchester Ave.	NB	275	256	5	1
	1	WB	484	450	8	2
	Westchester Pkwy., East of Falmouth Ave.	EB	637	592	11	2
		WB	313	291	5	1
	Westchester Pkwy., West of Falmouth Ave.	EB	479	445	8	2
92		SB	454	422	8	1
	Falmouth Ave., north of Westchester Pkwy.	NB	413	384	7	1
		SB	98	91	2	0
	Falmouth, south of Westchester Pkwy.	NB	44	41	1	0
		WB	167	155	3	1
	Loyola Blvd., West of Lincoln Blvd.	EB	214	199	4	1
		SB	1429	1329	24	5
93	Lincoln Blvd., North of Loyola Blvd.	NB	2314	2151	39	7
		SB	1323	1230	22	4
	Lincoln Blvd., South of Loyola Blvd.	NB	2161	2009	37	7

# Northside Plan Update EIR 2012 AM Peak Hour Traffic

				Traffic \	/olumes	
Traffic Node	Segment Description	Direction	PCE	Autos	MT	НТ
	Wastahastar Diwy, East of Louisla Divid	WB	738	686	12	2
	Westchester Pkwy., East of Loyola Blvd.	EB	487	453	8	2
	Westshester Dkung West of Loyala Dkud	WB	499	464	8	2
94	Westchester Pkwy., West of Loyola Blvd.	EB	634	589	11	2
94	Loyola Blvd., north of Westchester Pkwy.	SB	205	191	3	1
	Loyola Bivd., Horth of Westchester PRwy.	NB	395	367	7	1
	Loyola Blvd., south of Westchester Pkwy.	SB	210	195	4	1
	Loyola Bivd., south of westchester Pkwy.	NB	14	14	0	0
	Manahastar Ava Fast of Emerson	WB	1165	1083	20	4
	Manchester Ave., East of Emerson	EB	896	833	15	3
	Manchester Ave., West of Emerson	WB	1133	1053	19	4
96	Manchester Ave., west of Emerson	EB	795	739	13	3
96	Emoreon Ava north of Manchester	SB	374	348	6	1
	Emerson Ave., north of Manchester	NB	300	279	5	1
	Emerson Ave. couth of Monsherter	SB	275	256	5	1
	Emerson Ave., south of Manchester	NB	270	251	5	1
	Mastehaster Diving Fast of La Tilera Divid	WB	422	392	7	1
	Westchester Pkwy., East of La Tijera Blvd.	EB	305	284	5	1
97	Westshester Dkung West of La Tijera Dkyd	WB	711	661	12	2
97	Westchester Pkwy., West of La Tijera Blvd.	EB	509	473	9	2
	La Tijera Dlud - parth of Mastahastar Dlunu	SB	328	305	6	1
	La Tijera Blvd., north of Westchester Pkwy	NB	243	226	4	1
	La Tijera Blvd., East of Sepulveda Westway	WB	486	452	8	2
	La Tijera Bivu., East of Sepulveua Westway	EB	403	375	7	1
	La Tijera Blud - West of Sepulyeda Westway	WB	468	435	8	1
98	La Tijera Blvd., West of Sepulveda Westway	EB	423	393	7	1
90	Sepulveda Westway, north of La Tijera Blvd.	SB	108	100	2	0
		NB	163	152	3	1
	Sanulyada Wastway, south of La Tilara Plud	SB	110	102	2	0
	Sepulveda Westway, south of La Tijera Blvd.	NB	137	127	2	0

# Northside Plan Update EIR 2022 AM Peak Hour Traffic Without Project

Traffic Node	Segment Description	Direction	PCE	Autos	МТ	нт
12	Manchester Ave., East of Lincoln Blvd.	WB	816	759	14	3
12		EB	673	626	11	2
12	Manchester Ave., West of Lincoln Blvd.	WB	532	495	9	2
12		EB	788	733	13	3
12	Lincoln Blvd., North of Manchester Ave.	SB	1372	1276	23	4
		NB	1932	1796	33	6
12	Lincoln Blvd., South of Manchester Ave.	SB	1489	1384	25	5
	,	NB	1650	1534	28	5
16	Manchester Ave., East of Pershing Dr.	WB	540	502	9	2
		EB	264	245	4	1
16	Manchester Ave., West of Pershing Dr.	WB	84	78	1	0
		EB	85	79	1	0
16	Pershing Dr., north of Manchester Ave.	SB	369	343	6	1
		NB	1164	1082	20	4
16	Pershing Dr., south of Manchester Ave.	SB	431	401	7	1
		NB	949	882	16	3
17	Westchester Pkwy., East of Pershing Dr.	WB	249	231	4	1
		EB	295	274	5	1
17	Pershing Dr., north of Westchester Pkwy.	SB	532	495	9	2
		NB	616	573	10	2
17	Pershing Dr., south of Westchester Pkwy.	SB	684	636	12	2
17		NB	814	757	14	3
91	Manchester Ave., East of Falmouth Ave.	WB	336	312	6	1
51		EB	465	432	8	1
91	Manchester Ave., West of Falmouth Ave.	WB	424	394	7	1
51		EB	432	402	7	1
91	Falmouth Ave., north of Manchester Ave.	SB	61	57	1	0
51		NB	78	73	1	0
91	Falmouth Ave., south of Manchester Ave.	SB	164	152	3	1
91	rainoutin Ave., south of Manchester Ave.	NB	302	281	5	1
92	Westchester Pkwy., East of Falmouth Ave.	WB	530	493	9	2
92	Westchester PKWy., Last of Painfouth Ave.	EB	697	648	12	2
92	Westchester Pkwy., West of Falmouth Ave.	WB	343	319	6	1
92	Westchester PKWy., West of Faimouth Ave.	EB	524	487	9	2
92	Falmouth Ave., north of Westchester Pkwy.	SB	497	462	8	2
92	Faimoutil Ave., north of westchester Pkwy.	NB	452	420	8	1
92	Folmouth, couth of Wastshaster Dawn	SB	107	99	2	0
92	Falmouth, south of Westchester Pkwy.	NB	48	45	1	0
0.2	Louola Rhyd West of Lincoln Rhyd	WB	182	169	3	1
93	Loyola Blvd., West of Lincoln Blvd.	EB	234	218	4	1
0.2	Lineala Divid North of Lauria Divid	SB	1564	1454	26	5
93	Lincoln Blvd., North of Loyola Blvd.	NB	2533	2355	43	8
00		SB	1448	1346	24	5
93	Lincoln Blvd., South of Loyola Blvd.	NB	2365	2199	40	8

# Northside Plan Update EIR 2022 AM Peak Hour Traffic Without Project

Traffic Node	Segment Description	Direction	PCE	Autos	МТ	нт
		WB	807	750	14	3
94	Westchester Pkwy., East of Loyola Blvd.	EB	534	496	9	2
		WB	546	508	9	2
94	Westchester Pkwy., West of Loyola Blvd.	EB	694	645	12	2
94	Lougle Dhud, worth of Mastehaster Dhung	SB	225	209	4	1
94	Loyola Blvd., north of Westchester Pkwy.	NB	432	402	7	1
94	Loyola Blvd., south of Westchester Pkwy.	SB	230	214	4	1
94	Edyola Blvd., south of westchester Pkwy.	NB	16	16	0	0
96	Manchester Ave., East of Emerson	WB	1275	1185	22	4
90	Manchester Ave., East of Effersori	EB	981	912	17	3
96	Manchester Ave., West of Emerson	WB	1240	1153	21	4
90	Wanchester Ave., west of Emerson	EB	870	809	15	3
96	Emerson Ave., north of Manchester	SB	410	381	7	1
50	Emerson Ave., north or Manchester	NB	329	306	6	1
96	Emerson Ave., south of Manchester	SB	301	280	5	1
50	Emerson Ave., south of Manchester	NB	296	275	5	1
97	Westchester Pkwy., East of La Tijera Blvd.	WB	462	430	8	1
57	Westchester PRWy., Last of La Tijera bivu.	EB	334	311	6	1
97	Westchester Pkwy., West of La Tijera Blvd.	WB	778	723	13	2
57	Westerrester r kwy., west of La Hjera biva.	EB	557	518	9	2
97	La Tijera Blvd., north of Westchester Pkwy	SB	359	334	6	1
57	La fijera biva, north of westenester r kwy	NB	266	247	4	1
98	La Tijera Blvd., East of Sepulveda Westway	WB	532	495	9	2
50		EB	442	411	7	1
98	La Tijera Blvd., West of Sepulveda Westway	WB	512	476	9	2
		EB	463	430	8	1
98	Sepulveda Westway, north of La Tijera Blvd.	SB	108	100	2	0
		NB	179	166	3	1
98	Sepulveda Westway, south of La Tijera Blvd.	SB	120	112	2	0
50	beparteau westway, south of Ea fijera biva.	NB	150	139	3	0

# Northside Plan Update EIR 2022 AM Peak Hour Traffic With Project

Traffic Node	Segment Description	Direction	PCE	Autos	МТ	нт
12	Manchester Ave., East of Lincoln Blvd.	WB	938	872	16	3
12		EB	706	656	12	2
12	Manchester Ave., West of Lincoln Blvd.	WB	539	501	9	2
12	Manchester Ave., west of Elifcoli Bivu.	EB	808	751	14	3
12	Lincoln Rhyd North of Manchaster Ave	SB	1702	1582	29	5
12	Lincoln Blvd., North of Manchester Ave.	NB	2021	1879	34	6
12	Lincoln Blvd., South of Manchester Ave.	SB	1952	1815	33	6
12	Elifcont Bivu., south of Manchester Ave.	NB	1770	1646	30	6
16	Manchester Ave. East of Derching Dr.	WB	545	507	9	2
16	Manchester Ave., East of Pershing Dr.	EB	277	258	5	1
16	Manchester Ave. West of Pershing Dr.	WB	84	78	1	0
16	Manchester Ave., West of Pershing Dr.	EB	85	79	1	0
10	Develope Dr. north of Manchaster Ave	SB	416	387	7	1
16	Pershing Dr., north of Manchester Ave.	NB	1177	1094	20	4
10	Derching Dr. couth of Manchester Ave	SB	466	433	8	1
16	Pershing Dr., south of Manchester Ave.	NB	958	891	16	3
47		WB	279	259	5	1
17	Westchester Pkwy., East of Pershing Dr.	EB	408	379	7	1
47		SB	567	527	10	2
17	Pershing Dr., north of Westchester Pkwy.	NB	625	581	11	2
47		SB	705	655	12	2
17	Pershing Dr., south of Westchester Pkwy.	NB	892	829	15	3
0.1		WB	342	318	6	1
91	Manchester Ave., East of Falmouth Ave.	EB	484	450	8	2
		WB	428	398	7	1
91	Manchester Ave., West of Falmouth Ave.	EB	445	414	8	1
0.1		SB	76	71	1	0
91	Falmouth Ave., north of Manchester Ave.	NB	83	77	1	0
0.1		SB	176	164	3	1
91	Falmouth Ave., south of Manchester Ave.	NB	307	285	5	1
		WB	563	523	10	2
92	Westchester Pkwy., East of Falmouth Ave.	EB	823	765	14	3
		WB	385	358	7	1
92	Westchester Pkwy., West of Falmouth Ave.	EB	637	592	11	2
00		SB	508	472	9	2
92	Falmouth Ave., north of Westchester Pkwy.	NB	457	425	8	1
		SB	107	99	2	0
92	Falmouth, south of Westchester Pkwy.	NB	64	60	1	0
		WB	457	425	8	1
93	Loyola Blvd., West of Lincoln Blvd.	EB	286	266	5	1
		SB	2026	1884	34	6
93	Lincoln Blvd., North of Loyola Blvd.	NB	2654	2467	45	8

# Northside Plan Update EIR 2022 AM Peak Hour Traffic With Project

Traffic Node	Segment Description	Direction	PCE	Autos	МТ	нт
02	Lincole Dhud. Couth of Lougle Dhud	SB	1651	1535	28	5
93	Lincoln Blvd., South of Loyola Blvd.	NB	2434	2263	41	8
0.1	Mastehaster Diving Fast of Lougla Divid	WB	1437	1336	24	5
94	Westchester Pkwy., East of Loyola Blvd.	EB	691	642	12	2
94	Westchester Pkwy., West of Loyola Blvd.	WB	1234	1147	21	4
94	Westchester PRwy., West of Loyola Blvd.	EB	899	836	15	3
94	Loyola Blvd., north of Westchester Pkwy.	SB	225	209	4	1
54	Loyola bivd., north of Westchester PKWy.	NB	432	402	7	1
94	Loyola Blvd., south of Westchester Pkwy.	SB	278	258	5	1
94	Edyola Bivd., south of Westchester PKWy.	NB	74	69	1	0
96	Manchester Ave., East of Emerson	WB	1368	1272	23	4
90	Manchester Ave., East of Emerson	EB	1009	938	17	3
96	Manchester Ave., West of Emerson	WB	1361	1265	23	4
90	Wallchester Ave., west of Emerson	EB	903	840	15	3
96	Emerson Ave., north of Manchester	SB	457	425	8	1
90	Emerson Ave., north or Manchester	NB	341	317	6	1
96	Emerson Ave., south of Manchester	SB	314	292	5	1
90	Emerson Ave., south or Manchester	NB	297	276	5	1
97	Westchester Pkwy., East of La Tijera Blvd.	WB	783	728	13	2
57	Westchester PRWy., Last of La Tijera bivu.	EB	425	395	7	1
97	Westchester Pkwy., West of La Tijera Blvd.	WB	1304	1212	22	4
97	Westchester PRWy., West of La Tijera blvd.	EB	798	742	13	3
97	La Tijera Blvd., north of Westchester Pkwy	SB	665	618	11	2
97	La Tijera Bivu., Horth of Westchester Pkwy	NB	517	481	9	2
0.0	La Tijora Rhyd Fast of Sanyhyada Wastway	WB	909	845	15	3
98	La Tijera Blvd., East of Sepulveda Westway	EB	736	684	12	2
98	La Tijera Blvd., West of Sepulveda Westway	WB	806	749	14	3
30		EB	529	492	9	2
98	Sepulveda Westway, north of La Tijera Blvd.	SB	112	104	2	0
30		NB	185	172	3	1
98	Sepulveda Westway, south of La Tijera Blvd.	SB	208	193	4	1
90	Sepurveua westway, south of La Tijera BIVU.	NB	196	182	3	1

## Northside Plan Update EIR 2012 PM Peak Hour Traffic

				Traffic	Volumes	
Traffic Node	Segment Description	Direction	PCE	Autos	MT	НТ
12	Manchester Ave., East of Lincoln Blvd.	WB	791	735	13	3
		EB	712	662	12	2
12	Manchester Ave., West of Lincoln Blvd.	WB	650	604	11	2
		EB	495	460	8	2
12	Lincoln Blvd., North of Manchester Ave.	SB	1809	1682	31	6
		NB	1863	1732	31	6
12	Lincoln Blvd., South of Manchester Ave.	SB	1644	1528	28	5
		NB	1774	1649	30	6
16	Manchester Ave., East of Pershing Dr.	WB	314	292	5	1
		EB WB	742	690 87	13 2	2
16	Manchester Ave., West of Pershing Dr.	EB	94 877	815	15	3
		SB	78	73	15	0
16	Pershing Dr., north of Manchester Ave.	NB	78	742	13	3
		SB	148	138	3	0
16	Pershing Dr., south of Manchester Ave.	NB	513	477	9	2
		WB	271	252	5	1
17	Westchester Pkwy., East of Pershing Dr.	EB	271	252	5	1
		SB	503	468	8	2
17	Pershing Dr., north of Westchester Pkwy.	NB	619	575	10	2
		SB	602	560	10	2
17	Pershing Dr., south of Westchester Pkwy.	NB	719	668	10	2
		WB	378	351	6	1
91	Manchester Ave., East of Falmouth Ave.	EB	421	391	7	1
		WB	383	356	6	1
91	Manchester Ave., West of Falmouth Ave.	EB	461	429	8	1
0.1		SB	75	70	1	0
91	Falmouth Ave., north of Manchester Ave.	NB	107	99	2	0
01		SB	136	126	2	0
91	Falmouth Ave., south of Manchester Ave.	NB	133	124	2	0
92	Westshester Divery East of Folmouth Ave	WB	436	405	7	1
92	Westchester Pkwy., East of Falmouth Ave.	EB	353	328	6	1
92	Westchester Pkwy., West of Falmouth Ave.	WB	293	272	5	1
92	westchester Pkwy., west of Faimouth Ave.	EB	326	303	6	1
92	Falmouth Ave., north of Westchester Pkwy.	SB	126	117	2	0
92	rainoutil Ave., north of westchester Pkwy.	NB	297	276	5	1
92	Falmouth, south of Westchester Pkwy.	SB	25	23	0	0
	ramouth, south of westchester rkwy.	NB	80	74	1	0
93	Loyola Blvd., West of Lincoln Blvd.	WB	215	200	4	1
	Leyola bival, west of Elifcont biva.	EB	201	187	3	1
93	Lincoln Blvd., North of Loyola Blvd.	SB	1824	1696	31	6
		NB	1784	1659	30	6
93	Lincoln Blvd., South of Loyola Blvd.	SB	1706	1586	29	5
		NB	1679	1561	28	5

## Northside Plan Update EIR 2012 PM Peak Hour Traffic

			Traffic Volumes				
Traffic Node		Divention	PCE	Autos	NAT		
Node	Segment Description	Direction		Autos	MT	HT	
94	Westchester Pkwy., East of Loyola Blvd.	WB	502	467	8	2	
_	,,	EB	336	312	6	1	
94	Westchester Pkwy., West of Loyola Blvd.	WB	430	400	7	1	
	,,	EB	359	334	6	1	
94	Loyola Blvd., north of Westchester Pkwy.	SB	182	169	3	1	
		NB	232	216	4	1	
94	Loyola Blvd., south of Westchester Pkwy.	SB NB	64	60	1	0	
			19	19	0	0	
96	Manchester Ave., East of Emerson	WB	870	809	15	3	
50		EB	1063	988	18	3	
96	Manchester Ave., West of Emerson	WB	813	756	14	3	
90	96 Manchester Ave., west of Emerson		1048	974	18	3	
96	Emerson Ave., north of Manchester	SB	242	225	4	1	
90	Emerson Ave., north or Manchester	NB	284	264	5	1	
96	Emoreon Ava couth of Manchester	SB	219	204	4	1	
90	Emerson Ave., south of Manchester	NB	219	204	4	1	
07	Westsheeter Diverse Fast of La Tilara Dive	WB	264	245	4	1	
97	Westchester Pkwy., East of La Tijera Blvd.	EB	195	181	3	1	
07	Mostehoster Diver, Most of La Tilara Dive	WB	443	412	7	1	
97	Westchester Pkwy., West of La Tijera Blvd.	EB	368	342	6	1	
07	Le Tilene Dhud, weath of Montohester Dhum	SB	195	181	3	1	
97	La Tijera Blvd., north of Westchester Pkwy	NB	189	176	3	1	
0.0		WB	503	468	8	2	
98	La Tijera Blvd., East of Sepulveda Westway	EB	449	417	8	1	
0.0	Le Tilere Dhud Meet of Consultante Meet an	WB	398	370	7	1	
98	La Tijera Blvd., West of Sepulveda Westway	EB	296	275	5	1	
0.0		SB	266	247	4	1	
98	Sepulveda Westway, north of La Tijera Blvd.	NB	357	332	6	1	
		SB	149	139	3	0	
98	Sepulveda Westway, south of La Tijera Blvd.	NB	288	268	5	1	

# Northside Plan Update EIR 2022 PM Peak Hour Traffic Without Project

Traffic Node	Segment Description	Direction	PCE	Autos	МТ	нт
	Manchester Ave., East of Lincoln Blvd.	WB	881	819	15	3
		EB	813	756	14	3
	Manchester Ave., West of Lincoln Blvd.	WB	696	647	12	2
12		EB	651	605	11	2
	Lincoln Blvd., North of Manchester Ave.	SB	1809	1682	31	6
		NB	1923	1788	32	6
	Lincoln Blvd., South of Manchester Ave.	SB	1683	1565	28	5
	, ,	NB	1774	1649	30	6
	Manchester Ave., East of Pershing Dr.	WB	362	337	6	1
		EB	811	754	14	3
	Manchester Ave., West of Pershing Dr.	WB	118	110	2	0
16		EB	910	846	15	3
	Pershing Dr., north of Manchester Ave.	SB	109	101	2	0
		NB	838	779	14	3
	Pershing Dr., south of Manchester Ave.	SB	183	170	3	1
		NB	569	529	10	2
	Westchester Pkwy., East of Pershing Dr.	WB	287	267	5	1
		EB	281	261	5	1
17	Pershing Dr., north of Westchester Pkwy.	SB	544	506	9 6	2
		NB	370	344		1
	Pershing Dr., south of Westchester Pkwy.	SB NB	659 479	613 445	11 8	2
		WB	479		0 7	1
	Manchester Ave., East of Falmouth Ave.	EB	414	385 428	8	1
		WB	400	390	7	1
	Manchester Ave., West of Falmouth Ave.	EB	419	428	8	1
91		SB	82	76	1	0
	Falmouth Ave., north of Manchester Ave.	NB	117	109	2	0
		SB	149	139	3	0
	Falmouth Ave., south of Manchester Ave.	NB	145	135	2	0
		WB	477	443	8	2
	Westchester Pkwy., East of Falmouth Ave.	EB	387	360	7	1
		WB	321	298	5	1
	Westchester Pkwy., West of Falmouth Ave.	EB	358	333	6	1
92		SB	138	128	2	0
	Falmouth Ave., north of Westchester Pkwy.	NB	325	302	5	1
		SB	18	17	1	0
	Falmouth, south of Westchester Pkwy.	NB	88	82	1	0
	Levels Divid. Mast of Liver La Divid	WB	235	218	4	1
	Loyola Blvd., West of Lincoln Blvd.	EB	220	205	4	1
0.2	Lincolo Dhud. North of Louis Dhud	SB	1997	1857	34	6
93	Lincoln Blvd., North of Loyola Blvd.	NB	1953	1816	33	6
	Lincoln Dhud. Couth of Louisla Dhud	SB	1868	1737	32	6
	Lincoln Blvd., South of Loyola Blvd.	NB	1839	1710	31	6

# Northside Plan Update EIR 2022 PM Peak Hour Traffic Without Project

Traffic Node	Segment Description	Direction	PCE	Autos	МТ	нт
		WB	550	511	9	2
	Westchester Pkwy., East of Loyola Blvd.	EB	367	341	6	1
		WB	471	438	8	2
	Westchester Pkwy., West of Loyola Blvd.	EB	393	365	7	1
94	Loyola Blvd., north of Westchester Pkwy.	SB	199	185	3	1
	LOYOIA BIVG., NORTH OF WESTCHESTER PRWY.	NB	254	236	4	1
	Lougla Rhyd, couth of Wastebaster Rhym	SB	70	65	1	0
	Loyola Blvd., south of Westchester Pkwy.	NB	20	19	1	0
	Manchester Ave., East of Emerson		953	886	16	3
	Wianchester Ave., East of Emerson	EB	1164	1082	20	4
	Manchester Ave., West of Emerson	WB	890	827	15	3
96	Wanchester Ave., west of Emerson	EB	1148	1067	19	4
90	Emerson Ave., north of Manchester	SB	265	246	4	2 1 2 1 1 1 1 1 0 0 3 4 3 4 3 4 1 1 1 1 1 1 1 1 1 1 1 1 1
	Emerson Ave., north or Manchester	NB	312	290	5	1
	Emerson Ave., south of Manchester	SB	240	223	4	1
	Emerson Ave., south of Manchester	NB	240	223	4	1
	Westchester Pkwy., East of La Tijera Blvd.	WB	289	269	5	1
	Westchester PRWy., Last of La Tijera bivu.	EB	214	199	4	1
97	Westchester Pkwy., West of La Tijera Blvd.	WB	485	451	8	2
57	Westenester r kwy., west of La Hjera blva.	EB	403	375	7	1
	La Tijera Blvd., north of Westchester Pkwy	SB	214	199	4	1
	La fijera biva, north of westenester r kwy	NB	207	192	3	1
	La Tijera Blvd., East of Sepulveda Westway	WB	551	512	9	2
		EB	492	457	8	2
	La Tijera Blvd., West of Sepulveda Westway	WB	436	405	7	1
98		EB	325	302	5	1
50	Sepulveda Westway, north of La Tijera Blvd.	SB	291	271	5	1
		NB	391	364	7	1
	Sepulveda Westway, south of La Tijera Blvd.	SB	163	152	3	1
		NB	315	293	5	1

# Northside Plan Update EIR 2022 PM Peak Hour Traffic With Project

Traffic Node	Segment Description	Direction	PCE	Autos	МТ	нт
		WB	933	867	16	3
	Manchester Ave., East of Lincoln Blvd.	EB	941	875	16	3
		WB	741	689	13	2
10	Manchester Ave., West of Lincoln Blvd.	EB	679	631	11	2
12		SB	1968	1830	33	3 3 2
	Lincoln Blvd., North of Manchester Ave.	NB	2297	2136	39	7
		SB	1861	1730	31	6
	Lincoln Blvd., South of Manchester Ave.	NB	2260	2101	38	7
		WB	389	362	7	1
	Manchester Ave., East of Pershing Dr.	EB	823	765	14	3
		WB	118	110	2	0
4.6	Manchester Ave., West of Pershing Dr.	EB	910	846	15	3
16		SB	131	122	2	0
	Pershing Dr., north of Manchester Ave.	NB	892	829	15	3
		SB	211	196	4	1
	Pershing Dr., south of Manchester Ave.	NB	614	571	10	2
		WB	421	391	7	1
	Westchester Pkwy., East of Pershing Dr.	EB	347	323	6	1
		SB	572	532	10	2
17	Pershing Dr., north of Westchester Pkwy.	NB	415	386	7	
		SB	748	695	13	2
	Pershing Dr., south of Westchester Pkwy.	NB	517	481	9	
	Pershing Dr., south of Westchester Pkwy.	WB	459	427	8	1
	Manchester Ave., East of Falmouth Ave.	EB	485	451	8	2
		WB	448	417	8	1
0.1	Manchester Ave., West of Falmouth Ave.	EB	462	430	8	1
91	False with Aug an author ( Manachardan Aug	SB	89	83	2	0
	Falmouth Ave., north of Manchester Ave.	NB	135	126	2	0
		SB	168	156	3	1
	Falmouth Ave., south of Manchester Ave.	NB	172	160	3	1
		WB	625	581	11	2
	Westchester Pkwy., East of Falmouth Ave.	EB	506	470	9	2
		WB	457	425	8	1
6.5	Westchester Pkwy., West of Falmouth Ave.	EB	414	385	7	1
92		SB	145	135	2	0
	Falmouth Ave., north of Westchester Pkwy.	NB	352	327	6	1
	Felmouth couth of Microsoft and the	SB	18	17	1	0
	Falmouth, south of Westchester Pkwy.	NB	158	147	3	1
	Levels Divel Most of Excels Divel	WB	290	270	5	1
	Loyola Blvd., West of Lincoln Blvd.	EB	471	233	4	1
63	Lincoln Dhud. North of Louis In Dhud	SB	2174	2021	37	7
93	Lincoln Blvd., North of Loyola Blvd.	NB	2439	2268	41	8

# Northside Plan Update EIR 2022 PM Peak Hour Traffic With Project

Traffic Node	Segment Description	Direction	PCE	Autos	МТ	нт
	Lincoln Dhud. Couth of Lougle Dhud	SB	1990	1850	34	6
	Lincoln Blvd., South of Loyola Blvd.	NB	2074	1928	35	7
	Mastehaster Diving Fast of Lovala Divid	WB	764	710	13	2
	Westchester Pkwy., East of Loyola Blvd.	EB	859	799	15	3
	Westchester Pkwy., West of Loyola Blvd.	WB	706	656	12	2
94	Westchester PRwy., West of Loyola Blvd.	EB	1116	1038	19	4
94	Loyola Blvd., north of Westchester Pkwy.	SB	204	190	3	1
	Edyola Blvd., north of Westchester PKWy.	NB	256	238	4	1
	Loyola Blvd., south of Westchester Pkwy.	SB	299	278	5	1
	Edyola Blvd., south of westchester Pkwy.	NB	36	33	1	0
	Manchester Ave., East of Emerson	WB	1012	941	17	3
	Manchester Ave., East of Effersori	EB	1264	1175	21	4
	Manchester Ave., West of Emerson	WB	942	876	16	3
96	Wallchester Ave., west of Emerson	EB	1275	1185	22	4
90	Emerson Ave., north of Manchester	SB	288	268	21 4 16 3	
	Emerson Ave., north or Manchester	NB	365	339	6	1
	Emerson Ave., south of Manchester	SB	249	241	4	1
	Emerson Ave., south of Manchester	NB	245	228	4	1
	Westchester Pkwy., East of La Tijera Blvd.	WB	458	426	8	1
	Westchester PRWy., East of La Tijera Bivu.	EB	575	535	10	2
97	Westshester Diving West of La Tijera Divid	WB	814	757	14	3
97	Westchester Pkwy., West of La Tijera Blvd.	EB	1006	935	17	3
	Le Tilere Dud perth of Mestehester Diver	SB	544	506	9	2
	La Tijera Blvd., north of Westchester Pkwy	NB	619	575	10	2
	Le Tilere Dud Fest of Servilvede Westway	WB	749	696	13	2
	La Tijera Blvd., East of Sepulveda Westway	EB	939	873	16	3
	La Tijora Dlud - West of Sepulueda Mesturau	WB	558	519	9	2
0.0	La Tijera Blvd., West of Sepulveda Westway	EB	659	613	11	2
98	Sanulyada Wastway, parth of La Tijara Divid	SB	304	283	5	1
	Sepulveda Westway, north of La Tijera Blvd.	NB	415	386	7	1
	Sanulyada Wasturay, south of La Tilara Divid	SB	257	239	4	1
	Sepulveda Westway, south of La Tijera Blvd.	NB	457	425	8	1

ATTACHMENT D CONSTRUCTION EQUIPMENT NOISE PREDICTIONS

### Attachment D - LAX Northside Plan Update Construction Noise

#### Table 1

	Ambient	Construction Phase Maximum Noise Level (dBA)								
Location	Noise Level (dBA)	Grading	Clear & Grub	Site Utilities	Building Foundation	Building Construction	Architectural Coating	Paving		
Area 2	62	58	60	61	60	60	44	58		
Area 3	64	70	71	73	72	72	56	68		
Area 11 North of W 88 th Street	61	52	53	55	55	54	39	51		
Area 11 Homes with Line-of-Sight	61	57	58	60	60	59	44	56		
Area 12A N of W 88 th Street	61	51	53	53	53	53	38	50		
Area 12A Visitation Catholic Church	61	69	70	71	71	71	56	68		
Area 13 Apartments	69	73	74	75	88	88	72	84		
Area 13 Day Care	69	63	64	65	78	77	62	74		

#### **Construction Noise Level Summary**

Note:

dBA = A-weighted decibels

Source: URS, 2013.

	Ambient	Ambient Change In Hourly Noise Level During Construction Activities (dBA)							
Location	Noise Level (dBA)	Grading	Clear & Grub	Site Utilities	Building Foundation	Building Construction	Architectural Coating	Paving	
Area 2	62								
Area 3	64	6	7	9	8	8		4	
Area 11 North of W 88 th Street	61								
Area 11 Homes with Line-of-Sight	61								
Area 12A N of W 88 th Street	61								
Area 12A Visitation Catholic Church	61	8	9	10	10	10		7	
Area 13 Apartments	69	4	5	6	19	19	3	15	
Area 13 Day Care	69				9	8		5	

#### **Construction Noise Level Summary**

dBA = A-weighted decibels

Source: URS, 2013.

#### LAX Northside Plan Update EIR Construction Noise Level Estimates Area 2

Condition/Phase	Noise Level (dBA)	Difference From Ambient (dBA)	Number of Days (Office O1-1, 01-2, O1-3, O1- 4, O1-5)	Number of Days (O2-1)	Number of Days (C3-1)	Number of Days (R1- 1, R1-2, R1-3, R1-4, R1-5, R1-6, R1-7, R1- 8, R1-9, R1-10)	Number of Days (R2-1, R2-2)
Measured Ambient	62						
Grading	58	-4	64,65	64,65	64,65	64,65	64,65
Clear & Grub	60	-2	10	11	11	11	11
Site Utilities	61	-1	20	24	24	20	24
Building Foundation	60	-2	40	48	44	42	54
Building Construction	60	-2					
Architectural Coating	44	-18					
Paving	58	-4					
Note:							

dBA = A-weighted decibels Source: URS, 2013.

### Area 2- Construction Noise Level Estimates by Phase

Construction Phase	Equipment Type	Number of Units	Max Noise Level at 50 feet (dBA)	Hourly Utilization Rate	Distance to Residences North of W. 91 st Street (feet)	Hourly Noise Level at Nearest Residence (dBA)	Attenuation (dBA)	Hourly Noise Contribution
Grading					420			
	Graders	1	85	50%		64	10	32%
	Rubber Tired Dozers	1	82	50%		61	10	16%
	Tractors/Dosers/Backhoes	2	84	50%		66	10	51%
				Total		58		100%
Clear & Grub					420			
	Crawler Trucks	1	80	40%		58	10	6%
	Dumpsters/Tenders	1	76	40%		54	10	2%
	Excavators	1	81	40%		59	10	7%
	Generator Sets	2	73	50%		55	10	3%
	Graders	1	85	40%		63	10	18%
	Rough Terrain Forklifts	2	70	50%		52	10	1%
	Rubber Tired Dozers	1	82	40%		60	10	9%
	Rubber Tired Loaders	1	79	40%		57	10	5%
	Scrapers	1	85	40%		63	10	18%
	Tractors/Loaders/Backhoes	1	84	40%		62	10	15%
	Off-Highway Tractors	1	84	40%		62	10	15%
	•		•	Total		60		100%

Area 2- Construction Noise Level Estimates by	Phase
-----------------------------------------------	-------

Construction Phase	Equipment Type	Number of Units	Max Noise Level at 50 feet (dBA)	Hourly Utilization Rate	Distance to Residences North of W. 91 st Street (feet)	Hourly Noise Level at Nearest Residence (dBA)	Attenuation (dBA)	Hourly Noise Contribution
Site Utilities	·				420			
	Air Compressors	2	78	40%		59	10	5%
	Concrete/Industrial Saws	2	90	20%		68	10	41%
	Cranes	1	81	20%		56	10	3%
	Dumpsters/Tenders	1	76	40%		54	10	2%
	Excavators	1	81	40%		59	10	5%
	Generator Sets	2	73	50%		55	10	2%
	Graders	1	85	40%		63	10	13%
	Plate Compactors	1	80	40%		58	10	4%
	Rough Terrain Forklifts	2	70	50%		52	10	1%
	Rubber Tired Loaders	1	79	40%		57	10	3%
	Skid Steer Loaders	1	80	40%		58	10	4%
	Tractors/Loaders/Backhoes	1	84	40%		62	10	10%
	Trenchers	1	82	40%		60	10	6%
	Welders	1	74	40%		52	10	1%
		•	•	Total		61		100%
Building Found	dation				493			
	Air Compressors	2	78	40%		57	10	5%

Construction Phase	Equipment Type	Number of Units	Max Noise Level at 50 feet (dBA)	Hourly Utilization Rate	Distance to Residences North of W. 91 st Street (feet)	Hourly Noise Level at Nearest Residence (dBA)	Attenuation (dBA)	Hourly Noise Contribution
	Concrete/Industrial Saws	2	90	20%		66	10	39%
	Cranes	1	81	20%		54	10	2%
	Dumpsters/Tenders	1	76	40%		52	10	2%
	Excavators	1	81	40%		57	10	5%
	Generator Sets	2	73	50%		53	10	2%
	Graders	1	85	40%		61	10	12%
	Plate Compactors	1	80	40%		56	10	4%
	Pumps	1	81	40%		57	10	5%
	Rough Terrain Forklifts	2	70	50%		50	10	1%
	Rubber Tired Loaders	1	79	40%		55	10	3%
	Skid Steer Loaders	1	80	40%		56	10	4%
	Tractors/Loaders/Backhoes	1	84	40%		60	10	10%
	Trenchers	1	82	40%		58	10	6%
	Welders	1	74	40%		50	10	1%
	•			Total		60		100%
Building Const	truction (Superstructure)				493			
	Aerial Lifts	2	80	40%		59	10	9%
	Air Compressors	2	78	40%		57	10	5%

Construction Phase	Equipment Type	Number of Units	Max Noise Level at 50 feet (dBA)	Hourly Utilization Rate	Distance to Residences North of W. 91 st Street (feet)	Hourly Noise Level at Nearest Residence (dBA)	Attenuation (dBA)	Hourly Noise Contribution
	Core/Drill Rigs	2	79	20%		55	10	3%
	Cement and Mortar Mixers	1	79	50%		56	10	4%
	Concrete/Industrial Saws	2	90	20%		66	10	43%
	Cranes	1	81	20%		54	10	3%
	Dumpers/Tenders	1	76	40%		52	10	2%
	Forklifts	2	70	50%		50	10	1%
	Generator Sets	2	73	50%		53	10	2%
	Pumps	1	81	40%		57	10	5%
	Rough Terrain Forklifts	2	70	50%		50	10	1%
	Rubber Tired Loaders	1	79	40%		55	10	3%
	Surfacing Equipment	1	80	40%		56	10	4%
	Tractors/Loaders/Backhoes	1	84	40%		60	10	11%
	Welders	2	74	40%		53	10	2%
				Total		60		100%
Architectural C	coating				493			
	Air Compressors	1	78	40%		54	10	100%
			-	Total		44		100%

### Area 2- Construction Noise Level Estimates by Phase

#### Area 2- Construction Noise Level Estimates by Phase

Construction Phase	Equipment Type	Number of Units	Max Noise Level at 50 feet (dBA)	Hourly Utilization Rate	Distance to Residences North of W. 91 st Street (feet)	Hourly Noise Level at Nearest Residence (dBA)	Attenuation (dBA)	Hourly Noise Contribution
Paving					420			
	Cement and Mortar Mixers	1	79	50%		58	10	10%
	Pavers	1	77	50%		56	10	6%
	Paving Equipment	1	82	50%		61	10	20%
	Rollers	2	80	50%		62	10	25%
	Tractors/Loaders/Backhoes	1	85	50%		64	10	39%
				Total		58		100%
Note:					1	1	1	1

dBA = A-weighted decibels Source: URS, 2013.

LAX Northside Plan Update EIR Construction Noise Level Estimates Area 3

Condition/Phase	Noise Level (dBA)	Difference From Ambient (dBA)	Number of Days
Measured Ambient	64		
Grading	70	6	65
Clear & Grub	71	7	14
Site Utilities	73	9	24
Building Foundation	72	8	48
Building Construction	72	8	
Architectural Coating	56	-8	
Paving	68	4	
Note: dBA = A-weighted decil Source: URS, 2013.	bels		

#### Area 3- Construction Noise Level Estimates by Phase

Construction Phase	Equipment Type	Number of Units	Max Noise Level at 50 feet (dBA)	Hourly Utilization Rate	Distance to Nearest Apartments (feet)	Hourly Noise Level at Nearest Residence (dBA)	Attenuation (dBA)	Hourly Noise Contribution
Grading	·	•	•		365			
	Graders	1	85	50%		65	0	32%
	Rubber Tired Dozers	1	82	50%		62	0	16%
	Tractors/Dosers/Backhoes	2	84	50%		67	0	51%
	·	•		Total		70		100%
Clear & Grub					365			
	Crawler Trucks	1	80	40%		59	0	6%
	Dumpsters/Tenders	1	76	40%		55	0	2%
	Excavators	1	81	40%		60	0	7%
	Generator Sets	2	73	50%		56	0	3%
	Graders	1	85	40%		64	0	18%
	Rough Terrain Forklifts	2	70	50%		53	0	1%
	Rubber Tired Dozers	1	82	40%		61	0	9%
	Rubber Tired Loaders	1	79	40%		58	0	5%
	Scrapers	1	85	40%		64	0	18%
	Tractors/Loaders/Backhoes	1	84	40%		63	0	15%
	Off-Highway Tractors	1	84	40%		63	0	15%

Area 3- Construction	Noise Level	Estimates	by Phase
----------------------	-------------	-----------	----------

Construction Phase	Equipment Type	Number of Units	Max Noise Level at 50 feet (dBA)	Hourly Utilization Rate	Distance to Nearest Apartments (feet)	Hourly Noise Level at Nearest Residence (dBA)	Attenuation (dBA)	Hourly Noise Contribution
				Total		71		100%
Site Utilities					365			
	Air Compressors	2	78	40%		60	0	5%
	Concrete/Industrial Saws	2	90	20%		69	0	41%
	Cranes	1	81	20%		57	0	3%
	Dumpsters/Tenders	1	76	40%		55	0	2%
	Excavators	1	81	40%		60	0	5%
	Generator Sets	2	73	50%		56	0	2%
	Graders	1	85	40%		64	0	13%
	Plate Compactors	1	80	40%		59	0	4%
	Rough Terrain Forklifts	2	70	50%		53	0	1%
	Rubber Tired Loaders	1	79	40%		58	0	3%
	Skid Steer Loaders	1	80	40%		59	0	4%
	Tractors/Loaders/Backhoes	1	84	40%		63	0	10%
	Trenchers	1	82	40%		61	0	6%
	Welders	1	74	40%		53	0	1%
				Total		73		100%

#### Area 3- Construction Noise Level Estimates by Phase

Construction Phase	Equipment Type	Number of Units	Max Noise Level at 50 feet (dBA)	Hourly Utilization Rate	Distance to Nearest Apartments (feet)	Hourly Noise Level at Nearest Residence (dBA)	Attenuation (dBA)	Hourly Noise Contribution
Building Found	dation				400			
	Air Compressors	2	78	40%		59	0	5%
	Concrete/Industrial Saws	2	90	20%		68	0	39%
	Cranes	1	81	20%		56	0	2%
	Dumpsters/Tenders	1	76	40%		54	0	2%
	Excavators	1	81	40%		59	0	5%
	Generator Sets	2	73	50%		55	0	2%
	Graders	1	85	40%		63	0	12%
	Plate Compactors	1	80	40%		58	0	4%
	Pumps	1	81	40%		59	0	5%
	Rough Terrain Forklifts	2	70	50%		52	0	1%
	Rubber Tired Loaders	1	79	40%		57	0	3%
	Skid Steer Loaders	1	80	40%		58	0	4%
	Tractors/Loaders/Backhoes	1	84	40%		62	0	10%
	Trenchers	1	82	40%		60	0	6%
	Welders	1	74	40%		52	0	1%
	•			Total		72		100%

Area 3- Construction Noise Level Estimates by Phase	
-----------------------------------------------------	--

Construction Phase	Equipment Type	Number of Units	Max Noise Level at 50 feet (dBA)	Hourly Utilization Rate	Distance to Nearest Apartments (feet)	Hourly Noise Level at Nearest Residence (dBA)	Attenuation (dBA)	Hourly Noise Contribution
Building Const	truction (Superstructure)			•	400			
	Aerial Lifts	2	80	40%		61	0	9%
	Air Compressors	2	78	40%		59	0	5%
	Core/Drill Rigs	2	79	20%		57	0	3%
	Cement and Mortar Mixers	1	79	50%		58	0	4%
	Concrete/Industrial Saws	2	90	20%		68	0	43%
	Cranes	1	81	20%		56	0	3%
	Dumpers/Tenders	1	76	40%		54	0	2%
	Forklifts	2	70	50%		52	0	1%
	Generator Sets	2	73	50%		55	0	2%
	Pumps	1	81	40%		59	0	5%
	Rough Terrain Forklifts	2	70	50%		52	0	1%
	Rubber Tired Loaders	1	79	40%		57	0	3%
	Surfacing Equipment	1	80	40%		58	0	4%
	Tractors/Loaders/Backhoes	1	84	40%		62	0	11%
	Welders	2	74	40%		55	0	2%
	•			Total		72		100%

#### Area 3- Construction Noise Level Estimates by Phase

Construction Phase	Equipment Type	Number of Units	Max Noise Level at 50 feet (dBA)	Hourly Utilization Rate	Distance to Nearest Apartments (feet)	Hourly Noise Level at Nearest Residence (dBA)	Attenuation (dBA)	Hourly Noise Contribution
Architectural C	oating	400						
	Air Compressors	1	78	40%		56	0	100%
		•		Total		56		100%
Paving					400			
	Cement and Mortar Mixers	1	79	50%		58	0	10%
	Pavers	1	77	50%		56	0	6%
	Paving Equipment	1	82	50%		61	0	20%
	Rollers	2	80	50%		62	0	25%
	Tractors/Loaders/Backhoes	1	85	50%		64	0	39%
	•	•	•	Total		68		100%

Note: dBA = A-weighted decibels Source: URS, 2013.

#### LAX Northside Plan Update EIR Construction Noise Level Estimates Area 11 North of West 88th Street

Condition/Phase	Noise Level (dBA)	Difference From Ambient (dBA)	Number of Days	
Measured Ambient	61			
Grading	52	-9	65	
Clear & Grub	53	-8	15	
Site Utilities	55	-6	30	
Building Foundation	55	-6	60	
Building Construction	54	-7		
Architectural Coating	39	-22		
Paving	51	-10		
Note: dBA = A-weighted deci	bels			

Source: URS, 2013.

## Area 11 North of West 88th Street - Construction Noise Level Estimates by Phase

Construction Phase	Equipment Type	Number of Units	Max Noise Level at 50 feet (dBA)	Hourly Utilization Rate	Distance to Residences North of W. 88 th Street (feet)	Hourly Noise Level at Nearest Residence (dBA)	Attenuation (dBA)	Hourly Noise Contribution
Grading					510			
	Graders	1	85	50%		62	15	32%
	Rubber Tired Dozers	1	82	50%		59	15	16%
	Tractors/Dosers/Backhoes	2	84	50%		64	15	51%
Total						52		100%
Clear & Grub					510			
	Crawler Trucks	1	80	40%		56	15	6%
	Dumpsters/Tenders	1	76	40%		52	15	2%
	Excavators	1	81	40%		57	15	7%
	Generator Sets	2	73	50%		53	15	3%
	Graders	1	85	40%		61	15	18%
	Rough Terrain Forklifts	2	70	50%		50	15	1%
	Rubber Tired Dozers	1	82	40%		58	15	9%
	Rubber Tired Loaders	1	79	40%		55	15	5%
	Scrapers	1	85	40%		61	15	18%
	Tractors/Loaders/Backhoes	1	84	40%		60	15	15%
	Off-Highway Tractors	1	84	40%		60	15	15%

Construction Phase	Equipment Type	Number of Units	Max Noise Level at 50 feet (dBA)	Hourly Utilization Rate	Distance to Residences North of W. 88 th Street (feet)	Hourly Noise Level at Nearest Residence (dBA)	Attenuation (dBA)	Hourly Noise Contribution
				Total		53		100%
Site Utilities					510			
	Air Compressors	2	78	40%		57	15	5%
	Concrete/Industrial Saws	2	90	20%		66	15	41%
	Cranes	1	81	20%		54	15	3%
	Dumpsters/Tenders	1	76	40%		52	15	2%
	Excavators	1	81	40%		57	15	5%
	Generator Sets	2	73	50%		53	15	2%
	Graders	1	85	40%		61	15	13%
	Plate Compactors	1	80	40%		56	15	4%
	Rough Terrain Forklifts	2	70	50%		50	15	1%
	Rubber Tired Loaders	1	79	40%		55	15	3%
	Skid Steer Loaders	1	80	40%		56	15	4%
	Tractors/Loaders/Backhoes	1	84	40%		60	15	10%
	Trenchers	1	82	40%		58	15	6%
	Welders	1	74	40%		50	15	1%
				Total		55		100%

Construction Phase	Equipment Type	Number of Units	Max Noise Level at 50 feet (dBA)	Hourly Utilization Rate	Distance to Residences North of W. 88 th Street (feet)	Hourly Noise Level at Nearest Residence (dBA)	Attenuation (dBA)	Hourly Noise Contribution
Building Found	ation				510			
	Air Compressors	2	78	40%		57	15	5%
	Concrete/Industrial Saws	2	90	20%		66	15	39%
	Cranes	1	81	20%		54	15	2%
	Dumpsters/Tenders	1	76	40%		52	15	2%
	Excavators	1	81	40%		57	15	5%
	Generator Sets	2	73	50%		53	15	2%
	Graders	1	85	40%		61	15	12%
	Plate Compactors	1	80	40%		56	15	4%
	Pumps	1	81	40%		57	15	5%
	Rough Terrain Forklifts	2	70	50%		50	15	1%
	Rubber Tired Loaders	1	79	40%		55	15	3%
	Skid Steer Loaders	1	80	40%		56	15	4%
	Tractors/Loaders/Backhoes	1	84	40%		60	15	10%
	Trenchers	1	82	40%		58	15	6%
	Welders	1	74	40%		50	15	1%
				Total		55		100%

Construction Phase	Equipment Type	Number of Units	Max Noise Level at 50 feet (dBA)	Hourly Utilization Rate	Distance to Residences North of W. 88 th Street (feet)	Hourly Noise Level at Nearest Residence (dBA)	Attenuation (dBA)	Hourly Noise Contribution
Building Constr	uction (Superstructure)				510			
	Aerial Lifts	2	80	40%		59	15	9%
	Air Compressors	2	78	40%		57	15	5%
	Core/Drill Rigs	2	79	20%		55	15	3%
	Cement and Mortar Mixers	1	79	50%		56	15	4%
	Concrete/Industrial Saws	2	90	20%		66	15	43%
	Cranes	1	81	20%		54	15	3%
	Dumpers/Tenders	1	76	40%		52	15	2%
	Forklifts	2	70	50%		50	15	1%
	Generator Sets	2	73	50%		53	15	2%
	Pumps	1	81	40%		57	15	5%
	Rough Terrain Forklifts	2	70	50%		50	15	1%
	Rubber Tired Loaders	1	79	40%		55	15	3%
	Surfacing Equipment	1	80	40%		56	15	4%
	Tractors/Loaders/Backhoes	1	84	40%		60	15	11%
	Welders	2	74	40%		53	15	2%
	·			Total		54		100%

# Area 11 North of West 88th Street - Construction Noise Level Estimates by Phase

Construction Phase	Equipment Type	Number of Units	Max Noise Level at 50 feet (dBA)	Hourly Utilization Rate	Distance to Residences North of W. 88 th Street (feet)	Hourly Noise Level at Nearest Residence (dBA)	Attenuation (dBA)	Hourly Noise Contribution
Architectural Co	pating				510			
	Air Compressors	1	78	40%		54	15	100%
				Total		39		100%
Paving					510			
	Cement and Mortar Mixers	1	79	50%		56	15	10%
	Pavers	1	77	50%		54	15	6%
	Paving Equipment	1	82	50%		59	15	20%
	Rollers	2	80	50%		60	15	25%
	Tractors/Loaders/Backhoes	1	85	50%		62	15	39%
	·			Total		51		100%

Note: dBA = A-weighted decibels Source: URS, 2013.

#### LAX Northside Plan Update EIR Construction Noise Level Estimates Area 11 Homes With Line-of-Sight

Condition/Phase	Noise Level (dBA)	Difference From Ambient (dBA)	Number of Days
Measured Ambient	61		
Grading	57	-4	65
Clear & Grub	58	-3	16
Site Utilities	60	-1	34
Building Foundation	60	-1	55
Building Construction	59	-2	
Architectural Coating	44	-17	
Paving	56	-5	
Note: dBA = A-weighted deci	bels		

dBA = A-weighted decibels Source: URS, 2013.

Construction Phase	Equipment Type	Number of Units	Max Noise Level at 50 feet (dBA)	Hourly Utilization Rate	Distance to Residences With Line- of-Sight to Wall Opening (feet)	Hourly Noise Level at Nearest Residence (dBA)	Attenuation (dBA)	Hourly Noise Contribution
Grading					510			
	Graders	1	85	50%		62	10	32%
	Rubber Tired Dozers	1	82	50%		59	10	16%
	Tractors/Dosers/Backhoes	2	84	50%		64	10	51%
				Total		57		100%
Clear & Grub					510			
	Crawler Trucks	1	80	40%		56	10	6%
	Dumpsters/Tenders	1	76	40%		52	10	2%
	Excavators	1	81	40%		57	10	7%
	Generator Sets	2	73	50%		53	10	3%
	Graders	1	85	40%		61	10	18%
	Rough Terrain Forklifts	2	70	50%		50	10	1%
	Rubber Tired Dozers	1	82	40%		58	10	9%
	Rubber Tired Loaders	1	79	40%		55	10	5%
	Scrapers	1	85	40%		61	10	18%
	Tractors/Loaders/Backhoes	1	84	40%		60	10	15%

Construction Phase	Equipment Type	Number of Units	Max Noise Level at 50 feet (dBA)	Hourly Utilization Rate	Distance to Residences With Line- of-Sight to Wall Opening (feet)	Hourly Noise Level at Nearest Residence (dBA)	Attenuation (dBA)	Hourly Noise Contribution
	Off-Highway Tractors	1	84	40%		60	10	15%
				Total		58		100%
Site Utilities					510			
	Air Compressors	2	78	40%		57	10	5%
	Concrete/Industrial Saws	2	90	20%		66	10	41%
	Cranes	1	81	20%		54	10	3%
	Dumpsters/Tenders	1	76	40%		52	10	2%
	Excavators	1	81	40%		57	10	5%
	Generator Sets	2	73	50%		53	10	2%
	Graders	1	85	40%		61	10	13%
	Plate Compactors	1	80	40%		56	10	4%
	Rough Terrain Forklifts	2	70	50%		50	10	1%
	Rubber Tired Loaders	1	79	40%		55	10	3%
	Skid Steer Loaders	1	80	40%		56	10	4%
	Tractors/Loaders/Backhoes	1	84	40%		60	10	10%
	Trenchers	1	82	40%		58	10	6%

Construction Phase	Equipment Type	Number of Units	Max Noise Level at 50 feet (dBA)	Hourly Utilization Rate	Distance to Residences With Line- of-Sight to Wall Opening (feet)	Hourly Noise Level at Nearest Residence (dBA)	Attenuation (dBA)	Hourly Noise Contribution
	Welders	1	74	40%		50	10	1%
		•		Total		60		100%
Building Found	dation				510			
	Air Compressors	2	78	40%		57	10	5%
	Concrete/Industrial Saws	2	90	20%		66	10	39%
	Cranes	1	81	20%		54	10	2%
	Dumpsters/Tenders	1	76	40%		52	10	2%
	Excavators	1	81	40%		57	10	5%
	Generator Sets	2	73	50%		53	10	2%
	Graders	1	85	40%		61	10	12%
	Plate Compactors	1	80	40%		56	10	4%
	Pumps	1	81	40%		57	10	5%
	Rough Terrain Forklifts	2	70	50%		50	10	1%
	Rubber Tired Loaders	1	79	40%		55	10	3%
	Skid Steer Loaders	1	80	40%		56	10	4%
	Tractors/Loaders/Backhoes	1	84	40%		60	10	10%

Construction Phase	Equipment Type	Number of Units	Max Noise Level at 50 feet (dBA)	Hourly Utilization Rate	Distance to Residences With Line- of-Sight to Wall Opening (feet)	Hourly Noise Level at Nearest Residence (dBA)	Attenuation (dBA)	Hourly Noise Contribution
	Trenchers	1	82	40%		58	10	6%
	Welders	1	74	40%		50	10	1%
	·			Total		60		100%
Building Const	truction (Superstructure)				510			
	Aerial Lifts	2	80	40%		59	10	9%
	Air Compressors	2	78	40%		57	10	5%
	Core/Drill Rigs	2	79	20%		55	10	3%
	Cement and Mortar Mixers	1	79	50%		56	10	4%
	Concrete/Industrial Saws	2	90	20%		66	10	43%
	Cranes	1	81	20%		54	10	3%
	Dumpers/Tenders	1	76	40%		52	10	2%
	Forklifts	2	70	50%		50	10	1%
	Generator Sets	2	73	50%		53	10	2%
	Pumps	1	81	40%		57	10	5%
	Rough Terrain Forklifts	2	70	50%		50	10	1%
	Rubber Tired Loaders	1	79	40%		55	10	3%

### Area 11 Homes with Line-of-Sight- Construction Noise Level Estimates by Phase

Construction Phase	Equipment Type	Number of Units	Max Noise Level at 50 feet (dBA)	Hourly Utilization Rate	Distance to Residences With Line- of-Sight to Wall Opening (feet)	Hourly Noise Level at Nearest Residence (dBA)	Attenuation (dBA)	Hourly Noise Contribution
	Surfacing Equipment	1	80	40%		56	10	4%
	Tractors/Loaders/Backhoes	1	84	40%		60	10	11%
	Welders	2	74	40%		53	10	2%
	•			Total		59		100%
Architectural C	Coating				510			
	Air Compressors	1	78	40%		54	10	100%
	•			Total		44		100%
Paving					510			
	Cement and Mortar Mixers	1	79	50%		56	10	10%
	Pavers	1	77	50%		54	10	6%
	Paving Equipment	1	82	50%		59	10	20%
	Rollers	2	80	50%		60	10	25%
	Tractors/Loaders/Backhoes	1	85	50%		62	10	39%
	1			Total		56		100%

dBA = A-weighted decibels Source: URS, 2013.

### LAX Northside Plan Update EIR Construction Noise Level Estimates Area 12A East -North of West 88th Street

Condition/Phase	Noise Level (dBA)	Difference From Ambient (dBA)	Number of Days
Measured Ambient	61		
Grading	51	-10	65
Clear & Grub	53	-8	10
Site Utilities	53	-8	20
Building Foundation	53	-8	40
Building Construction	53	-8	
Architectural Coating	38	-23	
Paving	50	-11	
Note: dBA = A-weighted deci	bels		

Source: URS, 2013.

Construction Phase	Equipment Type	Number of Units	Max Noise Level at 50 feet (dBA)	Hourly Utilization Rate	Distance to Residences North of W. 88 th Street (feet)	Hourly Noise Level at Nearest Residence (dBA)	Attenuation (dBA)	Hourly Noise Contribution
Grading					550			
	Graders	1	85	50%		61	15	32%
	Rubber Tired Dozers	1	82	50%		58	15	16%
	Tractors/Dosers/Backhoes	2	84	50%		63	15	51%
				Total		51		100%
Clear & Grub					550			
	Crawler Trucks	1	80	40%		55	15	6%
	Dumpsters/Tenders	1	76	40%		51	15	2%
	Excavators	1	81	40%		56	15	7%
	Generator Sets	2	73	50%		52	15	3%
	Graders	1	85	40%		60	15	18%
	Rough Terrain Forklifts	2	70	50%		49	15	1%
	Rubber Tired Dozers	1	82	40%		57	15	9%
	Rubber Tired Loaders	1	79	40%		54	15	5%
	Scrapers	1	85	40%		60	15	18%
	Tractors/Loaders/Backhoes	1	84	40%		59	15	15%
	Off-Highway Tractors	1	84	40%		59	15	15%

Construction Phase	Equipment Type	Number of Units	Max Noise Level at 50 feet (dBA)	Hourly Utilization Rate	Distance to Residences North of W. 88 th Street (feet)	Hourly Noise Level at Nearest Residence (dBA)	Attenuation (dBA)	Hourly Noise Contribution
				Total		53		100%
Site Utilities					550			
	Air Compressors	2	78	40%		56	15	6%
	Concrete/Industrial Saws	1	90	20%		62	15	26%
	Cranes	1	81	20%		53	15	3%
	Dumpsters/Tenders	1	76	40%		51	15	2%
	Excavators	1	81	40%		56	15	6%
	Generator Sets	2	73	50%		52	15	3%
	Graders	1	85	40%		60	15	16%
	Plate Compactors	1	80	40%		55	15	5%
	Rough Terrain Forklifts	2	70	50%		49	15	1%
	Rubber Tired Loaders	1	79	40%		54	15	4%
	Skid Steer Loaders	1	80	40%		55	15	5%
	Tractors/Loaders/Backhoes	1	84	40%		59	15	13%
	Trenchers	1	82	40%		57	15	8%
	Welders	1	74	40%		49	15	1%
	·			Total		53		100%

Construction Phase	Equipment Type	Number of Units	Max Noise Level at 50 feet (dBA)	Hourly Utilization Rate	Distance to Residences North of W. 88 th Street (feet)	Hourly Noise Level at Nearest Residence (dBA)	Attenuation (dBA)	Hourly Noise Contribution
<b>Building Found</b>	ation				550			
	Air Compressors	2	78	40%		56	15	6%
	Concrete/Industrial Saws	1	90	20%		62	15	24%
	Cranes	1	81	20%		53	15	3%
	Dumpsters/Tenders	1	76	40%		51	15	2%
	Excavators	1	81	40%		56	15	6%
	Generator Sets	2	73	50%		52	15	2%
	Graders	1	85	40%		60	15	15%
	Plate Compactors	1	80	40%		55	15	5%
	Pumps	1	81	40%		56	15	6%
	Rough Terrain Forklifts	2	70	50%		49	15	1%
	Rubber Tired Loaders	1	79	40%		54	15	4%
	Skid Steer Loaders	1	80	40%		55	15	5%
	Tractors/Loaders/Backhoes	1	84	40%		59	15	12%
	Trenchers	1	82	40%		57	15	8%
	Welders	1	74	40%		49	15	1%
			•	Total		53		100%

Construction Phase	Equipment Type	Number of Units	Max Noise Level at 50 feet (dBA)	Hourly Utilization Rate	Distance to Residences North of W. 88 th Street (feet)	Hourly Noise Level at Nearest Residence (dBA)	Attenuation (dBA)	Hourly Noise Contribution
Building Const	ruction (Superstructure)				550			
	Aerial Lifts	2	80	40%		58	15	11%
	Air Compressors	2	78	40%		56	15	7%
	Core/Drill Rigs	2	79	20%		54	15	4%
	Cement and Mortar Mixers	1	79	50%		55	15	5%
	Concrete/Industrial Saws	1	90	20%		62	15	28%
	Cranes	1	81	20%		53	15	3%
	Dumpers/Tenders	1	76	40%		51	15	2%
	Forklifts	2	70	50%		49	15	1%
	Generator Sets	2	73	50%		52	15	3%
	Pumps	1	81	40%		56	15	7%
	Rough Terrain Forklifts	2	70	50%		49	15	1%
	Rubber Tired Loaders	1	79	40%		54	15	4%
	Surfacing Equipment	1	80	40%		55	15	6%
	Tractors/Loaders/Backhoes	1	84	40%		59	15	14%
	Welders	2	74	40%		52	15	3%
				Total		53		100%

Area 12A East- North of West 88th Street- Construction Noise Level Estimates by Phase

Construction Phase	Equipment Type	Number of Units	Max Noise Level at 50 feet (dBA)	Hourly Utilization Rate	Distance to Residences North of W. 88 th Street (feet)	Hourly Noise Level at Nearest Residence (dBA)	Attenuation (dBA)	Hourly Noise Contribution
Architectural Co	pating				550			
	Air Compressors	1	78	40%		53	15	100%
				Total		38		100%
Paving					550			
	Cement and Mortar Mixers	1	79	50%		55	15	10%
	Pavers	1	77	50%		53	15	6%
	Paving Equipment	1	82	50%		58	15	20%
	Rollers	2	80	50%		59	15	25%
	Tractors/Loaders/Backhoes	1	85	50%		61	15	39%
	•		-	Total		50		100%

Note: dBA = A-weighted decibels Source: URS, 2013.

#### LAX Northside Plan Update EIR Construction Noise Level Estimates Area 12A East -Visitation Catholic Church

Condition/Phase	Noise Level (dBA)	Difference From Ambient (dBA)	Number of Days
Measured Ambient	61		
Grading	69	8	65
Clear & Grub	70	9	11
Site Utilities	71	10	24
Building Foundation	71	10	48
Building Construction	71	10	
Architectural Coating	56	-5	
Paving	68	7	
Note: dBA = A-weighted deci	bels		

Source: URS, 2013.

Construction Phase	Equipment Type	Number of Units	Max Noise Level at 50 feet (dBA)	Hourly Utilization Rate	Distance to Visitation Catholic Church (feet)	Hourly Noise Level at Nearest Residence (dBA)	Attenuation (dBA)	Hourly Noise Contribution
Grading	·				400			
	Graders	1	85	50%		64	0	32%
	Rubber Tired Dozers	1	82	50%		61	0	16%
	Tractors/Dosers/Backhoes	2	84	50%		66	0	51%
				Total		69		100%
Clear & Grub					400			
	Crawler Trucks	1	80	40%		58	0	6%
	Dumpsters/Tenders	1	76	40%		54	0	2%
	Excavators	1	81	40%		59	0	7%
	Generator Sets	2	73	50%		55	0	3%
	Graders	1	85	40%		63	0	18%
	Rough Terrain Forklifts	2	70	50%		52	0	1%
	Rubber Tired Dozers	1	82	40%		60	0	9%
	Rubber Tired Loaders	1	79	40%		57	0	5%
	Scrapers	1	85	40%		63	0	18%
	Tractors/Loaders/Backhoes	1	84	40%		62	0	15%
	Off-Highway Tractors	1	84	40%		62	0	15%
				Total		70		100%

Construction Phase	Equipment Type	Number of Units	Max Noise Level at 50 feet (dBA)	Hourly Utilization Rate	Distance to Visitation Catholic Church (feet)	Hourly Noise Level at Nearest Residence (dBA)	Attenuation (dBA)	Hourly Noise Contribution
Site Utilities					400			
	Air Compressors	2	78	40%		59	0	6%
	Concrete/Industrial Saws	1	90	20%		65	0	26%
	Cranes	1	81	20%		56	0	3%
	Dumpsters/Tenders	1	76	40%		54	0	2%
	Excavators	1	81	40%		59	0	6%
	Generator Sets	2	73	50%		55	0	3%
	Graders	1	85	40%		63	0	16%
	Plate Compactors	1	80	40%		58	0	5%
	Rough Terrain Forklifts	2	70	50%		52	0	1%
	Rubber Tired Loaders	1	79	40%		57	0	4%
	Skid Steer Loaders	1	80	40%		58	0	5%
	Tractors/Loaders/Backhoes	1	84	40%		62	0	13%
	Trenchers	1	82	40%		60	0	8%
	Welders	1	74	40%		52	0	1%
		•		Total		71		100%
Building Found	ation				400			
	Air Compressors	2	78	40%		59	0	6%

Construction Phase	Equipment Type	Number of Units	Max Noise Level at 50 feet (dBA)	Hourly Utilization Rate	Distance to Visitation Catholic Church (feet)	Hourly Noise Level at Nearest Residence (dBA)	Attenuation (dBA)	Hourly Noise Contribution
	Concrete/Industrial Saws	1	90	20%		65	0	24%
	Cranes	1	81	20%		56	0	3%
	Dumpsters/Tenders	1	76	40%		54	0	2%
	Excavators	1	81	40%		59	0	6%
	Generator Sets	2	73	50%		55	0	2%
	Graders	1	85	40%		63	0	15%
	Plate Compactors	1	80	40%		58	0	5%
	Pumps	1	81	40%		59	0	6%
	Rough Terrain Forklifts	2	70	50%		52	0	1%
	Rubber Tired Loaders	1	79	40%		57	0	4%
	Skid Steer Loaders	1	80	40%		58	0	5%
	Tractors/Loaders/Backhoes	1	84	40%		62	0	12%
	Trenchers	1	82	40%		60	0	8%
	Welders	1	74	40%		52	0	1%
				Total		71		100%

Construction Phase	Equipment Type	Number of Units	Max Noise Level at 50 feet (dBA)	Hourly Utilization Rate	Distance to Visitation Catholic Church (feet)	Hourly Noise Level at Nearest Residence (dBA)	Attenuation (dBA)	Hourly Noise Contribution
Building Constr	ruction (Superstructure)				400			
	Aerial Lifts	2	80	40%		61	0	11%
	Air Compressors	2	78	40%		59	0	7%
	Core/Drill Rigs	2	79	20%		57	0	4%
	Cement and Mortar Mixers	1	79	50%		58	0	5%
	Concrete/Industrial Saws	1	90	20%		65	0	28%
	Cranes	1	81	20%		56	0	3%
	Dumpers/Tenders	1	76	40%		54	0	2%
	Forklifts	2	70	50%		52	0	1%
	Generator Sets	2	73	50%		55	0	3%
	Pumps	1	81	40%		59	0	7%
	Rough Terrain Forklifts	2	70	50%		52	0	1%
	Rubber Tired Loaders	1	79	40%		57	0	4%
	Surfacing Equipment	1	80	40%		58	0	6%
	Tractors/Loaders/Backhoes	1	84	40%		62	0	14%
	Welders	2	74	40%		55	0	3%
				Total		71		100%

#### Area 12A East- Visitation Catholic Church- Construction Noise Level Estimates by Phase

Construction Phase	Equipment Type	Number of Units	Max Noise Level at 50 feet (dBA)	Hourly Utilization Rate	Distance to Visitation Catholic Church (feet)	Hourly Noise Level at Nearest Residence (dBA)	Attenuation (dBA)	Hourly Noise Contribution
Architectural Co	pating				400			
	Air Compressors	1	78	40%		56	0	100%
			•	Total		56		100%
Paving					400			
	Cement and Mortar Mixers	1	79	50%		58	0	10%
	Pavers	1	77	50%		56	0	6%
	Paving Equipment	1	82	50%		61	0	20%
	Rollers	2	80	50%		62	0	25%
	Tractors/Loaders/Backhoes	1	85	50%		64	0	39%
				Total		68		100%

Source: URS, 2013.

#### LAX Northside Plan Update EIR Construction Noise Level Estimates Area 13 Apartments on Lincoln Boulevard

Condition/Phase	Noise Level (dBA)	Difference From Ambient (dBA)	Number of Days
Measured Ambient	69		
Grading	73	4	65
Clear & Grub	74	5	11
Site Utilities	75	6	24
Building Foundation	88	19	44
Building Construction	88	19	
Architectural Coating	72	3	
Paving	84	15	
Note: dBA = A-weighted deci	bels		

Source: URS, 2013.

Construction Phase	Equipment Type	Number of Units	Max Noise Level at 50 feet (dBA)	Hourly Utilization Rate	Distance to Apartments on Lincoln Boulevard	Hourly Noise Level at Nearest Residence (dBA)	Attenuation (dBA)	Hourly Noise Contribution
Grading					255			
	Graders	1	85	50%		68	0	32%
	Rubber Tired Dozers	1	82	50%		65	0	16%
	Tractors/Dosers/Backhoes	2	84	50%		70	0	51%
				Total		73		100%
Clear & Grub					255			
	Crawler Trucks	1	80	40%		62	0	6%
	Dumpsters/Tenders	1	76	40%		58	0	2%
	Excavators	1	81	40%		63	0	7%
	Generator Sets	2	73	50%		59	0	3%
	Graders	1	85	40%		67	0	18%
	Rough Terrain Forklifts	2	70	50%		56	0	1%
	Rubber Tired Dozers	1	82	40%		64	0	9%
	Rubber Tired Loaders	1	79	40%		61	0	5%
	Scrapers	1	85	40%		67	0	18%
	Tractors/Loaders/Backhoes	1	84	40%		66	0	15%
	Off-Highway Tractors	1	84	40%		66	0	15%
	·			Total		74		100%

Construction Phase	Equipment Type	Number of Units	Max Noise Level at 50 feet (dBA)	Hourly Utilization Rate	Distance to Apartments on Lincoln Boulevard	Hourly Noise Level at Nearest Residence (dBA)	Attenuation (dBA)	Hourly Noise Contribution
Site Utilities					255			
	Air Compressors	2	78	40%		63	0	6%
	Concrete/Industrial Saws	1	90	20%		69	0	26%
	Cranes	1	81	20%		60	0	3%
	Dumpsters/Tenders	1	76	40%		58	0	2%
	Excavators	1	81	40%		63	0	6%
	Generator Sets	2	73	50%		59	0	3%
	Graders	1	85	40%		67	0	16%
	Plate Compactors	1	80	40%		62	0	5%
	Rough Terrain Forklifts	2	70	50%		56	0	1%
	Rubber Tired Loaders	1	79	40%		61	0	4%
	Skid Steer Loaders	1	80	40%		62	0	5%
	Tractors/Loaders/Backhoes	1	84	40%		66	0	13%
	Trenchers	1	82	40%		64	0	8%
	Welders	1	74	40%		56	0	1%
			1	Total		75		100%

Construction Phase	Equipment Type	Number of Units	Max Noise Level at 50 feet (dBA)	Hourly Utilization Rate	Distance to Apartments on Lincoln Boulevard	Hourly Noise Level at Nearest Residence (dBA)	Attenuation (dBA)	Hourly Noise Contribution
Building Found	ation				60			
	Air Compressors	2	78	40%		75	0	6%
	Concrete/Industrial Saws	1	90	20%		81	0	24%
	Cranes	1	81	20%		72	0	3%
	Dumpsters/Tenders	1	76	40%		70	0	2%
	Excavators	1	81	40%		75	0	6%
	Generator Sets	2	73	50%		71	0	2%
	Graders	1	85	40%		79	0	15%
	Plate Compactors	1	80	40%		74	0	5%
	Pumps	1	81	40%		75	0	6%
	Rough Terrain Forklifts	2	70	50%		68	0	1%
	Rubber Tired Loaders	1	79	40%		73	0	4%
	Skid Steer Loaders	1	80	40%		74	0	5%
	Tractors/Loaders/Backhoes	1	84	40%		78	0	12%
	Trenchers	1	82	40%		76	0	8%
	Welders	1	74	40%		68	0	1%
				Total		88		100%

Construction Phase	Equipment Type	Number of Units	Max Noise Level at 50 feet (dBA)	Hourly Utilization Rate	Distance to Apartments on Lincoln Boulevard	Hourly Noise Level at Nearest Residence (dBA)	Attenuation (dBA)	Hourly Noise Contribution
Building Constr	ruction (Superstructure)				60			
	Aerial Lifts	2	80	40%		77	0	9%
	Air Compressors	2	78	40%		75	0	5%
	Core/Drill Rigs	2	79	20%		73	0	3%
	Cement and Mortar Mixers	1	79	50%		74	0	4%
	Concrete/Industrial Saws	2	90	20%		84	0	43%
	Cranes	1	81	20%		72	0	3%
	Dumpers/Tenders	1	76	40%		70	0	2%
	Forklifts	2	70	50%		68	0	1%
	Generator Sets	2	73	50%		71	0	2%
	Pumps	1	81	40%		75	0	5%
	Rough Terrain Forklifts	2	70	50%		68	0	1%
	Rubber Tired Loaders	1	79	40%		73	0	3%
	Surfacing Equipment	1	80	40%		74	0	4%
	Tractors/Loaders/Backhoes	1	84	40%		78	0	11%
	Welders	2	74	40%		71	0	2%
				Total		88		100%

#### Area 13 - Apartments on Lincoln Boulevard- Construction Noise Level Estimates by Phase

Construction Phase	Equipment Type	Number of Units	Max Noise Level at 50 feet (dBA)	Hourly Utilization Rate	Distance to Apartments on Lincoln Boulevard	Hourly Noise Level at Nearest Residence (dBA)	Attenuation (dBA)	Hourly Noise Contribution
Architectural Coating					60			
	Air Compressors	1	78	40%		72	0	100%
		72		100%				
Paving					60			
	Cement and Mortar Mixers	1	79	50%		74	0	10%
	Pavers	1	77	50%		72	0	6%
	Paving Equipment	1	82	50%		77	0	20%
	Rollers	2	80	50%		78	0	25%
	Tractors/Loaders/Backhoes	1	85	50%		80	0	39%
				Total		84		100%

Source: URS, 2013.

#### LAX Northside Plan Update EIR Construction Noise Level Estimates Area 13- Day Care Center

Condition/Phase	Noise Level (dBA)	Difference From Ambient (dBA)	Number of Days
Measured Ambient	69		
Grading	63	-6	65
Clear & Grub	64	-5	11
Site Utilities	65	-4	24
Building Foundation	78	9	44
Building Construction	77	8	
Architectural Coating	62	-7	
Paving	74	5	
Note: dBA = A-weighted decibels Source: URS, 2013.			

Area 13- Day Care Center- Construction Noise L	Level Estimates by Phase
------------------------------------------------	--------------------------

Construction Phase	Equipment Type	Number of Units	Max Noise Level at 50 feet (dBA)	Hourly Utilization Rate	Distance to Day Care Center (feet)	Hourly Noise Level at Nearest Residence (dBA)	Attenuation (dBA)	Hourly Noise Contribution
Grading					255			
	Graders	1	85	50%		68	10	32%
	Rubber Tired Dozers	1	82	50%		65	10	16%
	Tractors/Dosers/Backhoes	2	84	50%		70	10	51%
				Total		63		100%
Clear & Grub					255			
	Crawler Trucks	1	80	40%		62	10	6%
	Dumpsters/Tenders	1	76	40%		58	10	2%
	Excavators	1	81	40%		63	10	7%
	Generator Sets	2	73	50%		59	10	3%
	Graders	1	85	40%		67	10	18%
	Rough Terrain Forklifts	2	70	50%		56	10	1%
	Rubber Tired Dozers	1	82	40%		64	10	9%
	Rubber Tired Loaders	1	79	40%		61	10	5%
	Scrapers	1	85	40%		67	10	18%
	Tractors/Loaders/Backhoes	1	84	40%		66	10	15%
	Off-Highway Tractors	1	84	40%		66	10	15%
	•			Total		64		100%

Area 13- Day Care Center- Construction	Noise Level Estimates by Phase
----------------------------------------	--------------------------------

Construction Phase	Equipment Type	Number of Units	Max Noise Level at 50 feet (dBA)	Hourly Utilization Rate	Distance to Day Care Center (feet)	Hourly Noise Level at Nearest Residence (dBA)	Attenuation (dBA)	Hourly Noise Contribution
Site Utilities					255			
	Air Compressors	2	78	40%		63	10	6%
	Concrete/Industrial Saws	1	90	20%		69	10	26%
	Cranes	1	81	20%		60	10	3%
	Dumpsters/Tenders	1	76	40%		58	10	2%
	Excavators	1	81	40%		63	10	6%
	Generator Sets	2	73	50%		59	10	3%
	Graders	1	85	40%		67	10	16%
	Plate Compactors	1	80	40%		62	10	5%
	Rough Terrain Forklifts	2	70	50%		56	10	1%
	Rubber Tired Loaders	1	79	40%		61	10	4%
	Skid Steer Loaders	1	80	40%		62	10	5%
	Tractors/Loaders/Backhoes	1	84	40%		66	10	13%
	Trenchers	1	82	40%		64	10	8%
	Welders	1	74	40%		56	10	1%
			*	Total		65		100%

#### Area 13- Day Care Center- Construction Noise Level Estimates by Phase

Construction Phase	Equipment Type	Number of Units	Max Noise Level at 50 feet (dBA)	Hourly Utilization Rate	Distance to Day Care Center (feet)	Hourly Noise Level at Nearest Residence (dBA)	Attenuation (dBA)	Hourly Noise Contribution
<b>Building Found</b>	ation				60			
	Air Compressors	2	78	40%		75	10	6%
	Concrete/Industrial Saws	1	90	20%		81	10	24%
	Cranes	1	81	20%		72	10	3%
	Dumpsters/Tenders	1	76	40%		70	10	2%
	Excavators	1	81	40%		75	10	6%
	Generator Sets	2	73	50%		71	10	2%
	Graders	1	85	40%		79	10	15%
	Plate Compactors	1	80	40%		74	10	5%
	Pumps	1	81	40%		75	10	6%
	Rough Terrain Forklifts	2	70	50%		68	10	1%
	Rubber Tired Loaders	1	79	40%		73	10	4%
	Skid Steer Loaders	1	80	40%		74	10	5%
	Tractors/Loaders/Backhoes	1	84	40%		78	10	12%
	Trenchers	1	82	40%		76	10	8%
	Welders	1	74	40%		68	10	1%
				Total		78		100%

Area 13- Day Care Center- Construction Noise Level Estimates by Phase
-----------------------------------------------------------------------

Construction Phase	Equipment Type	Number of Units	Max Noise Level at 50 feet (dBA)	Hourly Utilization Rate	Distance to Day Care Center (feet)	Hourly Noise Level at Nearest Residence (dBA)	Attenuation (dBA)	Hourly Noise Contribution
Building Constr	uction (Superstructure)				60			
	Aerial Lifts	2	80	40%		77	10	11%
	Air Compressors	2	78	40%		75	10	7%
	Core/Drill Rigs	2	79	20%		73	10	4%
	Cement and Mortar Mixers	1	79	50%		74	10	5%
	Concrete/Industrial Saws	1	90	20%		81	10	28%
	Cranes	1	81	20%		72	10	3%
	Dumpers/Tenders	1	76	40%		70	10	2%
	Forklifts	2	70	50%		68	10	1%
	Generator Sets	2	73	50%		71	10	3%
	Pumps	1	81	40%		75	10	7%
	Rough Terrain Forklifts	2	70	50%		68	10	1%
	Rubber Tired Loaders	1	79	40%		73	10	4%
	Surfacing Equipment	1	80	40%		74	10	6%
	Tractors/Loaders/Backhoes	1	84	40%		78	10	14%
	Welders	2	74	40%		71	10	3%
			1	Total		77		100%

#### Area 13- Day Care Center- Construction Noise Level Estimates by Phase

Construction Phase	Equipment Type	Number of Units	Max Noise Level at 50 feet (dBA)	Hourly Utilization Rate	Distance to Day Care Center (feet)	Hourly Noise Level at Nearest Residence (dBA)	Attenuation (dBA)	Hourly Noise Contribution
Architectural Coating					60			
	Air Compressors	1	78	40%		72	10	100%
Total						62		100%
Paving					60			
	Cement and Mortar Mixers	1	79	50%		74	10	10%
	Pavers	1	77	50%		72	10	6%
	Paving Equipment	1	82	50%		77	10	20%
	Rollers	2	80	50%		78	10	25%
	Tractors/Loaders/Backhoes	1	85	50%		80	10	39%
Total						74		100%

Source: URS, 2013.