Final Environmental Impact Report (Final EIR)

[State Clearinghouse No. 2008041058]
for

Los Angeles International Airport (LAX) Crossfield Taxiway Project

Volume 4

Responses to Comments and
 Corrections and Additions to the Draft EIR

Final Environmental Impact Report
This document (Volume 4) comprises the second and final part of the Environmental Impact Report for the Crossfield Taxiway Project (CFTP) and supplements the Draft EIR for the CFTP (consisting of Volumes 1, 2, and 3), previously circulated for public review and comment. The CFTP EIR is available for review at Los Angeles World Airports (LAWA), 7301 World Way West, 3rd Floor, Los Angeles, CA 90045.

City of Los Angeles
Los Angeles City File No. AD 034-08
January 2009

Final Environmental Impact Report (Final EIR)

[State Clearinghouse No. 2008041058]
for

Los Angeles International Airport (LAX) Crossfield Taxiway Project

Volume 4

Responses to Comments and Corrections and Additions to the Draft EIR

Final Environmental Impact Report

This document (Volume 4) comprises the second and final part of the Environmental Impact Report for the Crossfield Taxiway Project (CFTP) and supplements the Draft EIR for the CFTP (consisting of Volumes 1, 2, and 3), previously circulated for public review and comment. The CFTP EIR is available for review at Los Angeles World Airports (LAWA), 7301 World Way West, 3rd Floor, Los Angeles, CA 90045.

City of Los Angeles
Los Angeles City File No. AD 034-08

Los Angeles World Airports (LAWA) has prepared this project-level Final Environmental Impact Report (Final EIR) for the Crossfield Taxiway Project (CFTP), pursuant to the California Environmental Quality Act (CEQA). The improvements proposed under the CFTP are included in the LAX Master Plan Program approved by the Los Angeles City Council in December of 2004. The LAX Master Plan was the subject of a certified program-level Environmental Impact Report (LAX Master Plan Final EIR) and an approved Environmental Impact Statement (LAX Master Plan Final EIS), which were prepared by LAWA and the Federal Aviation Administration, respectively.

The CFTP Final EIR is "tiered" from, and incorporates by reference, the LAX Master Plan Final EIR. This means that this Final EIR builds on the work contained in the LAX Master Plan Final EIR, and provides additional project-level information and analysis as necessary for public agencies, decision makers, and interested parties to evaluate the CFTP under CEQA. CEQA encourages public agencies to tier environmental analyses for individual projects from programlevel environmental impact reports to eliminate repetitive discussions and to focus later EIRs (such as this Final EIR) on issues that may have not been fully addressed at a project-level of detail.

The LAX Master Plan Final EIR dealt with many of the specific issues associated with the individual projects encompassed within the Master Plan, such as the improvements currently proposed for the CFTP. This "tiered" Final EIR supplements the information and analysis provided in the LAX Master Plan EIR with further detailed information and analysis at the project level, and it focuses on those effects not previously considered in the Master Plan EIR. For this reason, much of the information related to the CFTP improvements contained in the LAX Master Plan EIR is not repeated in this Final EIR. However, a brief summary of each of the areas covered in the LAX Master Plan Final EIR has been provided in this project level Final EIR, along with the location where the reader can locate the prior treatment of those areas.

This Final EIR is prepared in accordance with all requirements of CEQA. This Final EIR incorporates and responds to comments received on the Notice of Preparation for the EIR and on the Draft EIR and includes corrections and additions to the Draft EIR. LAWA, the Los Angeles Board of Airport Commissioners, and other decision-makers will use this Final EIR to inform their decisions on the CFTP, as CEQA requires. Volumes 1 through 3 of the Final EIR consist of the Draft EIR and the associated appendices, and Volume 4 of the Final EIR includes a list of the persons, organizations and agencies commenting on the Draft EIR, written responses to comments received on the Draft EIR, corrections and additions made to the Draft EIR, and a copy of the comment letters received.

Table of Contents

Preface 1

1. Introduction and Indices 1-1
1.1 Introduction 1-1
1.2 Indices of Comment Letters 1-3
Index by Letter Identification (ID) Number 1-4
Index by Commentor 1-5
Index by Affiliation 1-6
2. Comments and Responses 2-1
3. Corrections and Additions to the Crossfield Taxiway Project Draft EIR 3-1
3.1 Introduction 3-1
3.2 Corrections and Additions to the Draft EIR Text. 3-1
3.3 Corrections and Additions to Appendices to the Draft EIR. 3-21

List of Attachments

Attachment 1 Original Comment Letters on the Draft EIR

Table of Contents (continued)

This page intentionally left blank.

PREFACE

This document, in conjunction with the previously prepared documents described below, constitutes the Final Environmental Impact Report (Final EIR) for the Crossfield Taxiway Project (CFTP) proposed at Los Angeles International Airport (LAX). As further described in the Introduction to this document, the CFTP includes constructing a crossfield taxiway between the north runway complex (i.e., Runways 6L/24R and $6 R / 24 \mathrm{~L}$) and the south runway complex (i.e., Runways $7 \mathrm{~L} / 25 \mathrm{R}$ and $7 \mathrm{R} / 25 \mathrm{~L}$) and an associated connection to, and extension of, the existing Taxiway D, among other improvements. In accordance with the California Environmental Quality Act (CEQA), the City of Los Angeles, as Lead Agency, completed an Environmental Impact Report (EIR) to address and disclose the potential environmental impacts associated with the proposed project. The City of Los Angeles circulated a Draft EIR regarding the CFTP, received public and agency comments on the Draft EIR, and prepared written responses to those comments - all of which provides the basis for this Final EIR.

Pursuant to CEQA Guidelines §15132, a final EIR consists of:
(a) The draft EIR or a revision of the draft.
(b) Comments and recommendations received on the draft EIR either verbatim or in summary.
(c) A list of persons, organizations, and public agencies commenting on the draft EIR.
(d) The responses of the Lead Agency to significant environmental points raised in the review and consultation process.
(e) Any other information added by the Lead Agency.

Accordingly, the Final EIR for the CFTP consists of two components, as follows:

Component 1: Draft EIR and Technical Appendices

Volume 1 - Draft EIR: Volume 1 of the Final EIR includes the Draft EIR-Main Document, which was distributed for public review and comment from September 25, 2008 through November 10, 2008.
Volume 2 - Draft EIR Technical Appendices: Volume 2 of the Final EIR consists of technical appendices A through C that were developed in conjunction with the Draft EIR.

Volume 3-Draft EIR Technical Appendices: Volume 3 of the Final EIR consists of technical appendices D through H that were developed in conjunction with the Draft EIR.

Component 2: Responses to Comments and Corrections and Additions to the Draft EIR

Volume 4 - Responses to Comments and Corrections and Additions to the Draft EIR: The second part of the Final EIR consists of a compilation of the comments received on the Draft EIR, and the written responses prepared by the City to those comments. This document includes indices (i.e., lists) of agencies, organizations, and individuals that commented on the Draft EIR, and provides a copy of the comment letters in their original form (i.e., photocopies of comment letters). This document also describes other information, such as a delineation of corrections and additions to information presented in the Draft EIR, which has been added by the City as part of the Final EIR. The information presented herein constitutes the second component of the Final EIR.

All of the documents described above, comprising the Final EIR for the CFTP, are available for public review at:

LAWA Administration Building
Airports and Facilities Planning Division
7301 World Way West, 3rd Floor
Los Angeles, CA 90045
Contact: Dennis Quilliam
(310) 646-7614 x1017

The Final EIR is also available at www.ourlax.org.

1. INTRODUCTION AND INDICES
 1.1 Introduction

In compliance with the California Environmental Quality Act (CEQA), the City of Los Angeles has completed this Environmental Impact Report (EIR) for the Crossfield Taxiway Project (CFTP) at Los Angeles International Airport (LAX). As described in the Preface of this document, the Final Environmental Impact Report (Final EIR) for the CFTP consists of two components: Volumes 1, 2, and 3Draft EIR and associated Technical Appendices for the CFTP; and Volume 4 - Responses to Comments and Corrections and Additions to the Draft EIR. This document constitutes the second component of the Final EIR.

A detailed description of the CFTP is provided in Volume 1 of the Final EIR (see Chapter 2 in the Draft EIR-Main Document). On September 25, 2008, the City of Los Angeles published a Draft EIR for the proposed CFTP. In accordance with CEQA, the Draft EIR was circulated for public review for 45 days, with the review period closing on November 10, 2008. One public workshop was held during the comment period on October 15, 2008.
As explained in more detail in Volume 1 of the Final EIR, the CFTP is the second airport improvement project to be implemented pursuant to the previously approved LAX Master Plan. The LAX Master Plan was approved based on a certified, final program level EIR. Consistent with the LAX Master Plan Final EIR, Los Angeles World Airports (LAWA), the City agency charged with operating and maintaining LAX, proposes to construct a crossfield taxiway between the north runway complex (i.e., Runways 6L/24R and $6 R / 24 \mathrm{~L}$) and the south runway complex (i.e., Runways $7 \mathrm{~L} / 25 \mathrm{R}$ and $7 \mathrm{R} / 25 \mathrm{~L}$) and an associated connection to, and extension of, the existing Taxiway D. As part of the CFTP, a new vehicle service road would be constructed parallel to and immediately west of the new crossfield taxiway, identified as Taxiway C13. Construction of these proposed improvements would require removal and potential relocation of certain ancillary and support facilities. To facilitate construction and operation of Taxiway C13, World Way West would need to be realigned and suppressed below grade at the intersection with Taxiway C13 and the proposed adjacent service road, requiring construction of two bridge facilities. A utility corridor (utilidor) would be constructed adjacent to the World Way West alignment. Existing "remain overnight" (RON) aircraft parking locations within the proposed alignment of Taxiway C13 would be resituated to a new location adjacent to Taxiway C13. A vehicle parking lot would be constructed west of the main project area to replace the American Airlines employee parking lot that currently occupies the area proposed for the resituated RON. Also occurring in conjunction with the aforementioned taxiway improvements would be the construction of a new fire station/aircraft rescue and fire fighting (ARFF) facility.
The LAX Master Plan was approved based on a certified program EIR, the LAX Master Plan EIR. A program EIR, under CEQA Guidelines $\S 15168$, is an EIR prepared for a program or plan-level document that analyzes the potential impacts of the program or plan and implementing activities as they are known at the time the program or plan is approved. Projects implementing the plan or program must be analyzed under CEQA to the extent they are outside the scope of the program covered by the program EIR. To the extent such projects are within the scope of the program covered by the program EIR, no new environmental analysis is required. The CFTP is such a project. Accordingly, the CFTP EIR is a "project" or "tiered" EIR based upon the LAX Master Plan EIR. Thus, the focus of its analysis is projectspecific attributes, information or circumstances not known or present at the time of, and therefore not analyzed in, the LAX Master Plan EIR. Information and analysis presented in the LAX Master Plan EIR is incorporated by reference in the CFTP EIR to deal with regional influences, secondary effects, cumulative impacts, broad alternatives, and other factors that apply to the program as a whole.
The CFTP would not alter operational capacity at LAX. Thus, most impacts of the CFTP that may not have been fully analyzed in the LAX Master Plan EIR are those that would occur during the approximately 16-month construction period. Accordingly, that, too, is the primary focus of the CFTP EIR. For the most
part, post-construction operational impacts associated with the CFTP were analyzed in the LAX Master Plan EIR and have not changed since that time. Thus, under the tiering provisions of CEQA described above, the CFTP Draft EIR generally is not required to reevaluate post-construction operational impacts already fully analyzed in the LAX Master Plan EIR. However, as the LAX Master Plan EIR did not include an analysis of potential operational impacts associated with Global Climate Change, such an analysis is included in the CFTP EIR.

In accordance with CEQA Guidelines §15088, the City of Los Angeles prepared responses to all comments received on the Draft EIR. As required by the CEQA Guidelines, the focus of the responses to comments is on "the disposition of significant environmental issues raised." Detailed responses are not provided to comments on the merits of the proposed project or on other topics that do not relate to environmental issues.

This document, which is the second component of the Final EIR, presents the comments received during the public review period for the Draft EIR and provides written responses to those comments. A total of 11 comment letters were received during the public review period. The indices presented at the end of this chapter list the agencies, organizations, and individuals that submitted comments on the Draft EIR. Copies of all comment letters received are provided in Attachment 1 of this document. A total of 176 individual comments resulted from such input. Chapter 2 of this document presents individual responses prepared by the City of Los Angeles relative to comments received during the review period for the Draft EIR (September 25, 2008 to November 10, 2008). While not required by CEQA, the City has also prepared responses to comments contained in two letters received after the close of the comment period for the Draft EIR. Chapter 3 of this document provides corrections and additions to information presented in the Draft EIR.

The format for the responses to comments presents, on a letter-by-letter basis, each comment, which is then followed immediately by a response. The comments and responses are organized and grouped into categories based on the affiliation of the commentor. The comments are presented in the following order: federal agencies, state agencies, regional agencies, local agencies, and public comments (i.e., letters from private citizens, organizations, etc.).
An alphanumeric index system is used to identify each comment and response, and is keyed to each letter and the individual comments therein. For example, the first letter within the group of federal agencies submitting comments on the Draft EIR is from the United States Coast Guard, and the text of the letter is considered to have five individual comments. The subject letter was assigned the alphanumeric label "CFTP-AF00001," representing "Crossfield Taxiway Project-Agency-Federal-Letter No. 1." The five individual comments within the letter are labeled as CFTP-AF00001-1, CFTP-AF000012, CFTP-AF00001-3, CFTP-AF00001-4, and CFTP-AF00001-5. The same basic format and approach is used for the comment letters from state agencies ("AS"), regional agencies ("AR"), local agencies ("AL"), and public comments ("PC").

The following are the prefix codes used for categorizing the comment letter types:

Letter ID Prefix		Description
AF		Federal Agency
AS		State Agency
AR		Logional Agency
AL	Public Comment	

To assist the reader's review and use of the responses to comments, three indices are provided. These indices provide the alphanumeric label number, commentor name, affiliation (i.e., name of agency or organization that the author represents), and date (if provided) of each comment letter. The first index lists all of the comment letters by alphanumeric label number, the second index lists all of the comment
letters by the commentor's last name, and the third index lists all of the comment letters by the affiliation, if any, of the commentor.

Chapter 2 provides individual comments and responses, presented on a letter-by-letter basis. Each comment is typed exactly as it appears in the original comment letter. No corrections to typographical errors or other edits to the original comments were made. A copy of each original comment letter is provided in Attachment 1 of this document.

Immediately following each typed comment is a written response developed by the City of Los Angeles. In many instances, the response to a particular comment may refer to the response(s) to another comment(s) that expressed the same concern or is otherwise related. Cross-referencing of responses uses the alphanumeric index system described above. For example, a response may indicate "Please see Response to Comment CFTP-AL00001-2" if that response addresses the same concern expressed in a different comment.

Together with the Draft EIR, the responses to comments, along with corrections and additions to the Draft EIR, constitute the Final EIR. Pursuant to CEQA, the Final EIR is not circulated for another round of comments and responses. The Final EIR is presented to the decision-makers for their use in considering the project. Interested persons may comment on the Final EIR, including these responses, in the course of the decision-making process related to the CFTP; however, the City is not required to provide responses to such comments.

1.2 Indices of Comment Letters

Following are three indices that organize the comment letters by letter identification number, commentor, and affiliation.

Index by Letter Identification (ID) Number

Letter ID	Commentor	Affiliation/Agency	Department
CFTP-AF00001	Holtzman-Bell, V. K.	United States Department of Homeland Security	United States Coast Guard

Index by Commentor

Commentor	Affiliation/Agency	Department	Date
Alvarez, Elmer	State of California	Letter ID DOT/District 7	Department of Public Works, Bureau of Sanitation - WESD
Chow, Denise	City of Los Angeles		10/21/2008 CFTP-AL00001

Index by Affiliation

Affiliation/Agency	Department	Commentor	Date	Letter ID
Alliance for a Regional Solution to Airport Congestion		Schneider, Denny	11/10/2008	CFTP-PC00002
Chevalier, Allen \& Lichman, LLP		Lichman, Barbara E.	11/10/2008	CFTP-AL00002
City of Los Angeles	Department of Public Works, Bureau of Sanitation - WESD	Chow, Denise	10/21/2008	CFTP-AL00001
Los Angeles International Airport Advisory Committee		Cope, Danna	11/10/2008	CFTP-PC00003
None Provided		Schivley, Gary	11/10/2008	CFTP-PC00004
Shute, Mihaly \& Weinberger LLP		Wolff, Osa L.	11/7/2008	CFTP-AL00003
South Coast Air Quality Management District		Smith, Steve	11/14/2008	CFTP-AR00001
Sprint Nextel Property Services		Solutions, Landlord	10/24/2008	CFTP-PC00001
State of California	DOT/District 7	Alvarez, Elmer	11/3/2008	CFTP-AS00001
State of California	Governor's Office of Planning and Research, State Clearinghouse and Planning Unit	Roberts, Terry	11/14/2008	CFTP-AS00002
United States Department of Homeland Security	United States Coast Guard	Holtzman-Bell, V. K.	11/5/2008	CFTP-AF00001

2. COMMENTS AND RESPONSES

CFTP-AF00001 Holtzman-Bell, V. K. United States Department of Homeland Security

CFTP-AF00001-1

Comment: Thank you for the opportunity to review the draft Environmental Impact Report (EIR) for the Cross Field Taxiway Project (CFTP) at the Los Angeles World Airports (LAWA).

The U. S. Coast Guard (CG) Air Station Los Angeles facilities at LAWA are essential to supporting the Maritime Homeland Security (MHLS) mission of the United States. Personnel and equipment assigned to support CG operations based at the LAWA require unfettered, uninterrupted (24/7/365) access to and egress from CG facilities. The CG has reviewed your draft CFTP EIR and has the following concerns:

1. The increase in traffic volumes, construction equipment, and changes in traffic patterns during construction could negatively impact CG's mission response posture.

Response: LAWA recognizes and appreciates the importance of the U.S. Coast Guard's mission and will work cooperatively with the Coast Guard to resolve concerns relative to the Crossfield Taxiway Project. Responses to specific comments on the CFTP Draft EIR are provided below and in Responses to Comments CFTP-AF00002 through CFTP-AF00005.

As stated in Section 4.1.4.1 of the CFTP Draft EIR and illustrated in Figure 4.1-4, all construction staging activities would be conducted at the proposed construction staging area located south of World Way West between Pershing Drive and Taxiway AA. This location is over 1,000 feet west of the Coast Guard's facility. As indicated in the CFTP Draft EIR, construction employees would park at a lot located off of La Cienega Boulevard and would be shuttled to the construction area. As illustrated in Figure 4.1-4, truck routes would travel only a short distance on World Way West before turning into the construction staging area. From the staging area, construction vehicles would primarily use roads within the Airport Operations Area (AOA) instead of using World Way West. Employee and delivery trips would not use Coast Guard Road and the Coast Guard would have full access to this road during construction. There would also be no changes in aircraft traffic patterns during construction. The CFTP construction area would be separated from the Coast Guard's operating area by a construction fence; no construction equipment would be located within the Coast Guard's operating area. With implementation of these measures, there would be no increase in traffic volumes, use of construction equipment, or changes in traffic patterns that would adversely affect the Coast Guard's operations.

CFTP-AF00001-2

Comment: 2. If construction debris is not kept clear of the CG's ramp, it could result in grounding and possible damage of the helicopters CG's helicopter engines and tail rotors are very susceptible to foreign object damage (FOD).

Response: As an airport operator with a variety of aircraft active throughout the AOA, particularly in the midfield area, LAWA is very sensitive to the potential for damage to aircraft from foreign objects. The construction specifications for the CFTP (Los Angeles World Airports, Special Provisions, Volume 1 of 4, for Crossfield Taxiway Project Final Construction Documents) would include requirements for maintaining a clean work site at all times. Required measures would include watering for dust control, foreign object damage control, and maintaining a work site that is free from construction debris. The construction specifications would include the following measure specifically pertaining to foreign object damage control:
"No loose material or waste (FOD) capable of causing damage to aircraft or capable of being ingested into jet engines may be left in the working area on or next to runways, taxiways, ramps, or aprons. The Contractor shall direct special attention to all areas which are operational to aircraft during construction. These shall be kept clean and clear of all materials or debris at all time. Any food waste shall be promptly cleared to prevent attracting birds and animals." (Construction Specifications 15-3.1(F)(2).)

Such measures have been successfully employed on a number of construction projects on the AOA at LAX including, but not limited to, the South Airfield Improvement Project and the In-Line Baggage Screening Systems Project.

CFTP-AF00001-3

Comment: 3. From previous meetings with LAWA officials, it appears the fence forming the eastern boundary of the CG's ramp will be moved eight (8) feet to the west. With this loss of approximately 2,800 SF of CG ramp space, it will be difficult for the CG to maintain sufficient clearance between taxiing aircrafts and the new fence creating a safety hazard for CG personnel and risk of damage to aircraft.

Response: The meeting referred to in this comment occurred in the early phases of project planning. Subsequent to the meeting, LAWA refined the Taxiway C13 improvement plans to reduce the shoulder width of the proposed vehicle service road such that no encroachment into the U.S. Coast Guard leasehold would occur. The subject refinement does not materially affect any of the analyses and conclusions of the CFTP Draft EIR.

CFTP-AF00001-4

Comment: 4. The proposed relocation of the water and sewer line below the CG Air Station parking lot could disrupt access to our facility as well as parking for CG personnel.

Response: The proposed relocations of water and sewer lines beneath Coast Guard Road were identified in the CFTP Draft EIR in error. No utility lines beneath or adjacent to Coast Guard Road would be required as part of the project. In response, page 2-35 of the Draft EIR has been revised. Please see Chapter 3, Corrections and Additions to the Draft EIR.

CFTP-AF00001-5

Comment: 5. Any utility disruptions to communications, electrical and gas line during construction will disrupt CG's ability to carry out its MHLS mission.

Response: LAWA recognizes the importance of the Coast Guard's Maritime Homeland Security mission and the need to maintain utilities to their facilities during construction. During construction, communications, electricity and natural gas utilities would be maintained for all tenants, including the Coast Guard. All cut-overs (transitions from the old system to the new system) would be conducted in the middle of the night and would be coordinated in advance with the Coast Guard and other potentially affected tenants as appropriate. It is anticipated that any loss of utilities during the cut-over process would be for very short durations (i.e., under 30 minutes).

CFTP-AS00001 Alvarez, Elmer State of California
11/3/2008

CFTP-AS00001-1

Comment: Thank you for including the California Department of Transportation (Caltrans) in the environmental review process for the Draft Environmental Impact Report (DEIR) for the LAX Crossfield Taxiway Project. Based on the information received, we have the following comments:

Since LAX is located close to the Interstate 405 (I-405) San Diego Freeway and just north of the Interstate 105 (I-105) Glenn Anderson Freeway, we request that the contractor avoid platooning of truck trips on mainline freeways, on freeway ramps and at freeway ramp intersections. We recommend that construction related truck trips on State highways be limited to off-peak commute periods. Transport of over-size or over-weight vehicles on State highways will need a Caltrans Transportation Permit.

Any work to be performed within the State Right-of-way will require a Caltrans Encroachment Permit. Projects within the State Right-of-way, which is expected to cost over $\$ 1$ million, will need a Project Study Report.

Response: Consistent with the requirements set forth in the LAX Master Plan Mitigation Monitoring and Reporting Program (MMRP), construction truck deliveries and construction employee shifts shall be scheduled by the CFTP construction contractor to avoid the peak periods of 7:00 to 9:00 a.m. and 4:30 to 6:30 p.m.

It is agreed that the contractor should schedule truck deliveries and departures to and from the staging area to avoid excessive or poorly timed truck platooning. LAWA, through its Ground Transportation Coordination Office, will periodically review and analyze traffic conditions on designated routes during construction to see whether there is a need to revise truck delivery times to improve traffic operations. The draft specifications for construction of the CFTP outline the environmental requirements that regulate CFTP construction traffic, among other requirements. The draft specifications require the contractor to submit within 30 days after Notice to Proceed, a Construction Traffic Management Plan (CTMP) that shall include a description of how the contractor will manage all construction related traffic. The requirement to schedule deliveries and departures from the staging area to avoid excessive platooning will be addressed as part of the CTMP.

The comment pertaining to the requirement for a Caltrans Transportation Permit for transport of over-size or over-weight vehicles is noted. The draft specifications for construction of the CFTP outline the environmental requirements that regulate CFTP construction traffic, among other requirements. The draft specifications state that compliance with the Environmental Requirements contained within the specifications "does not exempt the Contractor from compliance with other applicable permits, approvals, requirements, rules and regulations of other agencies with jurisdiction over the work of this contract." Therefore, the Contractor will be bound by the Caltrans permitting requirement.

The comment pertaining to Caltrans encroachment permit is noted and it is not anticipated that the CFTP work would encroach or be within the State Right-of-Way.

CFTP-AS00002 Roberts, Terry

State of California
11/14/2008

CFTP-AS00002-1

Comment: The State Clearinghouse submitted the above named Draft EIR to selected state agencies for review. The review period closed on November 10, 2008, and no state agencies submitted comments by that date. This letter acknowledges that you have complied with the State Clearinghouse review requirements for draft environmental documents, pursuant to the California Environmental Quality Act.

Response: The comment is noted. It should be noted that a comment letter from the State of California, Department of Transportation (Caltrans) was sent directly to LAWA and received before the close of the public comment period (November 10, 2008). Caltrans' comment letter is identified as CFTPAS00001.

CFTP-AR00001	Smith, Steve	South Coast Air Quality Management District	11/14/2008

CFTP-AR00001-1

Comment: The South Coast Air Quality Management District (SCAQMD) appreciates the opportunity to comment on the above-mentioned document. The SCAQMD would also like to thank the lead agency for the additional time to submit comments. The following comments are meant as guidance for the Lead Agency and should be incorporated into the Final Environmental Impact Report.

Pursuant to Public Resources Code Section 21092.5, please provide the AQMD with written responses to all comments contained herein prior to the adoption of the Final Environmental Impact Report. The SCAQMD staff would be happy to work with the Lead Agency to address these issues and any other questions that may arise.

Response: The comment is noted. Please see Responses to Comments CFTP-AR00001-2 through CFTP-AR00001-6 below. In accordance with the provisions of CEQA, LAWA has prepared written responses to all comments received on the CFTP Draft EIR. These responses are provided herein as part of this Final EIR. In accordance with Public Resources Code Section 21092.5, LAWA provided these written responses to the South Coast Air Quality Management District's (SCAQMD) comments on the CFTP Draft EIR at least 10 days prior to certification of the CFTP Final EIR.

CFTP-AR00001-2

Comment: Localized Significance Thresholds

1. The SCAQMD requests that the lead agency evaluate localized air quality impacts to ensure that any nearby sensitive receptors are not adversely affected by the construction activities that are occurring in close proximity. SCAQMD guidance for performing a localized air quality analysis can be found at the following web address: http://www.aqmd.gov/ceqa/handbook/LST/LST.html .

Response: In response to this comment, Section 4.2 of the CFTP Draft EIR has been revised to include an evaluation of localized construction air quality impacts to nearby receptors as described in Chapter 3, Corrections and Additions to the CFTP Draft EIR, and summarized in the tables below. The analysis indicates that CFTP construction-related concentrations are less than SCAQMD significance thresholds; thus, no new significant impacts were identified as a result of this analysis.

Table 1

CFTP Peak Construction $\mathbf{C O}$ and NO_{x} Concentrations

Pollutant	Averaging Period	CFTP Contribution	Background	Total w/CFTP	CAAQS	Significant? (Yes/No)
CO	1-Hour	$43 \mathrm{ug} / \mathrm{m}^{3}$	3,450 ug/m ${ }^{3}$	3,493 ug/m ${ }^{3}$	23,000 ug/m ${ }^{3}$	No
CO	8-Hour	$10 \mathrm{ug} / \mathrm{m}^{3}$	2,667 ug/m ${ }^{3}$	2,677 ug/m ${ }^{3}$	$10,000 \mathrm{ug} / \mathrm{m}^{3}$	No
NO_{2}	1-Hour	$91 \mathrm{ug} / \mathrm{m}^{3}$	$186 \mathrm{ug} / \mathrm{m}^{3}$	277 ug/m ${ }^{3}$	$339 \mathrm{ug} / \mathrm{m}^{3}$	No
NO_{2}	Annual	$1 \mathrm{ug} / \mathrm{m}^{3}$	$29 \mathrm{ug} / \mathrm{m}^{3}$	$30 \mathrm{ug} / \mathrm{m}^{3}$	$57 \mathrm{ug} / \mathrm{m}^{3}$	No

Table 2

CFTP Peak Construction PM10 and PM2.5 Concentrations

Pollutant	Averaging Period	CFTP Contribution	SCAQMD CEQA Threshold	Significant? (Yes/No)
PM10	24-Hour	2.2 ug/m ${ }^{3}$	10.4 ug/m ${ }^{3}$	No
PM2.5	24-Hour	$0.7 \mathrm{ug} / \mathrm{m}^{3}$	10.4 ug/m ${ }^{3}$	No

CFTP-AR00001-3

Comment: Construction Mitigation Measures

2. Because the construction air quality impacts from the proposed project are estimated to exceed established daily significance thresholds for carbon monoxide (CO), fugitive dust (PM10), volatile organic compounds (VOC) and nitrogen oxide (NOx), the SCAQMD recommends that the lead agency consider should consider adding the following mitigation measures to those listed on pages $4-70$ and $4-71$ in Tables 4.2-6 and 4.2-7 in Volume 1 of the Draft EIR to further reduce construction air quality impacts from the project, if applicable and feasible:

The following is a list of additional recommended mitigation measures to further reduce fugitive dust cumulative significant adverse PM10 impacts:

- Install wheel washers where vehicles enter and exit the construction site onto paved roads or wash off trucks and any equipment leaving the site each trip.
- Suspend all excavating and grading operations when wind speeds (as instantaneous gusts) exceed 25 mph ;
- All trucks hauling dirt, sand, soil, or other loose materials are to be covered;
- Traffic speeds on all unpaved roads to be reduced to 15 mph or less; and
- Sweep streets at the end of the day if visible soil is carried onto adjacent public paved roads (recommend water sweepers with reclaimed water).

3. The following mitigation measure is recommended to further reduce project-specific and cumulative NOx emission impacts:

- Use SCAQMD Rule 2449 - Control of Oxides of Nitrogen from Off-Road Diesel Vehicles, compliant construction equipment.

Response: LAWA is in agreement with SCAQMD that the measures listed to reduce fugitive dust are applicable to the CFTP. These measures are all included in SCAQMD's Rule 403.

Mitigation for air quality impacts associated with all LAX Master Plan projects were identified in the LAX Master Plan EIS/EIR. The LAX Master Plan required that LAWA develop a Mitigation Plan for Air Quality (MPAQ) that would apply to all Master Plan projects. One component of the MPAQ, MM-AQ-2, applies specifically to construction-related mitigation measures. The construction-related element of the MPAQ, referred to as the LAX Master Plan Construction-Related Mitigation Plan, was adopted by the Board of Airport Commissioners in December 2005.

The components of the Construction-Related Mitigation Plan include specific actions and measures primarily designed to reduce emissions of fugitive dust and exhaust from on-road and nonroad construction vehicles and equipment. The measures included in the plan fall into the following categories: fugitive dust source controls, on-road mobile source controls, nonroad mobile source controls, stationary point source controls, mobile and stationary source controls, and administrative controls. The Plan includes the statement that "[n]othing in this document exempts, relieves or
otherwise defers the construction contractor(s) from adhering to all federal, state and/or local air quality rules, regulations and guidelines." The Plan further specifies that "all the other provisions, requirements and/or activity/source performance criteria of SCAQMD Rule 403 (Fugitive Dust) also apply, including those pertaining to Large Operations and Contingency Control Measures. These measures include (but are not necessarily limited to) the development of a Dust Control Plan, appointment of a qualified dust control supervisor and the timely submissions of appropriate notification forms to SCAQMD."

Section 4.2.5 of the CFTP Draft EIR specifies that LAX Master Plan MM-AQ-2 applies to the CFTP. Therefore, the measures cited in this comment are already incorporated into the mitigation component of the CFTP and no modifications to the measures listed in the Tables 4.2-6 and 4.2-7 of the CFTP Draft EIR are required.

Regarding SCAQMD Rule 2449, it is LAWA's understanding that Surplus Off-Road Opt-In for NOx (SOON) program provides an incentive - grant funding - for construction contractors and other owners of off-road diesel equipment to accelerate compliance with the In-Use Off-Road DieselFueled Fleets (OR Fleets) Rule (13 CCR 2449, 2449.1 and 2449.2). Through the Community Benefits Agreement, Section X.F, LAWA already requires diesel construction equipment to be outfitted with best available emission control devices to reduce PM and NOx, as discussed in Section 4.2.5 of the CFTP Draft EIR. The devices installed on construction equipment used for the South Airfield Improvement Project (SAIP) are the Verified Diesel Emission Control Strategy (VDECS) filters referenced in the OR Fleets rule. LAWA is committed to continuing and expanding this control program as LAX Master Plan projects, such as the CFTP, begin construction. Since LAWA's current commitment includes retrofitting existing equipment, it was not deemed necessary to incorporate SCAQMD Rule 2449 into the list of CEQA mitigation measures.

It should be noted that no additional emission reductions were calculated for Rule 403 measures under CEQA since they are part of existing SCAQMD rules and regulations. The air quality impact analysis included in Section 4.2 of the Draft EIR did include reductions for use of diesel particulate filters on a portion of the construction equipment, and for fugitive dust control using watering.

CFTP-AR00001-4

Comment: SCAQMD Permit Requirements

4. In the Draft EIR, the lead agency describes concrete batching and aggregate rock crushing operations that might require SCAQMD permits. The lead agency should be aware that concrete batch and aggregate rock crushing operations are subject to the following rules and should note this in the Final EIR.

- Rule 1156 - PM10 Emission Reductions from Cement Manufacturing Facilities;
- Rule 1157 - PM10 Emission Reductions from Aggregate and Related Operations; and
- Regulation XIII - New Source Review.

Response: The comment is noted. Section 2.6.2 of the CFTP Draft EIR has been revised to note that the onairport concrete batching and aggregate rock crushing facilities used for the CFTP would be permitted according to Regulation XIII - New Source Review; and would meet the requirements of Rule 1156-PM10 Emission Reductions from Cement Manufacturing Facilities, and Rule 1157 PM10 Emission Reductions from Aggregate and Related Operations. Please see Chapter 3, Corrections and Additions to the CFTP Draft EIR.

CFTP-AR00001-5

Comment: Health Risk Assessment
5. In the Draft EIR, the lead agency states that the incremental health risks due to inhalation of TACs from operational sources associated with four build alternatives and the No Action/No Project

2. Comments and Responses

Alternative was addressed in the LAX Master Plan Final EIR on page 4-77. There appears to be no further discussion of potential health risks from operation. SCAQMD staff assumes that a formal HHRA for operational impacts was not prepared because the project results in a reduction of overall emission reductions. It would be helpful if the lead agency summarized the operational HHRA health risk results from the Final Program EIR for the LAX Master Plan and provide a better explanation in the Final EIR why an HHRA for the project operation was not prepared.

Response: Section 4.2.2.2 on page 4-62 of the CFTP Draft EIR provides a description of the operations of the CFTP with regards to air quality and emission impacts. As noted in the comment and in the text, " $[t]$ he completion of the CFTP would have a slight beneficial impact on the taxi/idle times of aircraft that need to move between the north and south airfields at LAX. No other operational source would be affected by the CFTP, and only taxi/idle emissions from aircraft would be impacted (reduced) by this project." The reductions in taxi/idle emissions are presented in Table 4.2-10 on page 4-74 in Section 4.2.6.2. As noted on pages 9 and 10 of Section 3.1.2 of Appendix D of the CFTP Draft EIR, on-airport operational sources of TAC emissions include aircraft, ground support equipment, ground access vehicles on airport roadways and in airport parking lots, and stationary sources such as power plants, fuel tanks, maintenance, and surface coating facilities, and other miscellaneous sources. Since human health risks are directly proportional to emission concentrations, a reduction in emissions would result in a decrease in risks and hazards and a slight beneficial impact. It was deemed unnecessary to calculate the magnitude of this beneficial impact as it would have negligible impact on the conclusions of the risk assessment for the CFTP.

As noted on page 4-1311 in Section 4.24.1.1 of the LAX Master Plan Final EIS/EIR, airport congestion is expected to grow worse without additional capital improvement. The approved LAX Master Plan (Alternative D) evaluated in the LAX Master Plan Final EIS/EIR is expected to relieve current and predicted future congestion by making airport operations, particularly aircraft operations, more efficient. This statement is supported by the negative incremental risks for Alternative D under the pre-mitigation assessment measured against Year 2000 reported on page 13 in Table S4 of Technical Report S9a, Supplemental Human Health Risk Assessment Technical Report of the LAX Master Plan Final EIS/EIR. Negative risks values indicate a reduction in cancer risk compared to baseline conditions and a beneficial impact as a result of the approved LAX Master Plan. This table also shows that the incremental hazard indices for Alternative D range from 0.03 to 0.1 depending on the receptor. These incremental chronic non-cancer hazards are below the threshold of significance. Although these results represent operational health risk results of the overall LAX Master Plan, they are for the entire Master Plan and do not provide project-specific information regarding the CFTP. The human health risk assessment (HHRA) conducted for the LAX Master Plan is publicly available (http://www.ourlax.org/pub_finalEIR.cfm) and its addition to the CFTP would not provide additional insight regarding project-specific CFTP operations or health risks.

CFTP-AL00001
Chow, Denise
City of Los Angeles
10/21/2008

CFTP-AL00001-1

Comment: My name is Denise Chow and am currently working on the Los Angeles International Airport Crossfield Taxiway Project. The CEQA regarding the crossfield taxiway is unrelated to sewers. We therefore have no further comments.

Response: The comment is noted. The CFTP Draft EIR addresses impacts on wastewater collection facilities in Section 5.14.

CFTP-AL00002-1

Comment: The following are the comments of the Cities of Inglewood and Culver City ("Cities") concerning the Draft environmental Impact Report (DEIR) for the Los Angeles International Airport ("LAX") Crossfield Taxiway Project (the "Project"). 1

1. As a threshold issue, please be advised that Cities note that none of the issues they raised in their May 12, 2008 comment letter regarding the Notice of Preparation were specifically addressed in the DEIR.

Response: The comment is noted. The footnote to this comment states that the CFTP Draft EIR did not specifically address any of the issues raised in the commentors' May 12, 2008 letter regarding the Notice of Preparation ("NOP comment letter"). LAWA respectfully disagrees. The Cities NOP comment letter identified three main areas of concern, all of which were specifically addressed in the CFTP Draft EIR, as described below.

The Cities' first NOP comment pertained to tiering of the CFTP EIR from the LAX Master Plan EIR and the relationship of the CFTP Draft EIR to the Specific Plan Amendment Study (SPAS). These issues were addressed in Sections 1.2.2, 1.2.3, and 3.3.2 of the CFTP Draft EIR. These comments are repeated in the Cities' November 10, 2008 comment letter on the CFTP Draft EIR. Please see Response to Comment CFTP-AL00002-2 below, which addresses these issues.

The Cities' second NOP comment related to airport capacity constraints and made the assertion that the CFTP would result in increased capacity. This was addressed in Section 2.4.4 of the CFTP Draft EIR. This comment is also repeated in the Cities' November 10, 2008 letter and a response is provided in Response to Comment CFTP-AL00002-3 below.

Finally, the Cities made comments on the NOP pertaining to the cumulative impacts of the CFTP and the Specific Plan and approved Master Plan. LAX Master Plan projects considered in the cumulative impacts analysis are identified in Section 3.3.1 of the CFTP Draft EIR and the relationship of the CFTP to the SPAS is addressed in Section 3.3.2 of the CFTP Draft EIR. The Cities' NOP comment on these issues are also repeated in their November 10, 2008 letter and a response is provided in Response to Comment CFTP-ALO0002-4 below.

CFTP-AL00002-2

Comment: I. THE "TIERING" OF THE DEIR ON THE "APPROVED MASTER PLAN EIR" RESULTS IN IMPROPERLY ATTENUATED ENVIRONMENTAL REVIEW.

The DEIR justifies expedited environmental review on the apparent ground that, as a part of "the approved LAX Master Plan" (DEIR, p. 1-10) adequate environmental review was already completed during the prior Master Plan environmental review process. 2 Cities disagree.

It is true that CEQA requires, in pertinent part, that "environmental impact reports shall be tiered whenever feasible . . .", Public Resources Code § 21093(b). However, the utility of tiering is limited to those situations in which individual projects, such as the Crossfield Taxiway are consistent with the larger project such as the approved Master Plan project which has already been environmentally reviewed. 3

Despite the fact that the "approved Master Plan" remains in place, most of its most salient features, such as the off-site ticketing facility; closure of the Central Terminal Area ("CTA") to surface traffic; movement of Runway 6L/24R 340 feet to the south, thus necessitating restructuring of Terminals 1 through 3, have been replaced by the Specific Plan projects currently being evaluated as separate projects. Therefore, the Specific Plan projects, and their environmental impacts, will be radically different from the projects and environmental impacts originally evaluated in conjunction with the
approved Master Plan. As a consequence, even if the Crossfield Taxiway Project were envisioned and evaluated in the EIR for the approved Master Plan, it cannot remain consistent with a "first tier decision" that has itself been radically transformed.

The second order consequence of this radical transformation is the potential for different and additional environmental impacts. For example, the DEIR fails to disclose if or how leaving Runway $6 \mathrm{~L} / 24 \mathrm{R}$ in place or, as is currently being proposed, moving it 340 feet north, will change the Project's impacts resulting from aircraft taxiing distances different from those envisioned in the Master Plan. In short, because of the manifest inconsistency between the "Approved Master Plan" and the current Specific Plan, the Cross Field Taxiway project must be fully and independently evaluated under CEQA.
2. "Concurrent with the approval of the LAX Master Plan was the certification of the LAX Master Plan Final Plan Final EIR, which addresses the environmental impacts associated with the LAX Master Plan improvements. As a programmatic level EIR, the LAX Master Plan Final EIR was prepared and certified by LAWA for the entire LAX Master Plan. In accordance with CEQA, subsequent activities occurring within the program (i.e., the Master Plan) are examined in light of the program EIR to determine whether an additional environmental document must be prepared." DEIR, p.1-1.
3. "Tiering is a process by which agencies can adopt programs, plans, policies, or ordinances with EIRs focusing on 'the big picture' and can then use streamlined CEQA review for individual projects that are consistent with such . . . [first tier decisions] . . ." Koster v. County of San Joaquin, 47 Cal.App.4th 29, 36 (1996).

Response: The CFTP Draft EIR is "tiered" from, and incorporates by reference, the LAX Master Plan EIR. The CFTP Draft EIR builds on the analysis contained in the LAX Master Plan EIR and provides additional project-level information and analysis as necessary. This is consistent with CEQA Guidelines § 15168, subd. (d), which encourages agencies to simplify the task of preparing EIRs on later parts of a program. Specifically, the CEQA Guidelines encourage agencies to use the first-tier document "to deal with regional influences, secondary effects, cumulative impacts, broad alternatives, and other factors that apply to the program as a whole" and to focus the second-tier EIR "to permit discussion solely of new effects which had not been considered before." (CEQA Guidelines § 15168, subd. (d)(2),(3).)

The CFTP Draft EIR's reliance on the LAX Master Plan EIR is appropriate, as the CFTP is consistent with the LAX Master Plan, as demonstrated in Section 2.2 of the CFTP Draft EIR. The current status of the LAX Master Plan, including the outcome of the Stipulated Settlement as well as the SPAS process, is addressed in Section 3.3.2 of the CFTP Draft EIR. As noted in that section, several components of the LAX Master Plan were identified as "Yellow Light Projects" in the Stipulated Settlement. As also noted in that section, the purpose of the SPAS is to identify potential alternative designs, technologies, and configurations for the LAX Master Plan Program that would provide solutions to the problems that the Yellow Light Projects were designed to address, consistent with a practical capacity of LAX at 78.9 million annual passengers. Section 7.G. of the LAX Specific Plan also recognizes the very same improvements identified in the Stipulated Settlement as Yellow Light Projects as requiring further evaluation through the SPAS process. However, while the SPAS is being processed, "LAWA may continue to process and develop projects that are not Yellow Light Projects, consistent with the LAX Specific Plan Compliance Review procedures." (Stipulated Settlement, Sec. V.F.) Therefore, LAWA may proceed with those components of the approved LAX Master Plan that were not identified in Section 7.G. of the Specific Plan (i.e., the Yellow Light Projects), and implementation of those components were not, and are not, dependent or contingent upon the SPAS process.

LAWA is in the process of preparing a Draft EIR for the SPAS. As presented in the NOP for the SPAS Draft EIR, which was published on March 17, 2008, four development alternatives as well as the No Project/No Development (Existing Conditions) alternative and the No Project/No Specific Plan Amendment (Implement Approved Master Plan) alternative are currently being considered in the SPAS Draft EIR. It would be speculative to make any assumptions as to which of these development alternatives, if any, will be approved by the Board of Airport Commissioners and the

Los Angeles City Council. Unless and until an amendment to the Specific Plan is approved that would modify the LAX Master Plan components, the approved LAX Master Plan, as reflected in the LAX Specific Plan adopted by the Los Angeles City Council, is the current plan and remains in effect. It is premature to state that the salient features of the Master Plan have been replaced. In fact, as noted above, implementation of the approved Master Plan is one of the alternatives being considered in the SPAS EIR.

Moreover, because the SPAS EIR has not yet been completed, the environmental impacts of the alternatives under consideration are not yet known. Therefore, it is not appropriate to evaluate the impacts of the CFTP in conjunction with the SPAS alternatives. However, the SPAS EIR will evaluate, on a cumulative basis, the impacts of each of the SPAS alternatives in conjunction with other, non-SPAS projects. This analysis will consider the non-Yellow Light Master Plan projects, including the CFTP.

CFTP-AL00002-3

Comment: II. THE DEIR'S AIR QUALITY ANALYSIS IS LIMITED ONLY TO "TEMPORARY EMISSIONS FROM CONSTRUCTION" AND IS INADEQUATE TO SATISFY CEQA.

CEQA requires that an EIR be "a detailed statement prepared under CEQA describing and analyzing the significant effects of a project and discussing ways to mitigate or avoid the effects." CEQA Guidelines, § 15362. However, the DEIR does not address any of the air quality impacts of the Project except for emissions created by the actual construction of the Project. 4 Thus, the DEIR fails to analyze any of the significant effects that the operational components of the Project will have on air quality. The DEIR provides no justification for the minimal air quality analysis of the Crossfield Taxiway Project, other than what was previously stated in the Notice of Project (NOP)that "[w]hile it would reduce delays associated with taxiing aircraft, the proposed project would not increase the capacity of the airfield, as that capacity is currently constrained by number and availability of gates." DEIR App. A, p. 4 (emphasis added). This premise is flawed.

First, and most obviously, while it is true that landside facility constraints will play a role in limiting airport capacity, the current constraint on numbers of gates to 153, established in the "Judgment Pursuant to Stipulated Settlement," ("Settlement")5 expires at the end of 2020. Therefore, the "current" gate constraints (which do not in any event become applicable unless and until LAX reaches 75 million air passengers per year6) will exist for a maximum of 12 more years. All envisioned improvements may only barely be completed by that date. As air quality should be evaluated for future as well as current scenarios, the "current" gate constraints relied upon in the DEIR as an effective capacity constraint will not be the same constraint on future capacity increases.

Second, the decrease in delay which is the stated purpose of the Crossfield Taxiway Project (NOP, p. 4) may itself give rise to increased capacity. "Airport capacity" is defined by the FAA as "throughput rate, i.e., the maximum number of operations that can take place in an hour," FAA Advisory Circular AC150/5060-5, p. 1. Both the DEIR and the NOP concede that the Crossfield Taxiway Project's purpose is to "reduce delays associated with taxiing aircraft" (NOP, p. 4) see also, DEIR pp. 2-21, 2-22.7 The corollary of reduced delay is increased "throughput rate." As "nature abhors a vacuum," the slots created by increased throughput rate will, as has occurred at the vast majority of airports including LAX in the past, ultimately result in a higher "maximum number of operations that can take place in an hour."

This is not a concept that is unfamiliar to those who work with airports and proprietors of airports. This principle is explicitly recognized in the FAA's regulatory guidance governing benefit-cost analysis of airport projects. See FAA Airport Benefit Cost Analysis Guidance, (Office of Aviation Policy and Plans December 15, 1999) ("BCA Guidance"). The BCA Guidance, which is intended to help FAA weigh the relative merits of airport projects in making discretionary funding decisions, relies on this principle to help FAA and airport proprietors justify, and quantify the benefits of, investments in aviation projects that reduce airport delays. Id. $\S 1.1$ at p. 1, $\S 10.4 .1 .3$ at p .41 . The BCA Guidance acknowledges that transportation projects "often" induce higher levels of operations.

2. Comments and Responses

Id., § 10.4.1.3 at p. 41. It notes that this common-sense relationship between transportation projects and higher levels of operations applies with special force to aviation projects that reduce flight delays. In the FAA's own words:

Allowance for Induced Demand. It is often the case with transportation projects that an improvement in service attributable to an investment at a facility will induce greater use of the facility than would have occurred without the investment. For instance, an investment that lowers average delay at an airport will induce some potential customers who formerly avoided the airport to use it.

Id. (emphasis in last sentence added).
Moreover, BCA Guidance also offers a formula to calculate the amount of induced demand created by reductions in delay: if "delay savings are more than one minute per operation, it is advisable to resimulate the project alternative case assuming 2 percent increments in operations/passengers." Id. Such 2 percent increments in induced operations should be calculated for each 3 minute saving attributable to the project. Id. "Thus, in the case of a project saving 6 minutes per operation relative to the base case, demand levels equivalent to the base case demand, the base case demand plus 2 percent, and the base case demand plus 4 percent should be simulated for the project case." Id.

Finally a consequence of increased capacity is increased emissions from the greater number of aircraft. Therefore, even though taxi/idle time and distance traveled may be reduced for individual aircraft, this air quality benefit is likely to be offset by additional emissions from additional aircraft.

In short, the Crossfield Taxiway project may not have the limited air quality impact portrayed in the DEIR. Cities therefore strongly recommend that, given the potential synergistic air quality impacts of the Crossfield Taxiway Project with other projects currently being evaluated in the separate NOP for the Specific Plan and the remaining projects in the proposed Master Plan, as well as the Crossfield Taxiway Project's potential for increasing capacity, a complete air quality analysis be performed as part of the EIR. The analysis should include, at minimum, an air quality conformity applicability analysis which takes into account the potential air quality impacts of all projects planned or ongoing, in conjunction with construction of the Crossfield Taxiway Project.
4. "This EIR for the CFTP tiers from the analysis and findings documented in the LAX Master Plan Final EIR. This analysis has been further refined to incorporate detailed project-related assumptions regarding construction equipment that would be utilized and airport activity levels during the construction of the CFTP." DEIR, p.4-57.
5. The settlement ended the challenge to the approved Master Plan brought by Cities, among other Petitioners. City of El Segundo, et al v. City of Los Angeles, et al., Riverside County Superior Court Case No. 426822.
6. Settlement, IV.C., p.8.
7. " . . . the new crossfield taxiway and associated improvements will help relieve existing aircraft congestion and reduce delays that periodically occur on the existing crossfield taxiway system and on adjacent taxiways . . . " DEIR pp. 2-21, 2-22.

Response: The commentor is incorrect in claiming that "the DEIR does not address any of the air quality impacts of the Project except for emissions created by the actual construction of the Project." Section 4.2.2.2 of the CFTP Draft EIR, entitled "Operations," addresses air quality impacts associated with operation of the proposed taxiway improvements. The analysis compares aircraft taxi/idle times with and without the CFTP using airfield simulation modeling, concluding that implementation of the project would reduce emissions associated with aircraft ground movements compared to existing conditions. Implementation of the proposed CFTP would not affect the number and availability of gates at LAX. While it is true that the gate limit provision of the Stipulated Settlement expires at the end of 2020, it would be speculative to hypothesize about the airport's operational characteristics 12 years hence. The CFTP has no bearing on the number of gates that might exist at LAX in the future. It is, however, reasonable to conclude that aircraft ground movement characteristics in the midfield area would improve with the addition of a new Airplane

Design Group (ADG) VI taxiway, compared to existing conditions, regardless of the future airport operations scenario. As such, the conclusion of the CFTP Draft EIR that implementation of the proposed project would result in operations-related air quality benefits still stands.

Similarly, while throughput rate can be an indicator of capacity, the built-in capacity constraints at LAX ensure that capacity will not expand beyond that permitted in the Stipulated Settlement. As stated in FAA Advisory Circular AC150/5060-5, "Airport Capacity and Delay," airport capacity is dependent upon several airport components, including but not limited to, the runways, taxiways, and gate group. Capacity as defined by the FAA is a measure of the maximum number of aircraft operations which can be accommodated on the airport or airport component in an hour. For information related to the specific components that affect the airport's overall capacity, refer to Section 2.2.2 of the LAX Master Plan Final EIR. The proposed CFTP would not change the runway or gate group components relative to airport capacity. As defined by the FAA Advisory Circular AC150/5060-5, page 1, "The term taxiway includes the parallel taxiways, entrance-exit taxiways, and crossing taxiways, recognizing that a capacity limiting condition may exist when an arriving or departing stream of aircraft must cross an active runway." The proposed taxiway is neither a parallel taxiway, an entrance-exit taxiway, nor a crossing taxiway. A crossing taxiway, as defined by the FAA, is a taxiway that crosses an active runway; the project crossfield taxiway would not cross any active runways and therefore is not a component of measuring throughput. Therefore, the addition of Taxiway $\mathrm{C}-13$ would not directly correlate to an increase in throughput, because it is not a taxiway that would have a direct effect on runway occupancy or crossing. As evidenced by the detailed SIMMOD airspace/airfield simulation results, the throughput rates for arriving and departing aircraft would remain unchanged with project implementation. Additionally, the air delay remained unchanged for the simulations, further indicating that throughput would remain unchanged. As stated in Section 2.1.3 of the CFTP Draft EIR, the new crossfield taxiway would provide FAA Air Traffic Control Tower (ATCT) personnel with an additional option to alleviate certain congested ground movement areas during peak periods. This would result in a slight reduction in delay per operation for a peak month average day of less than one minute, as noted in Section 4.2.6.2 of the CFTP Draft EIR, based on the same level of operations and fleet mix distribution. This does not equate to a delay savings of more than one minute per operation as referenced by the commentor; therefore, application of the FAA's BCA formula to calculate the amount of induced demand created by reduction in delay is not applicable.

Regarding the comment that an air quality conformity analysis be conducted for the CFTP, the CFTP is not a project requiring federal approval. As a result, a federal air quality conformity determination is not required. However, a federal General Conformity Determination was conducted for the LAX Master Plan (see Appendix A-2a of the LAX Master Plan EIS). The CFTP is an implementing project under the LAX Master Plan; therefore, it falls within the General Conformity Determination conducted for the LAX Master Plan.

CFTP-AL00002-4

Comment: III. THE DEIR DOES NOT TAKE INTO ACCOUNT CUMULATIVE IMPACTS OF THE CROSSFIELD TAXIWAY PROJECT WHEN TAKEN TOGETHER WITH THE SPECIFIC PLAN AND APPROVED MASTER PLAN PROJECTS

The DEIR does not mention, let alone evaluate, the impacts of the Specific Plan and approved Master Plan projects. Those projects are, however, closely related to the Crossfield Taxiway Project.

The cumulative impact from several projects is the change in the environment which results from the incremental impact of the project when added to other closely related past, present and reasonably foreseeable probable future projects. Cumulative impacts can result from individually minor, but collectively significant projects taking place over a period of time.

CEQA Guidelines, § 15355. The DEIR does mention the cumulative impacts that several construction projects will have, but because the DEIR limits its discussion solely to construction impacts, there is no discussion of cumulative operational impacts.

First, there is no doubt that the Specific Plan projects are reasonably foreseeable, given that the NOP for their environmental review was circulated contemporaneously with the NOP for this Project. Nor can it be argued that those projects are not closely related to the Crossfield Taxiway Project. For example, the purpose of the Specific Plan project separating the runways in the North Runway Complex is accommodation of New Large Aircraft ("NLA") like the A-380, the same purpose as asserted for the Crossfield Taxiway Project (NOP, p. 4). Moreover, the Crossfield Taxiway Project will facilitate traffic between the two runway complexes for the express purpose of allowing NLA and other long haul aircraft which are currently able to use only the South Runway Complex efficiently, to access the North Runway Complex.

Second, the Project's individual impacts may be portrayed as "minor," in comparison to those of the other projects, both individually and collectively, this comparison does not exempt the Crossfield Taxiway Project from a collective evaluation with the other contemporaneous Specific Plan and approved Master Plan projects. See, e.g., Kings County Farm Bureau v. City of Hanford, 221 Cal.App.3d 692, 720 (1990) citing Cal.Admin.Code, title 14 § 15355(b) "Cumulative impacts can result from individually minor but collectively significant projects taking place over a period of time." In short, the Crossfield Taxiway Project is part of a larger complex of projects aimed at readying LAX for more numerous and larger aircraft. The DEIR should, therefore, at minimum, disclose the potential cumulative impacts of the Crossfield Taxiway Project when taken together with the Specific Plan and approved Master Plan projects which have manifestly the same purpose.

One of those potential cumulative impacts is noise. While the DEIR contemplates evaluation only of construction noise (DEIR, p. 3-2), the Crossfield Taxiway Project's potential cumulative impacts on communities to the north and east of LAX extends far beyond construction noise. To the extent that NLA and other traffic is shifted form the South to the North Runway Complex; and to the extent that the further separation of runways on the North Complex contemplated in the Specific Plan Amendment Study allows not merely larger aircraft, but more aircraft, by virtue of the planned, center taxiway, the Crossfield Taxiway will be an integral part of a large complex of projects. These projects when taken together may lead to changed configurations of the noise contours over adjacent communities.

Cities therefore urge that evaluation of the Project's noise impact be: (1) extended beyond construction to operational impacts; and (2) at minimum, performed, and mitigation measures developed, in the context of the cumulative impacts of all projects that are or will be implemented, and not individually and in isolation as currently contemplated in the DEIR.

Response: The CFTP Draft EIR discusses the cumulative impacts of the CFTP in conjunction with the Specific Plan and the approved Master Plan projects in Section 3.3.1. Specifically, the EIR explains that the overall operational effects of the impacts associated with all of the Master Plan improvements are addressed in the LAX Master Plan Final EIR, which "essentially provid[es] a cumulative impacts analysis of all the improvements that comprise the LAX Master Plan." Please note that an EIR need only address cumulative impacts that result in part from the project evaluated in the EIR. (CEQA Guidelines § 15130, subd. (a)(1).) As indicated in Section 4.1.1 of the CFTP Draft EIR, and in Response to Comment CFTP-PC00002-82, the CFTP would not result in operational changes to traffic. As indicated in Sections 4.2.6.2 and 4.4.6.2 of the CFTP Draft EIR, respectively, projectrelated operational impacts of the CFTP on air quality and global climate change would be beneficial. Finally, as indicated in Section 4.3.2.2 (page 4-84) of the CFTP Draft EIR, in the absence of operational air quality impacts, there would be no adverse operational impacts to human health risk. Therefore, operation of the project would not contribute to cumulative impacts to these resources and no analysis of such impacts is required in the CFTP EIR. The CFTP Draft EIR identifies three LAX Master Plan projects that are currently in the planning and/or design stages, and indicates that only one of these projects, the TBIT Reconfiguration Project, is anticipated to be under construction at the same time as the CFTP. The cumulative impacts of the CFTP, including both construction and operational impacts, and this Master Plan project, as well as other airport and non-airport projects, are evaluated throughout Chapter 4 of the CFTP Draft EIR. This is consistent with CEQA Guidelines § 15168, subd. (d)(2),(3), which encourages agencies to use first-tier documents such as the LAX Master Plan EIR "to deal with regional influences, secondary effects, cumulative impacts, broad alternatives, and other factors that apply to the program as a whole" and
to focus second-tier EIRs, such as the CFTP EIR, "to permit discussion solely of new effects which had not been considered before."

Please see Response to Comment CFTP-AL00002-2 regarding the consideration of the SPAS project in the cumulative analysis. As indicated in that response, it would be speculative to make any assumptions as to which SPAS development alternative, if any, will be approved by the Board of Airport Commissioners and the Los Angeles City Council. Therefore, it is not appropriate to evaluate the impacts of the CFTP in conjunction with the SPAS alternatives in more detail than what is already analyzed in the LAX Master Plan EIR. Unless and until an amendment to the Specific Plan is approved that would modify the LAX Master Plan components, the approved LAX Master Plan, as reflected in the LAX Specific Plan adopted by the Los Angeles City Council, is the current plan and remains in effect. As stated in Response to Comment CFTP-AL00002-2, the appropriate place for a cumulative analysis of the SPAS alternatives and the non-Yellow Light Master Plan projects, including the CFTP, is the SPAS EIR. Further, the Stipulated Settlement allows LAWA "continue to process and develop projects that are not Yellow Light Projects, consistent with the LAX Specific Plan Compliance Review procedures" while the SPAS is being processed. (Stipulated Settlement, Sec. V.F.) To hold up the CFTP EIR process until the SPAS process is complete would be inconsistent with this provision of the Stipulated Settlement.

Whereas both the SPAS project and the CFTP share a goal of accomodating New Large Aircraft (NLA), neither project is dependent on the other and each could go forward absent the other. Moreover, as stated above, it is not appropriate to evaluate the impacts of the CFTP in conjunction with the SPAS in more detail than what is already analyzed in the LAX Master Plan EIR given the speculation that would be involved in such an excercise. Such impacts will be evaluated in the SPAS EIR. As a point of clarification, although the CFTP would accommodate the movement of ADG VI aircraft, these aircraft are currently able to travel between the two runway complexes on crossfield Taxiways AA and S. Further, NLA and other long haul aircraft are currently able to use both the north and south runway complexes. NLA, namely the Airbus A380, are currently approved to land on Runway 24R in the north runway complex, as well as on Runway 25L in the south runway complex. The aircraft is currently approved to depart on Runway 25L.

Regarding the comments pertaining to the cumulative noise analysis, as noted in Section 2.1.3 of the CFTP Draft EIR, implementation of the CFTP would not change the number and overall temporal distribution of aircraft arriving at, and departing from, LAX. In addition, the CFTP would not substantially change the existing overall daily split in operations between the north and south runway complexes, nor would it materially change the existing imbalance in the number of heavy aircraft operating on these complexes. (The assignment of departing heavy aircraft to a particular runway is based primarily on runway length; Runway 7L/25R in the south complex is currently the longest runway at LAX and is the primary runway used for the departure of heavy aircraft.) As a result, as indicated in Section 5.1 of the CFTP Draft EIR, the proposed project would not result in any changes to operational noise impacts associated with aircraft takeoffs and landings at the airport and, therefore, would not affect the overall airport noise contours for the airport. An analysis that considers the combined effects of all airfield-related improvements, including further separation of the runways in the north airfield and the addition of new north-south taxiways, is provided in Section 4.1.6.1.5 (pages 4-87 through 4-94) of the LAX Master Plan Final EIR. It should be noted that the CFTP Draft EIR does address localized operational noise impacts that would result from the increased efficiency of the airfield. As indicated in Section 5.1 of the CFTP Draft EIR, the proposed project is anticipated to result in reduced noise levels associated with improved aircraft taxiing operations, though the distance of the noise sources to surrounding sensitive uses near LAX makes it likely that these reductions may not be readily perceptible at off-airport locations.

CFTP-AL00002-5

Comment: IV. THE DEIR'S GREENHOUSE GAS EMISSION ANALYSIS SHOULD TAKE INTO ACCOUNT THE CALIFORNIA AIR RESOURCES BOARD'S RECENT PROPOSAL FOR INTERIM THRESHOLDS OF SIGNIFICANCE.

On September 27, 2006, Governor Schwarzenegger signed Assembly Bill 32, the Global Warming Solutions Act of 2006. The law requires a reduction of greenhouses (GHG) emissions to 1990 levels by 2020. This reduction will be accomplished through an enforceable statewide cap on global warming emissions that will be phased in starting in 2012. In order to effectively implement the cap, AB 32 directs the California Air Resources Board (CARB) to develop appropriate regulations and establish a mandatory reporting system to track and monitor global warming emissions levels. Additionally, AB 32 requires that CARB use the following principles to implement the cap: distribute benefits and costs equitably; ensure that there are no direct, indirect, or cumulative increases in air pollution in local communities; protect entities that have reduced their emission through actions prior to this regulatory mandate; and allow for coordination with other states and countries to reduce emissions.

The DEIR should also heed the recent settlement of Brown v. San Bernardino County in which California Attorney General Jerry Brown challenged San Bernardino County's General Plan on CEQA grounds because it did not take GHG into account. As a result of the settlement, the County began a $30-$ month public process aimed at cutting greenhouse gas emissions attributable to land use decisions and county government operations. Under the newly approved Greenhouse Gas Emissions Reduction Plan, the county must: (1) inventory all known, or reasonably discoverable, sources of greenhouse gases in the county; (2) inventory the greenhouse gas emissions level in 1990, the current level, and that projected for the year 2020; and (3) set a target for the reduction of emissions attributable to the country's discretionary land use decisions and its own internal government operations.

Although the DEIR does contain some analysis of GHG, it does not go far enough. Specifically, the DEIR states that "[t]here are no currently established CEQA thresholds of significance or regulatory thresholds for GHG emissions on a local, state, or national basis." DEIR, p. 4-108. However, as part of CARB's mandate under AB 32 and under its duties under CEQA, on October 24, 2008, it released its Preliminary Draft Staff Proposal (PDSP) of Recommended Approaches for Setting Interim Significance Thresholds for Greenhouse Gases under the California Environmental Quality Act. 8 In the PDSP, CARB recommended that if industrial projects emit more that 7,000 metric tons of CO 2 a year, an EIR should be prepared and all feasible greenhouse gas (GHG) mitigation measures be implemented. CARB believes that this threshold "will result in a substantial portion of the GHG emissions from new projects being subject to CEQA's mitigation requirement, consistent with a lead agency's obligation to 'avoid or minimize environmental damage where feasible."' PDSP, p.5, citing California Code of Regulations, title 14, § 15021.

Although CARB is still developing a "proposal for an interim approach for thresholds for transportation projects," the DEIR should take the PDSP into account by both evaluating the Project's potential GHG impacts and developing further mitigation measures to offset the potential increase in GHG. This is particularly true in light of the fact that CO2 emissions from the construction sources alone go well above the 7,000 metric ton threshold. See, DEIR, p. 4-116. Although the DEIR claims that there will be reduction in fuel consumption and thus CO2 emissions, operational emissions, however, should be calculated so that the induced demand created by the project is taken into account. Once the PDSP's proposed threshold is taken into account and operational emissions are based on induced demand, the mitigation measures stated in 4.4.8 should be amended to account for the increase in GHG emissions.
8. Almost contemporaneously with the PDSP, CARB issued its Climate Change Proposed Scoping Plan: a Framework for Change, as part of its milestones for the implementation of $A B 32$. Since the Proposed Scoping Plan does not take currently suggest any measures for aircraft and airports, we do not discuss it here.

Response: The CFTP Draft EIR addresses global climate change and greenhouse gases (GHG) in Section 4.4 with supporting technical data provided in Appendix E. A discussion of AB 32 and other related state regulations and directives is provided in Section 4.4.3.1. Section 4.4.4 of the CFTP Draft EIR acknowledges that the state Office of Planning and Research (OPR) has asked the California Air Resources Board (ARB) technical staff to recommend a method for setting thresholds of significance related to GHG emissions. The fact that ARB released its Preliminary Draft Staff Proposal (PDSP) of Recommended Approaches for Setting Interim Significance Thresholds for

Greenhouse Gases under the California Environmental Quality Act does not lessen the accuracy or validity of the Draft EIR's statement that "[t]here are no currently established CEQA thresholds of significance or regulatory thresholds for GHG emissions on a local, state, or national basis." Notwithstanding that ARB released the subject recommendations on October 24, 2008 for the sole purpose of soliciting public input and, by name alone - "Preliminary Draft Staff Proposal" - it is clear that ARB's recommendations are very preliminary in nature and are not intended or designed at this time to be applied to a specific project, the comment's application of the preliminary draft thresholds to the CFTP does not comport with the basic methodology described in the PDSP. The 7,000 metric ton threshold cited repeatedly in the comment pertains only to ARB's proposed operational emissions of industrial projects. Aside from the fact that the CFTP is more likely to be considered a transportation project than an industrial project, at which the PDSP states that ARB staff is working on a proposal for an interim approach for thresholds for transportation projects (see page 5 of PDSP), the PDSP clearly states that construction emissions would be evaluated in light of ARB interim performance standards, which are yet to be drafted; not quantitative standards as implied in the comment.

With regard to the comment's suggestion that implementation of the CFTP would somehow induce demand and increase activity at LAX, please see Response to Comment CFTP-AL00002-3.

CFTP-AL00002-6

Comment: Cities appreciate this opportunity to comment and request that future documents be transmitted to the office of their counsel, Chevalier, Allen \& Lichman, LLP at the above address.

Response: This comment is noted. A copy of the Final EIR will be sent to Chevalier, Allen \& Lichman, LLP as well as to the Cities of Inglewood and Culver City. The Final EIR will also be available at www.ourlax.org.

CFTP-AL00003 Wolff, Osa L.

Shute, Mihaly \& Weinberger LLP

11/7/2008

CFTP-AL00003-1

Comment: We submit this letter on behalf of our client, the City of El Segundo, to comment on the Los Angeles World Airports ("LAWA") Draft Environmental Impact Report ("DEIR") for its Crossfield Taxiway Project proposed for Los Angeles International Airport ("LAX"). El Segundo has been an active participant in the LAX Master Plan process since its inception. In February of 2006, El Segundo, together with other petitioners, entered into a Stipulated Settlement Agreement with LAWA. El Segundo continues to monitor LAWA's efforts to implement the LAX Master Plan in order to ensure those efforts comply with the terms of the Master Plan and Stipulated Settlement Agreement. In keeping with that approach, and in the spirit of cooperation, we submit this comment letter on behalf of the City of El Segundo.

We previously submitted a May 12,2008 comment letter on behalf of El Segundo commenting on LAWA's Notice of Preparation ("NOP") for the Crossfield Taxiway Project DEIR. LAWA thereafter released a revised NOP, and has now circulated the DEIR for public review and comment. We are pleased to see that both the revised NOP and the DEIR respond to some of the issues raised in El Segundo's comment letter on the initial NOP.

For example, El Segundo's NOP comment letter asked for additional information regarding existing uses and facilities that would be displaced by the proposed Crossfield Taxiway Project. As requested by El Segundo the DEIR provides detailed information regarding the uses and facilities that would be displaced, information regarding where those uses will be relocated and an analysis of associated environmental impacts.

Similarly, El Segundo's NOP comment letter questioned whether and to what extent the Project was one of the Master Plan projects previously evaluated at a programmatic level in the LAX Master

Plan Environmental Impact Statement/Environmental Impact Report. We asked for guidance regarding how the Master Plan EIS/EIR evaluated the proposed Crossfield Taxiway Project. In response, the DEIR acknowledges that the Crossfield Taxiway Project is rarely referenced specifically in the LAX Master Plan and its EIS/EIR, but points out how it was part of that plan and its environmental analysis (including noise, airfield efficiency, safety and capacity). See DEIR at 212 through 2-21.

Thank you for your efforts to provide detailed and substantive responses to our prior comments. Although the DEIR represents a marked improvement over LAWA's initial NOP for the Crossfield Taxiway Project, some issues remain. El Segundo therefore respectfully submits the following comments:

Relationship to Airfield Balance. In our comments on LAWA's NOP for the Crossfield Taxiway Project DEIR, we noted that the City of El Segundo is interested in ensuring that aircraft operations at LAX are balanced between the north and south airfields. The need for balance is particularly important for noisy large aircraft ("heavies"), which have historically used the south airfield (close to El Segundo) more than the north airfield. The DEIR prepared by LAWA responds to this comment by noting that one of the benefits of the Crossfield Taxiway Project is that it will help air traffic controllers better balance aircraft arrivals between the north and south airfields. See DEIR at 2-11. The DEIR acknowledges, however, that "implementation of the CFTP will not substantially change the existing overall daily split in operations between the north and south runway complexes, nor will it materially change the existing imbalance in the number of heavy aircraft operating on the north and south runway complexes. The assignment of departing heavy aircraft to a particular runway is based primarily on runway length; Runway $7 \mathrm{~L} / 25 \mathrm{R}$ in the south complex is currently the longest runway at LAX and is the primary runway used for the departure of heavy aircraft. LAWA is currently evaluating options for improvements to the north runway complex, within the SPAS process, including the lengthening of runways to address that imbalance issue." DEIR at 2-11.

El Segundo appreciates this clarification regarding the relationship between the Crossfield Taxiway Project and airfield balance. The analysis provided further underscores the importance of completing the Specific Plan Advisory Study ("SPAS") process expeditiously. As El Segundo has previously pointed out, the delay experienced in that process is inconsistent with the clear timeline and language in the Stipulated Settlement Agreement. Additionally, the SPAS process must produce solutions for the north airfield that address the need for safety improvements and better airfield balance. From the perspective of fairness, efficiency and safety, LAX simply cannot continue to operate in its current lopsided manner. The proposed Crossfield Taxiway Project should be seen as a first, small step towards addressing that serious problem.

Response: The comment is noted. LAWA appreciates the commentor's acknowledgement of the Draft EIR's responsiveness to comments submitted on the Notice of Preparation (NOP) and Revised NOP. The comment accurately reflects the Draft EIR's discussion of the relationship of the CFTP to airfield balance at LAX. As described in the Draft EIR, implementation of the CFTP would not materially change the existing overall split in operations between the north and south runway complexes. Additionally, the CFTP would not materially affect or be affected by the outcome of the LAX Specific Plan Amendment Study (SPAS), which, as also noted in the Draft EIR, is evaluating options for improvements to the north runway complex including the lengthening of runways to address that imbalance issue. Issues pertaining to airfield balance and the SPAS process are completely separate from the CFTP, and therefore need not be addressed in the CFTP EIR. Notwithstanding, it is worth noting that LAWA shares the City of El Segundo's interest in advancing the SPAS process and implementing solutions for the north airfield that address the need for safety improvements and better airfield balance. LAWA has, in fact, spent substantial time, effort, and money in identifying, evaluating, and advancing a comprehensive program of improvements at LAX, in the form of the LAX Master Plan. Each and every build alternative considered for the Master Plan included improvements to improve airfield safety and airfield balance. Following approval of the Master Plan in December 2004, improvements to the south airfield were advanced to implementation, which reflects well the City of El Segundo's willingness and ability to work closely with LAWA in addressing public safety issues. The Master Plan improvements to the north airfield were not advanced due to litigation filed against the Master Plan EIR in 2005 and a resultant Stipulated Settlement in 2006 that required LAWA to evaluate other options for certain components
of the Master Plan including the north airfield complex. LAWA then went to great lengths to obtain input from the community, the petitioners that are party to the Stipulated Settlement and other members of the SPAS Advisory Committee, and other stakeholders regarding options for improvements to the north airfield. Based on such input, LAWA identified a preliminary range of potential alternatives for improvements to the north airfield, which were presented in spring 2008 in the SPAS Draft EIR NOP. In summer 2008, the LAX North Airfield Safety Study (LAX-NASS) was commenced, in response to Los Angeles City Councilman Bill Rosendahl's call for completion of such a study by an independent firm selected with community input. The study is being conducted by a highly qualified team of NASA researchers and academic panel members in consultation with the North Runway Safety Advisory Committee and LAWA staff. LAWA looks forward to integrating the conclusions and recommendations of the LAX-NASS into the SPAS process and moving quickly towards implementation of acceptable solutions to the north airfield safety and balance issues.

CFTP-AL00003-2

Comment: New Large Aircraft ("NLA") Operations. The DEIR indicates that one objective of the proposed Crossfield Taxiway Project is to "provide a new crossfield taxiway designed to accommodate ADG VI aircraft (i.e., NLA such as the Airbus A380 and Boeing 747-8), recognizing that limited commercial operation of the A380 at LAX is scheduled to begin in October 2008 and is anticipated to increase substantially by early 2012."1 DEIR at 2-21. The DEIR also provides detailed new information regarding how NLA are expected to utilize the airfield on arrival and departure, with and without the proposed Crossfield Taxiway Project. See DEIR Figs. 2-5, 2-6, 2-7 \& 2-8.

Most notably, the DEIR makes clear that LAWA anticipates that NLA will routinely violate the longstanding preferential runway policy2 in place at LAX, by departing from the runway closest to El Segundo (Runway 25L). See DEIR at 2-12 fn 7 ["As assumed in the Master Plan, NLA will depart only from Runway 25L, as Runway 25R does not meet separation standards between runway and Taxiway B/C for NLA."]3 \& Figs. 2-6, 2-8. Prior to departure, NLA will also apparently use Taxiway A, which is located even closer to El Segundo than Runway 25L. NLA departures from Runway 25L, and the associated use of Taxiway A, will impose substantial adverse impacts on El Segundo residents, including increased noise and air pollution. LAWA must make every effort to avoid and reduce those impacts.

El Segundo recognizes that the problem of potential NLA departures from Runway 25L exists regardless of the proposed Crossfield Taxiway Project. As such, the problem must be addressed through other means. Specifically, LAWA must concentrate on operational changes and airfield modifications to address the problem. First, LAWA should undertake an exhaustive effort to identify operational modes that would allow NLA to arrive, taxi and depart without violating LAX' s longstanding preferential runway policy. This may mean restricting other aircraft operations during NLA arrivals, taxiing and departures. LAWA may also need to seek variances from FAA for certain separation standards, as it has done elsewhere at LAX.

It is also important to note that although the Master Plan may have assumed that NLA would depart from Runway 25L (in violation of the preferential runway policy) for a short period of time prior to the construction of the north airfield improvements, the Master Plan should also have assumed that compliance with the preferential runway policy would be restored following the completion of those improvements. As such, it is disingenuous to imply, as the Crossfield Taxiway Project DEIR does, that the Master Plan assumed NLA would permanently depart from Runway 25L. Other Master Plan improvements can and must come on line to address the problem of potential NLA departures from Runway 25L. This further underscores the need for the SPAS process to proceed expeditiously to identify and implement north airfield improvements to replace those that received a "Yellow Light" in the Master Plan process.

1 In preparing the Final EIR, it should be noted that A380 operations have in fact begun at LAX.
2 The purpose of the preferential runway policy is to place arrivals on LAX's outboard runways (Runways 25L and 24R) and place noisier departures on LAX's inboard runways (Runways 25R and 24 L), farther from the communities north and south of the airport.

3 The DEIR does not provide any specific citations to the Master Plan or its EIR/EIS to illustrate whether and to what extent those documents assumed NLA would depart from Runway 25L. El Segundo respectfully requests that LAWA provide that information in the Final EIR for the Crossfield Taxiway Project.

Response: The operational characteristics of New Large Aircraft (NLA) at LAX as related to which runways are used for departures are based on FAA standards and decisions by the FAA Air Traffic Control Tower (ATCT). The use of Runway 25L for NLA departures is a decision completely independent of the CFTP. LAWA fully agrees with the City of El Segundo's comment that other Master Plan improvements must come on line to provide other options to the reliance on Runway 25L for departures of NLA. See also Response to Comment CFTP-AL00003-1.

CFTP-AL00003-3

Comment: Relationship to Midfield Satellite Terminal \& TBIT Backsiding. El Segundo's comments on the NOP for the Crossfield Taxiway Project noted that from a planning and CEQA perspective, the Crossfield Taxiway Project should be evaluated together with and as part of the Midfield Satellite Terminal Project and the proposed construction of gates on the west side of Tom Bradley International Terminal ("TBIT Backsiding Project"). To do otherwise would appear to segment the overall project. In the DEIR, however, LAWA has elected to treat the Crossfield Taxiway Project as separate from the Midfield Satellite Terminal Project and TBIT Backsiding Project. See DEIR at 1-10, 1-19. For the reasons stated in El Segundo's NOP comment letter, we continue to believe that the proposed Crossfield Taxiway Project should be evaluated together with the Midfield Satellite Terminal Project and TBIT Backsiding Project in order to give decisionmakers and the public a more complete understanding of the improvements proposed for the midfield area.

Response: The new crossfield taxiway could provide airfield access to future gates that would be located at the planned Midfield Satellite Concourse (MSC). However, the MSC need not be evaluated at a project-level in the CFTP EIR because the proposed new taxiway has independent utility from the MSC. In other words, it can and will proceed, if approved, regardless of whether the MSC is ever constructed. As indicated in Section 2.1.4 of the CFTP Draft EIR, LAX currently experiences periodic aircraft ground movement congestion at and near Taxiways S and Q . In addition, NLA are not able to use Taxiway Q , and are only able to use Taxiway S under a modification of typical airport operations. Implementation of the CFTP would resolve these current inefficiencies whether or not the MSC is ever constructed. Similarly, the proposed TBIT Reconfiguration Project (also known as the "Bradley West Project") need not be evaluated at a project-level in the CFTP EIR because construction of the new crossfield taxiway is independent from the proposed TBIT Reconfiguration Project. Further, implementation of the CFTP does not commit LAWA to proceeding with either the TBIT Reconfiguration Project or the MSC.

Moreover, the environmental impacts associated with all of the improvements contemplated for the midfield area, including the CFTP, the TBIT Reconfiguration Project (i.e., addition of aircraft gates to the west side of TBIT), and the MSC combined, are addressed in the LAX Master Plan EIS/EIR. As stated on page 3-3 of the CFTP Draft EIR, "...the LAX Master Plan provides a comprehensive plan for a number of improvement projects planned to be implemented over many years throughout the airport. The LAX Master Plan Final EIR addresses the overall effects of all of the improvements, essentially providing a cumulative impacts analysis of all the improvements that comprise the LAX Master Plan, while also identifying the more notable impacts that are attributable to specific components, where appropriate." The information and analysis developed for the CFTP Draft EIR further evaluates the combined impacts of the proposed midfield improvements by addressing cumulative construction impacts in light of more detailed information that was not available at the time the Master Plan EIR was completed. As indicated on page 3-3 of the CFTP Draft EIR, construction of the TBIT Reconfiguration Project is anticipated to overlap with construction of the CFTP, and the impacts of the combined construction activities are addressed in Section 4.1 of the CFTP Draft EIR. Construction of the MSC is not expected to overlap with construction of the CFTP; hence, no combined construction impacts are anticipated to occur relative to those two projects.

CFTP-AL00003-4

Comment: Ground Run-Up Enclosures. As the DEIR notes, the Master Plan includes two ground run-up enclosures ("GREs"), which will make key contributions to the effort of reducing the airport's noise impact on its neighbors, especially El Segundo. DEIR at 2-29, 5-5; Master Plan FEIR at 3-82. While El Segundo is pleased to see that the Crossfield Taxiway Project includes a proposed position for one of these GREs, the project could be improved substantially by including actual construction of the facility, rather than merely siting.

Maintenance run-ups of aircraft engines contribute significantly to noise levels in El Segundo, particularly to single-event noise. Siting this GRE is an important step toward reducing such noise. El Segundo is, however, disappointed that LAWA proposes to delay constructing the facility indefinitely until the time of the construction of the Midfield Satellite Concourse. El Segundo believes that LAWA would better advance the goal of reducing the airport's noise impacts by providing a concrete schedule for building the GRE.

This timeframe should not link GRE construction to the Midfield Satellite Concourse project. Because that project has been delayed indefinitely, such a link would provide El Segundo and other neighboring jurisdictions with no assurance that LAWA will ever build the GRE. Meanwhile, the ancillary facilities presently located at the Midfield Concourse do not provide the sound attenuation of GREs, and El Segundo consequently continues to suffer the noise effects of run-ups. The construction of the Crossfield Taxiway and its accompanying remain overnight parking spots for aircraft presents an excellent opportunity to begin planning for the construction of the proposed GRE.

As the DEIR notes, the GRE will be 1000 feet closer to El Segundo than the Master Plan proposal, thus somewhat reducing its effectiveness in protecting the City from run-up noise. LAWA could mitigate this reduction with a commitment to a timeframe for building the GRE. That commitment, along with policy or regulations requiring all run-ups to occur in the new GRE, would promise El Segundo substantial relief.

If LAWA insists on delaying GRE construction indefinitely, we would ask that the airport not designate the future site of the facility as a fifth remain overnight spot. El Segundo is concerned that if the site were used for aircraft parking during the interim before GRE construction, the users of the site might resist future proposals to fulfill the Master Plan's commitment to building the GRE. The Crossfield Taxiway Project would displace only four such parking spots, so there would be no burden to users if the project provided four in replacement and reserved the fifth exclusively as a GRE site. Moreover, once the GRE is built, it potentially could be used for a remain overnight parking during times when no carrier has scheduled the GRE for run-up purposes.

It is important to note that the Master Plan's provision for GREs has also been addressed in recent discussions between LAWA and El Segundo regarding the airport's variance from state noise standards. As you know, LAX cannot meet these standards and therefore may not operate without a variance granted by Caltrans. A plan for constructing the GRE now, rather than at an uncertain future phase of Master Plan development, could facilitate the variance process by demonstrating LAWA's commitment to reducing its noise impact on surrounding communities.

Response: The comment is noted. LAWA is committed to building two aircraft ground run-up enclosures (GREs) in accordance with the planning and provisions of the LAX Master Plan. As described in Section 5.1.5.1 of the CFTP Draft EIR, construction of the future GRE proposed in the LAX Master Plan to occur in the midfield area would be implemented in conjunction with the relocation of existing aircraft maintenance facilities displaced by the MSC. The CFTP does not displace any aircraft maintenance facilities. While the CFTP provides and preserves a location for the future GRE, the more detailed design, engineering, and construction of the subject facility are considered well suited for inclusion in the more comprehensive planning and programming of aircraft maintenance facilities relocation/development.
CFTP-PC00001 Solutions, Landlord

CFTP-PC00001-1

Comment: Please see the attached notice rcvd by LLS; this notice does not include the Sprint Nextel site identification number, please provide so that I may submit for processing.
Response: The comment is noted. The comment does not raise an issue regarding the contents or adequacy of the CFTP Draft EIR, and thus does not require a further response. (Public Resources Code §21091(d); CEQA Guidelines, §15204(a).)

CFTP-PC00002 Schneider, Denny Alliance for a Regional Solution to 11/10/2008 Airport Congestion

CFTP-PC00002-1

Comment: The general comments in this letter are supplemented by pages of detailed attachment comments for specific areas in the subject draft EIR. As stated in the draft EIR, all comments made to the LAX Master Plan Alt. D Final EIR are incorporated by reference. ARSAC maintains our general support for this project as noted in our reference 1 comments, but we have concerns about this EIR and some of the precedents that it is attempting to create about the approval process. The most critical issues not adequately addressed are noise and air pollution.

We acknowledge the importance of LAX to all of the region continue to seek full cooperation with LAWA to develop an airport for which we can all be proud that is not another expansion with greater community impacts. We also seek a regional network of traveler convenient airports.

Response: The comment is noted. Please see Responses to Comments CFTP-PC00002-6 through CFTP-PC00002-140 below which address the commentor's detailed comments, including comments related to noise and air quality, on the CFTP Draft EIR.

The comment that all comments submitted by ARSAC regarding the LAX Master Plan Final EIR are incorporated by reference is acknowledged. The majority of these comments are not related to the CFTP Draft EIR. Comments made regarding the LAX Master Plan do not raise issues regarding the content or adequacy of the CFTP Draft EIR and no detailed response will be provided here. (CEQA $\S 21091$ (d); CEQA Guidelines, $\S 15204$ (a).) However, the entire LAX Master Plan Final EIR, including responses to all comments received on the LAX Master Plan Draft EIR and Supplement to the Draft EIR, is incorporated by reference as if fully set forth herein. Responses to ARSAC's previous comments on the LAX Master Plan EIS/EIR are provided in responses to comment letters PC00309, SPC00164, SPC00309, SPHSP00017, SPHF00028, SPHE00004, SPC00093, and PHF00022 included in Part II of the LAX Master Plan Final EIR, and FPC00004 included in FAA's Record of Decision on the LAX Master Plan.

As described in Chapter 2 of the CFTP Draft EIR, the primary purpose of the CFTP is to improve the safety and efficiency of aircraft ground movement in the midfield of LAX by providing taxiway improvements, including a new crossfield taxiway. The CFTP is not designed to foster overall regional solutions to problems related to transportation. Rather, the CFTP is focused on improving the safety and efficiency of aircraft ground movement in the midfield of LAX. It does not affect capacity or other items that might translate to regional issues. Efforts by LAWA to enhance the region's air transportation system were addressed in the LAX Master Plan. Please see Response to Comment CFTP-AL00002-2 regarding the relationship of the CFTP tiered EIR to the LAX Master Plan EIR.

CFTP-PC00002-2

Comment: This subject EIR for the Crossfield Taxiway Project (CFTP) addresses several elements in addition to taxiway C13 and differs from the NOP which gave far less detail. The NOP included two taxiways. This EIR includes additional roadway changes, a new fire station with police facility, a new overnight parking for aircraft, and a new, larger vehicle parking lot plus changes to World Way West. We were originally told that the taxiways S and Q would be removed as part of the midfield terminals facility upgrade, but this EIR doesn't identify any schedules or include associated information.

Response: The Notice of Preparation (NOP) for the Crossfield Taxiway Project Draft EIR, circulated by LAWA on April 10, 2008, identified a number of improvements proposed as part of the Crossfield Taxiway Project: a new crossfield taxiway (Taxiway C13); extension of existing Taxiway D; a new parallel service road; removal and potential relocation of certain ancillary and support facilities; realignment and suppression below grade of a portion of World Way West requiring the construction of two bridge facilities (i.e., one bridge structure for the new taxiway and one bridge structure for the new adjacent service road); a utility corridor (Utilidor) adjacent to the World Way West alignment; and resituation of existing "remain overnight" (RON) aircraft parking. Subsequent to publication of the April 10, 2008 NOP, certain modifications were made to the project as a result of development and refinement of more detailed project plans. These modifications included the addition of a proposed fire station/aircraft rescue and firefighting (ARFF) facility and a relocated employee parking lot. These modifications were identified in a Revised NOP published on August 7, 2008. Both the April 10, 2008 NOP and the August 7, 2008 Revised NOP identified the construction of one taxiway (crossfield Taxiway C13), not two taxiways, proposed as part of the Crossfield Taxiway Project. Further, in accordance with Section 15082(a)(1) of the State CEQA Guidelines, both the April 10, 2008 NOP and the August 7, 2008 Revised NOP provide "...sufficient information describing the project and the potential environmental effects to enable the responsible agencies to make a meaningful response."

The relocation of existing Taxiways Q and S are proposed under the TBIT Reconfiguration Project, which is an LAX Master Plan improvement project separate from the Crossfield Taxiway Project. Page 3-3 of the CFTP Draft EIR provides a description of, and estimated start and completion dates for, the TBIT Reconfiguration Project. Planning for the TBIT Reconfiguration Project, including development of a proposed construction schedule, is currently underway.

CFTP-PC00002-3

Comment: We have a general dispute with the way in which EIR tiering is being utilized as noted in our objections in reference 2 , Section A. The proposed changes are clearly substantial and go well beyond "minor additions" to the Master Plan. All public comments made addressing the reference 3 document with specifics about the impacts in this EIR are incorporated by reference.

Response: The comment is noted. Please see Response to Comment CFTP-AL00002-2 regarding the relationship of the CFTP tiered EIR to the LAX Master Plan EIR.

The comment refers to "reference 2" which is a copy of ARSAC's June 17, 2008 comment letter on the NOP for the LAX Specific Plan Amendment Study (SPAS) Draft EIR. As described in Sections 1.2.2 and 3.3.2 of the CFTP Draft EIR, the Crossfield Taxiway Project is separate from the LAX SPAS. Comments from ARSAC on the NOP for the SPAS Draft EIR will be considered and addressed, as appropriate, during preparation of the SPAS Draft EIR.

The "reference 3 document" is the LAX Master Plan Program and EIR. Please see Response to Comment CFTP-PC00002-1 regarding the incorporation by reference of all comments submitted by ARSAC addressing this document.

CFTP-PC00002-4

Comment: We thank you for providing a copy of the draft EIR for review. We repeat our request that future document discs, like the one you provided, not be password protected to preclude searches and annotations.

Response: The comment is noted. The commentor is correct that the PDF of the CFTP Draft EIR provided via CD and available on ourlax.org is encrypted in order to protect this published document from being compromised or corrupted, including unauthorized annotations. However, the PDF of the CFTP Draft EIR provided via CD and available on ourlax.org was created specifically to allow for searches. This ability to conduct specific word and phrase searches of the CFTP Draft EIR has been tested and confirmed.

CFTP-PC00002-5

Comment: For future projects similar to this one, we would hope that LAWA will release the information about project details to the public in a less piece-meal fashion and will hold more frequent Specific Plan Amendment Committee meetings to vet future ideas.

Response: The comment is noted. LAWA circulated a NOP for the Crossfield Taxiway Project Draft EIR on April 10, 2008. Subsequently, certain modifications were made to the project as a result of development and refinement of more detailed project plans. These modifications included the addition of a proposed ARFF facility and a relocated employee parking lot. These modifications were identified in a Revised NOP published on August 7, 2008.

Regarding the comment that LAWA hold more Specific Plan Amendment Committee meetings, the Specific Plan Amendment Process Advisory Committee was created pursuant to a Stipulated Settlement entered into in response to litigation challenging the City's approval of the LAX Master Plan Program. The Stipulated Settlement requires that LAWA consult with the Committee during each significant step of the LAX Specific Plan Amendment Process (Stipulated Settlement, Section V, Subsection J). Section V, Subsection D of the Stipulated Settlement specifically states that LAWA will focus the LAX SPAS process on the Yellow Light Projects. The Crossfield Taxiway Project is not a Yellow Light Project. That fact is reflected in Sections 1.2.2 and 3.3.2 of the CFTP Draft EIR, reiterating that the Crossfield Taxiway Project is separate from the LAX SPAS process and, as such, is not subject to this requirement.

CFTP-PC00002-6

Comment: change names to LA/Ontario and LA/Palmdale
Response: The edits are noted. In response, page 1-1 of the CFTP Draft EIR has been revised. Please see Chapter 3, Corrections and Additions to the CFTP Draft EIR.

CFTP-PC00002-7

Comment: 1.0 We don't believe that this project can be disassociated from the SPAS because it involves connections to the north runway complex and these changes affect all of the other projects.

Response: The comment is noted. The comment that the CFTP cannot be disassociated from the SPAS is not accurate. The proposed Crossfield Taxiway Project is independent from and has utility independent of any potential future changes to the north runway complex. The proposed taxiway improvements are needed at this time, will operate efficiently with the north airfield as currently configured, and would operate efficiently were the north airfield to be modified in the future. Further, the proposed CFTP does not commit LAWA to a definite course of action on any other potential future project. As indicated in Section 3.3.2 of the CFTP Draft EIR, the CFTP will provide a new north-south taxiway
connection between the north runway complex and the south runway complex. The point of connection with the north runway complex is with the current Runway 6R/24L; however, that point of connection could be moved to coincide with any potential relocation of that runway, based on the outcome of the SPAS, without any material change to the basic purpose and function of the subject taxiway. Therefore, it is appropriate to evaluate the CFTP independently.

CFTP-PC00002-8

Comment: Where (what specific paragraphs) in Alt D Mast Plan does it specify this project? I agree that this is desirable, but where in the settlement agreement did we agree to this element?

Prior discussion, including the NOP talked about C13/C14. On what basis is this separated out without identifying when C 14 is to be constructed, if at all?

Response: The LAX Master Plan identifies and includes this project in several places. As noted in Section 2.2 of the CFTP Draft EIR, the main elements of the CFTP, including Taxiway C13 and the portion of Taxiway D being extended, are evident on the airfield plan associated with the approved LAX Master Plan. Specifically, Taxiway C13 and the extension of Taxiway D are depicted by dashed lines in Figure 3-14 of the LAX Master Plan Final EIR. Airfield improvements related to the CFTP are also described in Section 3.2.9 of the LAX Master Plan Final EIR and Section 2.1 of the Final LAX Master Plan text, as presented below:

- Construct, light and mark new cross-field taxiways west of the new satellite building/West Satellite Concourse (LAX Master Plan Final EIR page 3-82 and Final LAX Master Plan page 2-123);
- Taxiway D would be extended approximately 7,105 feet from the intersection of Taxiway S west to Taxiway E-17, and would be 100 feet wide (Final LAX Master Plan page 2-10).

Please see Section 2.2 of the CFTP Draft EIR (page 2-21) for additional references to the new crossfield taxiway in the LAX Master Plan. Section 2.2 also identifies LAX Master Plan and EIR references to the proposed ARFF.

The commentor's statement that the proposed project is desirable is noted. The Stipulated Settlement does not specifically name the CFTP, rather, the CFTP is allowed because it is a component of the approved Master Plan and is not a "Yellow Light Project." The Stipulated Settlement identifies five "Yellow Light Projects," which have different approval procedures under that agreement. As indicated in Section 3.3.2 of the CFTP Draft EIR, the crossfield taxiway, extension of Taxiway D, and other improvements associated with the CFTP, are not identified as "Yellow Light Projects." The CFTP may therefore proceed in accordance with Stipulated Settlement, Section V, Subsection F, which states: "[w]hile the LAX Specific Plan Amendment Study is being processed, LAWA may continue to process and develop projects that are not Yellow Light Projects."

As noted in this comment, prior documents, such as the LAX Master Plan and its associated EIR, identify two new crossfield taxiways: Taxiways C13 and C14. Taxiway C14 is not a part of the project that is proposed at this time, nor was it identified in the NOP or the Revised NOP for the CFTP Draft EIR. As indicated in Section 1.2.2 of the CFTP Draft EIR, implementation of the LAX Master Plan will occur in increments over many years, with the nature and timing of each improvement or set of improvements to be determined based on a number of considerations including, but not limited to, funding considerations, relationship to existing facilities, and relationship to future facilities identified in the plan. In the current case, LAWA is ready to implement Taxiway C13 but is not yet ready to implement Taxiway C14. Taxiway C13 will address an existing need on the airfield, as documented in Chapter 2 of the CFTP Draft EIR. Implementation of this taxiway is independent from implementation of Taxiway C14, which may be implemented as part of future improvements in the midfield area that have long been contemplated as part of the approved LAX Master Plan.

CFTP-PC00002-9

Comment: If history of the Master Plan is to be written, then the Settlement must also be identified in this section, not a one liner several pages later that it happened.

Response: The comment is noted. The Stipulated Settlement is identified in Section 1.2.1, on page 1-9 of the CFTP Draft EIR. The description of the LAX Master Plan and EIR in this section is presented chronologically, hence the Stipulated Settlement appears at the end of the section. A more detailed discussion of the Stipulated Settlement is provided in Section 3.3.2 of the CFTP Draft EIR.

CFTP-PC00002-10

Comment: The unconstrained 1995 growth requirement at LAX did not assume significant air commerce regionalization. What would the value have been if regionalization had been instituted? In fact, what regionalization effort is planned? This was due as part of the Settlement almost two years ago.

Response: LAWA is studying conditions that encourage airlines to go to other airports in the region as part of the LAX SPAS. The Stipulated Settlement and the SPAS process is addressed in Section 3.3.2 of the CFTP Draft EIR.

Section 1.2 of the CFTP Draft EIR provides an explanation of the relationship between the CFTP and the LAX Master Plan and describes the three main phases of the Master Plan itself. The comment pertains to the overall LAX Master Plan and/or the LAX Master Plan EIS/EIR, and does not pertain to, or raise, environmental issues specific to the CFTP or the CFTP Draft EIR. It is not necessary or appropriate to respond to comments on the LAX Master Plan and related EIS/EIR because the CEQA review process for the LAX Master Plan was completed in December 2004. Therefore, no further response is required.

CFTP-PC00002-11

Comment: The communities surrounding LAX were substantially ignored in the Concept phase and answers to their EIR questions were never answered. Numerous deficiencies of the "authorized" EIR were never remedied. If LAWA is tiering off this document do they plan to address them? LAWA in that period of time briefed several different programs all described as Alt D and allowed it to change as the "wind blew" to get approvals. Several meetings with different information were held--and even recorded--but subsequent documents seldom acknowledged or were changed based on public comment. These meeting were more to "fill the square" than to get real input.

Response: The comment is noted. The majority of this comment pertains to the LAX Master Plan and the LAX Master Plan EIS/EIR. It is not necessary or appropriate to respond to comments on the LAX Master Plan and related EIS/EIR because the CEQA review process for the LAX Master Plan was completed in December 2004. It should be noted that all comments on the LAX Master Plan Draft EIR and LAX Master Plan Supplement to the Draft EIR were addressed in Part 2, Volumes 1 through 11 of the LAX Master Plan Final EIR.

Regarding the comment pertaining to tiering the CFTP EIR off the LAX Master Plan EIR, please see Response to Comment CFTP-AL00002-2.

CFTP-PC00002-12

Comment: How could this annotated satellite image not be to scale? Note that this "existing" airport drawing does not include a completed center line taxiway that was announced "complete" about six months ago. Can't LAWA afford a current satellite image?

Response: The comment is noted. The purpose of Figure 1-2 is to orient the reader to the local setting of the airport. The figure identifies key airport components and surrounding thoroughfares. Neither the absence of a scale on the figure nor the fact that the photograph does not include the completed centerline taxiway affect the information shown on this figure or the ability of the reader to understand that information. It should be noted that the centerline taxiway was not completed until June 2008.

CFTP-PC00002-13

Comment: Since this proposed employee parking is off of World Way West and the new midfield taxiway bridges this road, will there be any impacts? What noise will be conferred on the communities to the north and south as the aircraft taxi in this new location?

Regarding this employee parking: will this be a single story, ground level lot? How many spaces and how much traffic will this create?

Response: The commentor's notation on Figure 1-3 identifies the West Employee Parking Structure, which is proposed to be located southwest of the intersection of World Way West and Taxiway AA as part of the LAX Master Plan. The CFTP does not propose construction of this parking structure. Rather, the CFTP includes relocation of an existing American Airlines employee parking lot to a location southeast of the intersection of World Way West and Taxiway AA.

The new taxiway and service road bridges over World Way West would be constructed approximately 1,500 feet east of the proposed relocated American Airlines parking lot. The bridges would present no conflicts with, or impacts to, the proposed relocated parking lot.

As described in Section 2.4.2 of the CFTP Draft EIR, the proposed relocated American Airlines employee parking lot would be a surface lot containing 1,600 replacement parking spaces. The parking lot would not create any new traffic as the lot would accommodate employees who currently park in an existing lot west of the American Airlines High-Bay Hangar. Because both the existing parking lot and the proposed parking lot are accessed via World Way West, travel patterns to and from the proposed relocated parking lot would be the same as existing patterns.

CFTP-PC00002-14

Comment: There was never a "thorough evaluation" of the four build alternatives--only a severely flawed one. Is LAWA planning to address this? Which paragraphs of the defective EIR is it relying on? Please note the paragraphs that identify those impacts (and mitigations) of the crossfield taxiway. In one of the last addendums there was a discussion of Alternative E (Community Plan) but it notes that LAWA couldn't answer most questions because they couldn't contact anyone who helped to generate it even though all of our contact information is on every comment we have made for years. If you go back to Alt E which was later modified to Alt E-1 when RAND debunked the idea of Manchester Square, you will note that it coinsides with much of the ideas that everyone now agrees with.

Response: The comment pertains to the LAX Master Plan EIS/EIR, and does not pertain to, or raise, environmental issues specific to the CFTP or, therefore, to the CFTP Draft EIR. It is not necessary or appropriate to respond to comments on the LAX Master Plan EIS/EIR because the CEQA review process for the LAX Master Plan was completed in December 2004.

Regarding the request to delineate the portions of the LAX Master Plan EIS/EIR that identify impacts and mitigation measures of the crossfield taxiway, specific cross-references to the sections of the LAX Master Plan EIS/EIR that are relevant and applicable to the proposed project are provided throughout the CFTP Draft EIR.

2. Comments and Responses

CFTP-PC00002-15

Comment: Why has the SPAS Committee never met to address this crossfield taxiway or redesign of TBIT?
Has LAWA addressed modifications of impacts for this project if the "Green Lighted" projects are not completed as approved?

Response: Please see Response to Comment CFTP-PC00002-5 regarding the role of the Specific Plan Amendment Process Advisory Committee relative to the proposed Crossfield Taxiway Project and, by extension, the TBIT Reconfiguration Project.

The City of Los Angeles adopted the current LAX Master Plan in December 2004. This plan remains in effect, and will remain so unless and until a new plan is adopted in its place. The environmental effects of the LAX Master Plan, including the currently proposed crossfield taxiway, were evaluated in the LAX Master Plan EIS/EIR. Although it is envisioned as part of a series of Master Plan improvements in the midfield area, the CFTP is a project with independent utility from other Master Plan projects. Even if no other Master Plan projects were implemented in the future, the impacts associated with the CFTP would remain as evaluated in the CFTP Draft EIR.

Please note that, although we understand the commentor to be using the term "Green Lighted projects" to refer to projects other than those designated "Yellow Light" projects in the Stipulated Settlement, the term "Green Light Projects" has not been defined or recognized in any document.

CFTP-PC00002-16

Comment: Section 1.2.2 states "EIR address the environmental impacts associated with those improvements, both in terms of impacts specific to particular improvements..." How is this possible if LAWA is still changing these items? What paragraphs in the EIR specifically address these items?

Response: The LAX Master Plan EIS/EIR addressed the environmental impacts associated with four build alternatives, including the alternative that was subsequently adopted by the City of Los Angeles, at a program level of detail. As outlined in Section 1.2.3 of the CFTP Draft EIR, the LAX Master Plan was particularly well suited to the CEQA construct for use of a program EIR, per Section 15168(a) of the CEQA Guidelines, as the Master Plan provided for a variety of related actions within LAX that are under the authority of LAWA and are governed by a common set of criteria. As a program-level document, the LAX Master Plan EIS/EIR addressed each Master Plan alternative in its entirety; in general, the EIS/EIR did not disect impacts associated with individual components of the Master Plan. As is the case for most large-scale, long-term improvement plans, certain features of the original LAX Master Plan project may be refined during detailed planning and design of individual project components. To the extent that these refinements have the potential to alter the environmental impacts of the Master Plan as evaluated in the LAX Master Plan EIS/EIR, such impacts must be addressed in new environmental documents.

CFTP-PC00002-17

Comment: SAIP Competed in June? Wasn't there a ceremony in March declaring completion?

Response: The first phase of the South Airfield Improvement Project (SAIP), the new relocated Runway 25L/7R, was completed in early April 2007. The second phase of the SAIP, construction of the new center taxiway, was completed in June 2008. A ceremony to announce the completion and official opening of the new center taxiway in the south airfield, overseen by Mayor Villaraigosa and attended by other various City and FAA officials, was held on June 24, 2008.

CFTP-PC00002-18

Comment: Section 1.2.2 states that the CFTP addresses improvements within the Master Plan, but the settlement does not "Green Light" runway movement on the north, nor identify the associated taxiways as "Green Light." On what basis has LAWA placed this in that category?

Response: Section V, Subsection F of the Stipulated Settlement provides that "[w]hile the LAX Specific Plan Amendment Study is being processed, LAWA may continue to process and develop projects that are not Yellow Light Projects." There are five "Yellow Light" projects identified in the Stipulated Settlement: "(a) Development of the Ground Transportation Center ("GTC"), including the baggage tunnel, associated structures and equipment; (b) Construction of the Automated People Mover ("APM") from the GTC to the Central Terminal Area ("CTA"), including its stations and related facilities and equipment; (c) Demolition of CTA Terminals 1, 2 and 3; (e) Reconfiguration of the north airfield as contemplated in the LAX Master Plan, including center taxiways; and (f) Improvements to on-site roadways associated with (a) and (b) above." The proposed Crossfield Taxiway Project is not a Yellow Light Project; hence, LAWA may proceed with this project as part of the approved Master Plan. The proposed Crossfield Taxiway Project should not be confused with the "center taxiways" referred to in the Yellow Light Project definition, as the latter pertains specifically to taxiways within the north runway complex and the former pertains to taxiways perpendicular to, and extending between, the north and south runway complexes. Additionally, the proposed Crossfield Taxiway Project can proceed independently of the Yellow Light north airfield improvements.

CFTP-PC00002-19

Comment: Section 1.2.2 Since LAWA has stated that the SAIP and CFTP are but two of many airfield improvements, where has the totality of these changes been delineated along with proposed timing? LAWA states in the paragraph that they contemplate "adjacent dual crossfield taxiways... "Where has LAWA addressed the potential impacts on the overall impacts if one, or some, of these changes is not implemented as delineated? What does "next few years" mean?
Portions of the CFTP could be construed as Yellow Light since they are associated with the north runway which IS a Yellow Light project. Since airside ground operational impacts of the yellow light projects are of concern, the statement that this CFTP will not materially affect the airport is NOT accurate.

Response: The LAX Master Plan evaluated the impacts of four build alternatives in their entirety, including all airfield improvements proposed as part of each alternative. Please refer to Response to Comment CFTP-AL00003-3 regarding the fact that the LAX Master Plan EIR addresses the totality of all the Master Plan improvements. As indicated in the CFTP Draft EIR, LAWA is proceeding with planning and design of other Master Plan-related airfield improvements; however, the specific timing for implementation of each of these improvements is not known at this time.

As indicated in Response to Comment CFTP-PC00002-15, the City of Los Angeles adopted the current LAX Master Plan in December 2004. This plan remains in effect, and will remain so unless and until a new plan is adopted in its place. Until such time, LAWA may process and develop all projects approved under the Master Plan that are not "Yellow Light Projects." It would be speculative and unreasonable to analyze the potential impacts of a scenario in which one or more of these improvements is not implemented as delineated in the approved Master Plan. Therefore, the analysis in the CFTP EIR assumes implementation of the approved Master Plan.

The comment that "portions of the CFTP could be construed as Yellow Light [Projects] since they are associated with the north runway which IS a Yellow Light project" is not accurate. As indicated in Response to Comment CFTP-PC00002-7, the extension of Taxiway D and the construction of a new crossfield taxiway (Taxiway C13) are independent of any potential future changes to the north airfield. These taxiways are needed at this time, will operate efficiently with the north airfield as currently configured, and would operate efficiently were the north airfield to be modified in the future. See Section 3.3.2 of the CFTP Draft EIR for further discussion of this issue.

Contrary to this comment, the portion of the CFTP Draft EIR referenced by the commentor (i.e., Section 1.2.2) does not state that the "CFTP will not materially affect the airport." Rather, the referenced text refers to the relationship of the CFTP to the SPAS and states that "it is not anticipated that the SPAS will materially affect, or be affected by, the CFTP." Regarding the comment that "airside ground operational impacts of the yellow light projects are of concern," these operational impacts were addressed in the LAX Master Plan EIR, and the impacts of alternatives to the Yellow Light Projects will be addressed in the SPAS EIR.

CFTP-PC00002-20

Comment: See section 15168(b) for actual requirements
Response: The comment is noted. The comment does not raise a specific issue regarding the contents or adequacy of the CFTP Draft EIR, and thus does not require a further response. However, a typographical error was identified subsequent to publication of the CFTP Draft EIR. The first sentence of the last paragraph on page 1-10 of the CFTP Draft EIR should reference "Section 15168(c)" of the CEQA Guidelines rather than "Section 15168(b)." Page 1-10 of the Draft EIR has been revised. Please see Chapter 3, Corrections and Additions to the CFTP Draft EIR. (Public Resources Code §21091(d); CEQA Guidelines, §15204(a).)

CFTP-PC00002-21

Comment: Reasons for a full EIR review instead of a tiering...
Response: The comment is noted. Please see Response to Comment CFTP-AL00002-2 regarding tiering and the relationship between the LAX Master Plan Final EIR and the CFTP Draft EIR.

CFTP-PC00002-22

Comment: Many of the issues were touched on, but not addressed in the previous EIR. By reference, as in this document, we refer you to the thousands of pages of public comments that found faults with methods, data collected, and conclusions of impacting assessments.

In view of the settlement and the previous EIR deficiencies can they apply section 15168(d)(3) to ignore all impacts previously reviewed?

Response: It is unclear to what issues this comment refers. The LAX Master Plan EIS/EIR thoroughly evaluated a full range of environmental disciplines. The comment referring to public comments on the LAX Master Plan EIS/EIR is noted. FAA and LAWA prepared individual responses to each and every oral and written comment received on the LAX Master Plan Draft EIR and LAX Master Plan Supplement to the Draft EIS/EIR, and FAA prepared additional individual responses to all comments received on the LAX Master Plan Final EIS. Please refer to Part II, Volumes I through 11 of the LAX Master Plan Final EIR and the LAX Master Plan Final EIS, and Appendix B of FAA's Record of Decision on the Master Plan. Following publication of the LAX Master Plan Final EIR and four addenda to the LAX Master Plan Final EIR, the Los Angeles City Council certified the LAX Master Plan EIR in accordance with the provisions of CEQA in December 2004.

Please see Response to Comment CFTP-AL00002-2 regarding tiering and the relationship between the LAX Master Plan Final EIR and the CFTP Draft EIR.

CFTP-PC00002-23

Comment: Footnote 5 talks about development of a new ARFF. What's an ARFF?

2. Comments and Responses

Response: As indicated in the first paragraph on page 1-2 in Chapter 1 of the CFTP Draft EIR, ARFF stands for "aircraft rescue and firefighting," and in the case of the CFTP, the acronym ARFF is used to identify an aircraft rescue and firefighting facility. As further described on pages 2-29 and 2-30 in Chapter 2 of the CFTP Draft EIR, in conjunction with the modifications and improvements proposed within the CFTP project site, a new fire station/ARFF is proposed to be constructed as a replacement for the existing undersized Fire Station No. 80/ARFF located on the airfield adjacent to Taxiway S. The proposed ARFF would provide approximately 27,895 square feet of administrative office area and station living quarters within a 2-story structure, six bays for emergency vehicles along with a service bay, storage area for various emergency response equipment, and briefing and training rooms. The proposed location and floor plan of the new ARFF are illustrated in Figures 2-9 and 212, and Figure 2-13 in Chapter 2 of the Draft EIR, respectively. Please see Response to Comment CFTP-PC00002-42 for further discussion of the proposed ARFF under the Crossfield Taxiway Project.

CFTP-PC00002-24

Comment: 1.2 Not all operational impacts of the original EIR were addressed. One example is the movement of noise into new portions of the community due to traffic in both directions as aircraft move from one runway complex to the other. The amount of noise and pollution is aircraft mix and frequency dependent which could not have been completed since the flight mix was only recently prepared and not yet released for assessment.

Response: Any operational impacts from the CFTP that were not addressed in the LAX Master Plan EIR have been addressed in the CFTP Draft EIR. There are few such impacts, because, as described in Section 2.1 of the CFTP Draft EIR, implementation of the proposed taxiway improvements would help alleviate periodic congestion of aircraft ground movement in the midfield area and provide for certain efficiencies in the taxiing of future New Large Aircraft (NLA), but would not increase the number of daily operations at LAX. Development of Taxiway C13 would provide an additional north-south taxiway at LAX, between existing north-south Taxiway AA to the west and existing north-south Taxiways S and Q to the east. The end points of Taxiway C13 would tie into the same east-west taxiways as the other aforementioned taxiways; hence, the proximity of Taxiway C13 to communities located north and south of the airport would be consistent with that of the other existing taxiways. Based on the location and orientation of Taxiway C13 being generally consistent with those of the three existing crossfield taxiways and the fact that implementation of the proposed CFTP would not affect the number of daily aircraft operations at LAX, it is not expected that there would be an increase in operations-related noise or air quality impacts to the nearby communities. As described in Sections 4.2, Air Quality, and Section 5.1, Noise, the improved efficiencies in aircraft ground movement anticipated to result from the project would result in reduced taxiing times and reduced "stop and go" movements of taxiing aircraft, which, in turn, would result in reduced air pollutant emissions and noise "run-ups" from aircraft engines.

CFTP-PC00002-25

Comment: Action: Discuss how ground movement analysis from previous EIR (ie SAIP); how does it compare to the results of the original NASA study?

Response: It is unclear to what, specifically, this comment refers. To the extent the comment relates to the SAIP EIR, it does not raise an issue regarding the contents or adequacy of the CFTP Draft EIR because the CFTP is separate from and independent of the SAIP. Therefore, no further response to this aspect of the comment is required. To the extent the comment requests a discussion pertaining to aircraft ground movement and the CFTP, such information is included in Section 2.1 of the CFTP Draft EIR.

CFTP-PC00002-26

Comment: In Chapter 3 Overview of Setting, make sure that the details of the equipment, underground sewers, pipes, and geology are discussed. Also what above ground uses are in place and the lengths of leases for uses.

Response: Section 1.3 is intended to provide the reader with a roadmap of the CFTP Draft EIR's organization. The heading "Chapter 3-Overview of Project Setting" states what that chapter generally provides. The reader will find more detailed information and analysis of the environmental setting in Chapter 3 of the Draft EIR. In addition, detailed information regarding buildings and uses within and near the project site is provided in Chapters 2, 4, and 5 of the CFTP Draft EIR, as appropriate.

CFTP-PC00002-27

Comment: In Chapter 4 assess how the air quality apportionment studies fit into the overall impacts. Again fleet mix and frequency assumptions are critical.

Response: The LAX Source Apportionment Study is separate from the LAX Master Plan and component projects therein, such as the CFTP. The LAX Source Apportionment Study was initiated independently of the LAX Master Plan to gather air quality data through a 12-month air monitoring program and source apportionment analysis, as acknowledged in Section 4.24.1.3 of the LAX Master Plan Final EIR (see page 4-1321). The LAX Source Apportionment Study is a first of its kind comprehensive study to evaluate the relationship between existing sources of air pollutant emissions at LAX and the extent to which these sources contribute to air pollution levels in surrounding areas. The study will also take into consideration other existing non-airport sources of air pollutants in the LAX area to help determine what portion and/or aspect of air pollution in the local community is attributable to activities at LAX versus being from other existing major sources in the surrounding area. The study was initiated in 2000 but was temporarily discontinued following the events of September 11, 2001. It was resumed in 2007 and just recently completed the demonstration project phase, with the intent to move into the long-term phase of the evaluation. The LAX Source Apportionment Study is being undertaken by LAWA in coordination and consultation with the U.S. Environmental Protection Agency, the California Air Resources Board, the South Coast Air Quality Management District, and community representatives; all with the understanding that it is separate from the LAX Master Plan and individual projects therein. The CFTP Draft EIR does not rely on or use any of the information developed thus far through the LAX Source Apportionment Study.

CFTP-PC00002-28

Comment: Since Chapter 5 is where the construction controls are identified make sure that the controls are clearly identified and have at least the same as SAIP with hours of operation, clearly delineated routes for trucks, procedures for limiting traffic by workers during peak hours, etc.

Response: Section 4.1.7, Section 4.2.4, and Section 5.1.4.2 of the CFTP Draft EIR identify LAX Master Plan commitments and mitigation measures that serve to reduce construction-related traffic, fugitive dust, and noise impacts to surrounding areas, respectively.

Measures specific to addressing traffic impacts would be included in the Construction Traffic Management Plan (CTMP) required under LAX Master Plan Commitment ST-18, which must be submitted by the CFTP contractor to LAWA at the beginning of the project. The CFTP CTMP will detail the designated haul routes for construction traffic, deliveries, and construction employee trips. The CFTP CTMP will also designate construction employee shift hours that do not coincide with the heaviest commuter traffic periods (7:00 am to 9:00 am, and 4:30 pm to 6:30 pm) in accordance with LAX Master Plan Commitment ST-14.

Measures specific to addressing fugitive dust emissions would be included in the Fugitive Dust Control Plan (FDCP), which must be submitted by the CFTP contractor to LAWA at the beginning of the project. The CFTP FDCP will provide specific requirements to control fugitive dust emissions in compliance with Rule 403 of the South Coast Air Quality Management District (SCAQMD).

Measures specific to addressing construction noise would be included in the Construction Noise Control Plan (CNCP) required under LAX Master Plan Mitigation Measure MM-N-7, which must be submitted by the CFTP contractor to LAWA at the beginning of the project. The CNCP will specify feasible measures to reduce potential noise impacts throughout the construction of the CFTP. The CFTP CNCP will incorporate the requirements for construction scheduling as specified in LAX Master Plan Mitigation Measure MM-N-10, which recognizes noise sensitive hours as being nighttime and early morning, and anytime on Sundays and holidays.

These control measures are the same as those required during construction of the SAIP.

CFTP-PC00002-29

Comment: Action: Review this table with a fine tooth comb for impacts and adequacy of topics covered
Response: The comment is noted. The CFTP Draft EIR was prepared in accordance with, and meets the requirements of, the California Environmental Quality Act. The comment does not raise a specific issue regarding the contents or adequacy of the CFTP Draft EIR, and thus does not require a further response.

CFTP-PC00002-30

Comment: Action: Compare Table 1-3 to the NOP impact comments.
Response: The comment is noted. The CFTP Draft EIR adequately addressed all environmental disciplines, including those disciplines identified in the NOP and Revised NOP for the CFTP Draft EIR that have the potential to be significantly impacted by the Crossfield Taxiway Project.

CFTP-PC00002-31

Comment: We didn't have the Ricondo fleet mix assessments for evaluation which is the whole basis for justifying this project. If we just got the report, what parts of this are used in this evaluation?

Response: The CFTP is not dependent upon aircraft fleet mix. As described in Section 2.1 of the CFTP Draft EIR, implementation of the proposed taxiway improvements would help alleviate periodic congestion of aircraft ground movement in the midfield area and provide for certain efficiencies in the taxiing of future NLA. The subject taxiway improvements would provide air traffic control tower personnel with additional options and opportunities for assigning aircraft ground movements, which would benefit all aircraft.

The commentor's reference to "the Ricondo fleet mix assessments" pertains to the recent availability of an estimate of the aircraft fleet mix (i.e., breakdown of aircraft size/type operating at LAX) for 2008, which represents a more current estimate than the 2005 fleet mix considered in the CFTP evaluation of aircraft taxiing times. As further described below, the difference in the 2008 fleet mix compared to the 2005 fleet mix is immaterial relative to the basic conclusions of the CFTP Draft EIR.

The fleet mix for the CFTP was developed using Official Airline Guide (OAG) data from the year 2005. The schedule consisted of 1,864 operations (including cargo and general aviation) and resulted in the fleet mix listed in Table 1 below based upon the Airplane Design Group (ADG). Table 1 depicts the 2005 schedule used in the simulation analysis of the CFTP which includes scheduled passenger service, cargo and general aviation flights. A 2008 schedule was reviewed
using OAG data from 2008, which consists of only scheduled passenger service. Table 2 depicts the 2005 schedule without general aviation and cargo flights and Table 3 illustrates the fleet mix for 2008. As compared between values in Table 2 and 3, the number of scheduled passenger operations in 2008 was reduced by approximately 5 percent between 2005 and 2008 (from 1,706 to 1,621). The fleet mix remains relatively unchanged, with a slight reduction in ADG IV aircraft in 2008, and minimal increases in ADG III and ADG V.

Table 1 2005 Schedule With Cargo and GA		Table 2 2005 Schedule Scheduled Passenger Service		Table 3 2008 Schedule Scheduled Passenger Service	
ADG	Fleet Mix	ADG	Fleet Mix	ADG	Fleet Mix
I	0.80\%	I	0.00\%	I	0.00\%
II	26.50\%	II	25.21\%	II	25.29\%
III	44.69\%	III	48.18\%	III	50.15\%
IV	20.23\%	IV	19.11\%	IV	16.47\%
V	7.78\%	V	7.50\%	V	8.08\%
Grand Total	100.00\%	Grand Total	100.00\%	Grand Total	100.00\%
Total Operations	1,864	Total Operations	1,706	Total Operations	1,621

A comparison of the peak periods of operations indicates that 2008 is similar to 2005. The slight decrease in operations for 2008 indicates the potential for overall reduction in ground delay for both the No Project and Proposed Project condition. The consistent peak periods of demand between 2005 and 2008 indicate that periods of congestion will most likely continue to occur. Therefore, a slight reduction in ground delay would occur with implementation of CFTP compared to the "No Project" condition, because CFTP provides an additional option to FAA Air Traffic Control Tower (ATCT) to better manage ground movements.

CFTP-PC00002-32

Comment: Will the Runway Status lights "pilot" program support these taxiways in an area that is blind from the tower or do we have to wait some indeterminate amount of time for it to be implemented?

Response: The proposed addition of Taxiway C13 is not expected to impact the Runway Status Lights Program. The proposed taxiway is not a runway exit and does not intersect the runway complex on either the north or south airfield.

Please see Response to Comment CFTP-PC00003-5 regarding the visibility of aircraft on proposed Taxiway C13 from the ATCT.

CFTP-PC00002-33

Comment: 2.1.3 While taxiway C13 is supposed to be providing substantial improvements for aircraft landing on 24 L . It should be noted that this is the NON-PREFERRED landing runway. What percentage of aircraft are assumed to be using this?

Response: There is a typographical error on page 2-2 of the CFTP Draft EIR. The first sentence of the second paragraph under Section 2.1.3 on page 2-2 of the CFTP Draft EIR should reference "Runway 24R" rather than "Runway 24L" as the primary arrival runway in the north runway complex. Page 2-2 of the CFTP Draft EIR has been revised to correct this typographical error. Please see Chapter 3, Corrections and Additions to the CFTP Draft EIR.

CFTP-PC00002-34

Comment: 2.1.3 The future paths don't appear to be taking advantage of the new taxiway nor does it take the new midfield taxiway and TBIT changes into account.

Response: The primary taxipaths for aircraft utilizing Taxiway C13 would be north complex arrivals that taxi southbound as depicted in Figure 2-3 of the CFTP Draft EIR. Additionally, NLA would utilize Taxiway C13 as depicted in Figures 2-7 and 2-8 of the CFTP Draft EIR. These figures depict the arrival and departure taxipaths respectively. NLAs arriving on the south runway complex and taxiing to the north terminal complex could utilize Taxiway C13, departures from the north terminal complex could use Taxiway C13 to taxi to Runway 25L for departure.

Please see Response to Comment CFTP-AL00003-3 regarding the relationship of the CFTP to the TBIT Reconfiguration Project.

CFTP-PC00002-35

Comment: 2.1.3 Since the assumed number of aircraft operations is 1864, how does this assumption change conditions when the number of ops is substantially reduced to as little as 1350 or as much as 2250 ? How does this change when the gate locations are modified and the types of aircraft substantially change?

Response: The addition of the proposed CFTP taxiway improvements would not impact the unimpeded taxi times of either arriving or departing aircraft, but would reduce the delay times experienced by aircraft due to additional airfield traffic management options. It is logical to assume that, as the number of operations is reduced, the delay would diminish, although the unimpeded time would stay the same as compared to existing conditions. Conversely, as operational levels are increased, the delay per operation could be expected to increase, making the CFTP taxiway improvements more utilized by LAX ATCT traffic management personnel. This would provide even greater opportunity to reduce aircraft taxiing delay times compared to the conditions that would otherwise occur with only the existing taxiways available for use. It should be noted that the number of operations at LAX is not influenced by the CFTP.

Modification to gates is not a component of the CFTP; therefore, effects related to gate modification were not analyzed in the CFTP Draft EIR. Please see Response to Comment CFTP-AL00003-3 regarding the relationship of the CFTP to the TBIT Reconfiguration Project.

CFTP-PC00002-36

Comment: 2.1.3 That statement that this will not change overall assignment of runways and that there is no change in "heavies" due to the desire for the longest runway 25R, shouldn't these "potential changes" of runways dramatically impact the traffic pattern flows? Why are these not addressed?

Response: The commentor provides no evidence or explanation for the statement that the CFTP will result in "...'potential changes' of runways." In fact, no such change would occur. As described on page 211 of the Draft EIR, the proposed CFTP taxiway improvements would not substantially change the existing overall daily split in operations between the north and south runway complexes, nor would they materially change the existing imbalance in the number of heavy aircraft operating on the north or south runway complexes. Heavy aircraft needing additional runway length would continue to use Runway 25R for departures. As stated on page 2-11 of the CFTP Draft EIR, LAWA is currently evaluating options for improvements to the north runway complex, within the SPAS process, including the lengthening of runways to address the imbalance issue. As described in Sections 1.2.2 and 3.3.2 of the CFTP Draft EIR, the Crossfield Taxiway Project is separate from the LAX SPAS process.

CFTP-PC00002-37

Comment: 2.1.3 The assumed NLA exit paths on the south never assumes that the aircraft will go to the end of the runway and instead always uses the center line taxiway. This doesn't make sense given the way in which current aircraft are to get to the NLA gates -especially in the midfield gates.

Response: As depicted in Figures 2-5 and 2-7 of the CFTP Draft EIR, NLA aircraft arriving on Runway 25L can exit at the end of Runway 25L and taxi northbound on Taxiway U to Taxiway C. Additionally, per LAX ATCT personnel, the primary exit for NLA arriving on Runway 25L is Taxiway T, and as such is depicted in the aforementioned figures.

CFTP-PC00002-38

Comment: 2.2 The statement that this change is justified in the Master Plan EIR in general without specifying exactly where these paragraphs are located in this document is in conflict with the general comments that these paragraphs are relied upon as the basis for approval. Please identify the specific paragraphs in the Master Plan and EIR that is being relied upon. Similarly, the Alt D plan calls for a pair of parallel taxiways, not just the one C13 noted. If two are required at some point, what conditions make this desirable and necessary for efficient operations?

Response: References to the CFTP project in the approved Master Plan and the LAX Master Plan Final EIR are identified in the second through sixth paragraphs of Section 2.2 on pages 2-12 and 2-13 of the CFTP Draft EIR. As noted in Response to Comment CFTP-PC00002-8, the taxiway improvements are also depicted in Figure 3-14 of the LAX Master Plan Final EIR. Please also see Response to Comment CFTP-PC00002-8 concerning the relationship of Taxiway C13 to Taxiway C14.

CFTP-PC00002-39
Comment: $\quad 2.2$ footnote 7 assumes NLA departures only on 25L. It is our understanding that this was not the case that was called for when the SAIP was approved even if this is currently the path of choice for the initial number of NLA flights.

Response: The purpose of Footnote 7 in the CFTP Draft EIR was not related to NLA primary runway use, but to note, for the purpose of delineating in Figures 2-5 and 2-6, the anticipated aircraft taxi routes based on the current airfield configuration. Based on existing airfield conditions at LAX and the A380 operations plan approved by the Federal Aviation Administration, NLA departures using the south runway complex would not depart from Runway 25R.

The assumption stated in Footnote 7 on page 2-12 of the CFTP Draft EIR, regarding use of Runway 25 L for NLA departures, is consistent with the planning, analysis, and approval of the LAX SAIP. As stated in the second paragraph on page II-6 in Volume 3 of the Final EIR for the SAIP, "Existing Runway 7R-25L is 200 feet wide and is thus able to accommodate Group VI (A380) aircraft operations. Partly due to its width (50 feet wider than any other LAX runway), Runway 7R-25L has already been designated, in the interim basis, as the primary runway for all Group VI aircraft arrival and departure operations. The ability of existing Runway 7R-25L to accommodate arrivals and departures of NLA was analyzed in the LAX Master Plan EIR (see Response to Comment AR00003-60 in Part II of the LAX Master Plan Final EIR)." The subject statement in the Final EIR for the SAIP includes a notation indicating " $[t]$ he LAX Master Plan anticipates permanent, long-term facilities for NLA, including the reconfiguration of the north complex at LAX to meet FAA ADG-VI airfield dimensional standards."

CFTP-PC00002-40
Comment: $\quad 2.2$ footnote 8. The West Satellite Concourse in the LAX Master Plan is not the same as that shown in Alternative D that was approved before the legal challenge and Settlement. It is further east. It
was agreed upon on the basis that it would not facilitate a new airport that originates entrances from the west.

Response: The comment that the West Satellite Concourse in the LAX Master Plan is not the same as that shown in Alternative D is unclear, as the Final LAX Master Plan (April 2004) and Alternative D are one and the same. The Final Master Plan depicts the West Satellite Concourse in Figure 2.0-3 (which is the same as Figure F3-14 of the LAX Master Plan Final EIR) and Figure 2.2-4. The location of the West Satellite Concourse has not changed from its initial proposal in the Draft Master Plan Addendum (dated July 2003). LAWA subsequently renamed the West Satellite Concourse the "Midfield Satellite Concourse" to more accurately reflect its location in the midfield portion of the airport. It is possible that the commentor is referring to the West Terminal Area that was proposed as part of rejected Master Plan Alternatives A, B, and C. In these alternatives, a new West Terminal would have been constructed on the western portion of the airport, between Pershing Drive on the west and Taxiway AA on the east. The Midfield Satellite Concourse (MSC) approved as part of the Master Plan is located approximately 4,000 feet east of the formerly-proposed West Terminal Area. Whereas access to the West Terminal Area proposed under Alternatives A, B and C would have been from the west (via Pershing Drive), access to the proposed MSC, an element of the approved Alternative D, will be provided by a connection originating at TBIT. Therefore, entrance to LAX will not originate from the west, but will remain from the east.

CFTP-PC00002-41

Comment: 2.2 The reference to Alt D Figure F3-20 phasing refers to taxiways but could as easily be interpreted to be related to fixing of the access to the runways, not the concourses.

Response: Figure F3-20 of the LAX Master Plan Final EIR refers to implementation of "Midfield Aprons and Taxiways." The only midfield taxiways that are part of the LAX Master Plan are two new northsouth taxiways located to the west of the proposed MSC, one of which is Taxiway C13, and the relocation of the two existing north-south taxiways located immediately west of Tom Bradley International Terminal. This entry in the Conceptual Summary Schedule, which is identified on the schedule as falling within Phase II of the project, corresponds to the text describing Phase II on page 3-82 of the LAX Master Plan Final EIR, specifically the fifth bullet under the "Phase II" heading. It is unclear why the commentor believes that this reference could instead refer to improving access to runways.

CFTP-PC00002-42

Comment: Is the new ARFF north or south of the Coast Guard facility? This facility was shown to the north in Alt D, but Figure 2-9 of this doc shows it south of World Way West. How does this affect response times to disasters?

Response: As described in Sections 2.4.1 and 5.14.5.1 of the CFTP Draft EIR, the LAX Master Plan originally anticipated the new ARFF to be approximately 18,000 square feet in size and to be located at the northeast edge of the fuel farm (north of the U.S. Coast Guard Facility). More recent planning, engineering, and design efforts associated with the CFTP, which included consultation with the City of Los Angeles Fire Department, identified the need for a larger facility in order to accommodate the size, volume, and nature of emergency response equipment at the ARFF, particularly with regard to equipment storage area, and to provide appropriate living, administrative, and training areas for station personnel. Also, the location proposed for the new ARFF was moved south of the originally envisioned site, becoming better situated relative to the mid-points of the outermost runways (Runway 6L/24R on the north and Runway 7R/25L on the south), consequently being more centralized relative to responding to emergencies on the airfield, and allowing construction of the ARFF to be better integrated with surrounding land uses and the infrastructure improvements and design plans of the overall CFTP. As proposed under the CFTP, the new ARFF would be constructed at the western edge of the proposed (relocated) RON area. Figures 2-9 and 2-10 in the CFTP Draft EIR show the new proposed location of the site for the new ARFF, south of World Way West. As indicated above, the proposed location for the new ARFF would be more centralized

2. Comments and Responses

relative to responding to emergencies and, therefore, emergency response times would not be adversely affected, and would likely be improved in comparison to existing conditions and in comparison to the location proposed in the LAX Master Plan.

CFTP-PC00002-43

Comment: 2.2 Since the specific locations of the N-S taxiways are not a firm location according to this paragraph's interpretation of the LAX Master Plan, how were the specific impacts of the noise and pollution determined to change for specific residences on both sides of the airport?

Response: It is unclear how the commentor interpreted the noted text (i.e., the fifth paragraph on page 2-21 of the CFTP Draft EIR) as implying that the specific locations of the north-south taxiways are not a firm location. That paragraph does not mention the locations of those taxiways. Nevertheless, specific impacts of noise and air pollution on surrounding residents associated with the LAX Master Plan improvements, including the addition of two new north-south taxiways, were determined through modeling the operation of the airfield with implementation of the LAX Master Plan and comparing those impacts to existing conditions. Please see Response to Comment CFTP-PC00002-24 regarding the potential for the CFTP to result in noise or air quality impacts to residential communities. As indicated in that response, the end points of Taxiway C13 would tie into the same east-west taxiways as the other aforementioned taxiways; hence, the proximity of Taxiway C13 to communities located north and south of the airport would be consistent with that of the other existing taxiways. As a result, it is not expected that there would be an increase in operationsrelated noise or air quality impacts to the nearby communities.

CFTP-PC00002-44

Comment: $\quad 2.3$ In view of the trend toward midsized aircraft for most operations what number of NLA are anticipated for 2020? How many NLA by 2040?

Response: International operations represent 17 percent of aircraft activity and 27 percent of passenger activity at LAX. Moreover, international growth rates overall are predicted by the FAA to exceed domestic growth in the near future (2008-2025 FAA Aerospace Forecast, March 10, 2008). International operations utilize larger aircraft, and are the only type of service ordering larger aircraft. At this time, ten airlines currently serving LAX have ADG VI aircraft on order for delivery in the next ten years. A380 service has already begun on one of these carriers, with two or three others expected in the very near future. It is anticipated that many of the remaining carriers with ADG VI aircraft will include A380 LAX service as their orders for new aircraft are filled. This is likely to result in increases in ADG VI international service at LAX for the foreseeable future independent of growth in midsized aircraft centered in the shorter range North and Central American markets. No 2020 or 2040 forecasts of NLA activity were developed for the CFTP Draft EIR. Such distant forecast estimates are not necessary to evaluate the basic characteristics of the CFTP. The proposed addition of a new taxiway in the midfield area that is designed to accommodate ADG VI aircraft (i.e., NLA) would provide for improved ground movement of NLA, as compared to existing conditions, which require the use of the more distant Taxiway AA or limitations on the use of Taxiway S or Taxiway Q while NLA are in the area. That basic conclusion holds true regardless of the number of NLA in the future.

CFTP-PC00002-45

Comment: $\quad 2.4$ There is a reference to "periodic" congestions and delays. What is their anticipated frequency? Have they been quantified? If so, what are they?

Response: The "periodic" congestion referenced by the commentor relates to moments in time when multiple aircraft converge at one point, primarily near centerfield Taxiways S and Q where they intersect Taxiway B and C. Section 2.1.2 of the CFTP Draft EIR describes the nature of the congestion and the dynamic nature of the occurrences. Traffic management reacts to actual conditions as they
occur. Congestion at key areas does not always occur at the same time each day. According to discussions with LAX ATCT, the area south of Taxiways S and Q was identified as a point where congestion is most likely to occur compared to other taxiway intersections. Due to the dynamic nature of traffic movement (how fast an aircraft is moving, how many aircraft are pushed back and cleared to taxi, delays, etc.), quantifying an anticipated frequency of congestion occurrences with some accuracy would not be possible. Instead, one may qualify that the potential for such occurrences may occur during peak operations periods as stated in Section 2.1.2 of the CFTP Draft EIR.

CFTP-PC00002-46

Comment: 2.4.1 If in the future it is determined that towing will be used as a mode of moving aircraft, are there any special accommodations necessary? If so, what are they?

Response: Towing is an existing mode of moving aircraft, which occurs at essentially every airport, including LAX. Since towing already occurs at LAX, no special accomodations are necessary. No change in the use of or need for towing is anticipated as a result of the CFTP.

CFTP-PC00002-47

Comment: 2.4.1 What about the bridge across World Way West? What special requirements apply to making it sufficiently strong? Any special security requirements for the new below grade road?

Response: Both the Taxiway C13 bridge and the adjacent vehicle service road bridge across the segment of World Way West that would be suppressed and realigned were designed with sufficient strength to carry the heaviest design aircraft across the taxiway bridge and the heaviest design vehicle across the service road bridge. The design of the taxiway bridge was based on FAA standards and the design of the service road bridge was based on Caltrans standards. With respect to the question of security measures for the suppressed and realigned segment of World Way West, it is anticipated that security measures currently used for the existing segment of World Way West that passes beneath Taxiway AA and its adjacent vehicle service road would also be applied to the new segment.

CFTP-PC00002-48

Comment: 2.4.1 Are all of the connector taxiways capable of handling the 1.5 Million pound gross weight aircraft as is the taxiway D extension?

Response: Yes, all new connector taxiways under the CFTP projects were designed to handle aircraft with a maximum gross weight of 1.5 million pounds, in accordance with FAA guidelines and standards.

CFTP-PC00002-49

Comment: 2.4.1 Is the New Parallel Service Road 169' west of the taxiway apron, centerline, or west edge?
Response: The east edge of the new parallel service road is 169 feet from the centerline of the new taxiway.

CFTP-PC00002-50

Comment: Figure 2-10 What distance separates the existing Hanger from the taxiway apron?
Response: The distance from the existing American Airlines Hangar to the taxiway apron (west edge of pavement) is 117.5 feet.

CFTP-PC00002-51

Comment: 2.4.1 On the new RON parking, what evaluation has been made for the impact of lighting?
Response: Light emission impacts associated with the CFTP, including impacts associated with lighting for the new RON aircraft parking area, are addressed in Section 5.10.5 of the CFTP Draft EIR. As described in Section 5.10.5, the new RON lighting would consist of 70 -foot high, round tapered steel poles equipped with two, 1,000-watt metal halide floodlights. The lighting system would be designed to maintain a minimum of 1-foot candle horizontally on the limits of the apron. Given the distance of these lights to the nearest sensitive receptors, an increase in lighting intensity of more than 2 footcandles as measured at the property line of a residential property (the significance threshold identified in the CFTP Draft EIR for light emissions) would not occur and, therefore, this impact would be less than significant.

CFTP-PC00002-52

Comment: \quad 2.4.1 The description states that the RON will increase from four group V to 3 group VI and 2 group V with a ground run up enclosure. Is there a plan to require run ups be conducted in this area? Will there be any time of day constrains imposed? If existing run up areas are to be maintained as well, what will the use of the GRE be? If the Master Plan called for two GRE, will both be built? When?

Response: As described on pages 2-29 and 5-5 of the CFTP Draft EIR, the LAX Master Plan includes the future development of two ground run-up enclosures (GREs) to replace ancillary facilities (unenclosed blast-fence/wall areas) displaced in conjunction with the future MSC. Based on refinements made in conjunction with the more detailed planning and design of Taxiway C 13 , the currently proposed alignment of Taxiway C13 extends through the location designated in the Master Plan for the future west GRE. None of the improvements proposed to be constructed as part of the CFTP would eliminate any of the existing ground run-up facilities or affect their current need and operation. The designation of one of the five new parking spots within the relocated RON area as being available for construction of a future GRE preserves the functional intent of the Master Plan relative to replacement of ancillary facilities displaced by the future MSC. It is anticipated that the specifics of when the GRE would be constructed and how it would be operated will be determined in conjunction with the planning and provisions for the MSC. Similarly, if and as implementation of the MSC project affects multiple existing aircraft ground run-up areas, further evaluation would occur relative to development of the second GRE anticipated in the Master Plan.

CFTP-PC00002-53

Comment: \quad 2.4.1 How will the drainage system interface with the proposed water reclamation on the north west area of the LAX facility? Will these drains be connected to Hyperion? How will this runoff be treated prior to release into the ocean? Can any of it be stored for reclamation? Has there been an geologic issues uncovered?

Response: The proposed CFTP drainage system is unrelated to the Los Angeles Department of Public Works' proposed Westchester Rainwater Improvement Project, which would be located within the northwest portion of the airport property.

As stated in Section 5.4 of the CFTP Draft EIR, runoff from the project site would be treated in accordance with the Standard Urban Stormwater Mitigation Plan (SUSMP) requirements that are administered by the Los Angeles Department of Public Works, Bureau of Sanitation, Watershed Protection Division. The SUSMP will identify specific best management practices for the proposed project, which could include measures such as trash/debris filters installed in all the system's catch basins and oil/water separators. Once it exits the project site, drainage from the new system would be conveyed through an existing system under World Way West to Pershing Boulevard. Dry weather flows and the first flush of runoff in a rainfall event from this sub-basin flow into an existing detention basin and oil/water separator. Water collected in the detention basin is treated at the

Hyperion Treatment Plant prior to discharge. Runoff that cannot be accommodated by the detention basin is discharged to the ocean via an existing County outfall. Due to the lack of land area for storage, it is not feasible to collect runoff from project area for reclamation purposes.

As indicated in Section 5.11 of the CFTP Draft EIR, the CFTP would not result in any significant impacts associated with geologic hazards.

CFTP-PC00002-54

Comment: 2.4.1 When the fuel line relocation as in Fig 2-14 is conducted, does this include high pressure refueling capacity for the RON area?

Response: The relocated fuel line shown in Figure 2-14 of the CFTP Draft EIR does not include high pressure refueling capacity, as it does not feed the RON area where there would be no hydrant fueling.

CFTP-PC00002-55

Comment: 2.4.2 When the GSE are relocated to cargo areas will the design ensure that aircraft engines will not face residential areas? Will they be fully powered to provide auxiliary power?

Response: The description of ground service equipment (GSE) facilities that would be displaced by the proposed CFTP improvements refers to the removal and relocation of the storage and maintenance activities applicable to GSE, not to aircraft (i.e., the maintenance shops/areas where GSE are serviced, repaired, and stored). The removal and relocation of these GSE facilities would not change the location of, and manner in which, aircraft are currently serviced by GSE.

Implementation of the proposed project would only result in the displacement and relocation of existing GSE storage and maintenance facilities, and would not affect the level of GSE activities currently occurring at the airport (i.e., would not result in an increase or decrease in the number of aircraft operations occurring at the airport). As indicated on page 2-36 of the CFTP Draft EIR, three existing GSE maintenance operations were identified as requiring relocation due to project implementation. The GSE operations identified in the Draft EIR include operations by Mercury Air; Evergreen Aviation, and American Airlines; however, since the time of publication of the Draft EIR, Mercury Air has ceased GSE operations at LAX. Page 2-36 of the Draft EIR has been revised accordingly. Please see Chapter 3, Corrections and Additions to the Draft EIR.

As indicated on page 2-36 of the CFTP Draft EIR, the existing American Airlines GSE maintenance operations located at the end of the High-Bay Hangar would be relocated to an existing building at the United Airlines Cargo Complex. To accommodate the relocation of GSE maintenance operations to this building, various tenant improvements would occur to integrate this use with the existing cargo function of the building. Such improvements involve minor alterations to the existing facility such as placement of an interior block wall to separate the GSE maintenance activity areas from the cargo storage and processing activity areas, modification of the existing office portion of the building to provide separate administrative office areas for the GSE personnel and the cargo personnel, various plumbing, electrical, heating, ventilation, and air conditioning (HVAC) system modifications, modifications to the building truck docks to accommodate GSE entering and existing the service bays, and other such improvements. The anticipated improvements would accommodate the relocated GSE operations while maintaining the ability of the building to also be used for aircraft cargo operations. None of these alterations would involve expansion of use beyond that previously existing or modification of the facilities or its operations beyond that previously existing. As such, the environmental impacts associated with the subject GSE facility relocation would basically include construction noise impacts (i.e., primarily construction noise within the building); construction-related dust and air pollutant emissions, including greenhouse gas emissions, associated with demolition/removal of certain existing interior walls, flooring, fixtures, and other building materials; several truck trips associated with the transfer of building materials from and to the job site, and construction worker vehicle trips. These types of construction-related

2. Comments and Responses

impacts associated with the GSE relocation improvements along with the impacts of all the other construction activities of the project are addressed in the CFTP EIR. While construction-related impacts specific to the American Airlines GSE relocation would, in themselves, be less than significant, as described in Chapter 4 of the CFTP Draft EIR, construction of the overall project would result in significant air quality and greenhouse gas impacts and less-than-significant impacts relative to traffic and noise.

Improvements associated with relocation of Evergreen Aviation GSE operations would generally be limited to placement of a chain link demising (separation) wall, installation of an electrical submeter, and other such minor improvements at the relocation area. Similar to above, the environmental impacts of those activities would, in themselves, be less than significant, but would, in combination with all other construction activities associated with the CFTP be significant for air quality and less than significant for noise and traffic.

CFTP-PC00002-56

Comment: Fig 2-17 Does the AA Employee Parking relocation require a runway protection area waiver due to the location at the end and slightly north of $25 R$?

Response: The proposed relocated American Airlines employee parking lot does not extend into the runway protection zone for Runway 7L/25R; therefore, a waiver would not be required.

CFTP-PC00002-57

Comment: fig 2-17 Is there a table showing where the 1600 stalls exist prior to relocation to this site? If the entrance to this area is World Way West, has this vehicle traffic been assessed to determine the flow to the WWW entrance? ie How much is expected from Imperial to Pershing, How much from Manchester/Pershing, How much from Westchester parkway, and what traffic will occur along Vista del Mar? Is this increased traffic or already existing traffic?

Response: Figure 2-16 in the CFTP Draft EIR shows the location of the existing American Airlines Employee Parking (i.e., Item 2 in the Figure legend). Also, the existing employee parking lot is visible in the right-hand portion of Figure 2-17 in the CFTP Draft EIR. The 1,600 parking spaces planned for the relocated American Airlines Employee Parking lot are a direct replacement for the approximately 1,600 parking spaces located in the existing American Airlines Employee Parking lot. Both the existing parking lot and the proposed parking lot take access directly onto World Way West, at points well east of the World Way West/Pershing Drive interchange. Landside access to World Way West can only occur via Pershing Drive. The change in the location of the parking lot access point on World Way West would not affect how drivers currently travel to Pershing Drive in order to access World Way West.

CFTP-PC00002-58

Comment: 2.4.3 If substantial amounts of work are to be done during the nighttime, what accommodation to noise impacts on the surrounding residents is to be made? What runway closures be required and when?

Response: Section 5.1.4.2 of the CFTP Draft EIR identifies several LAX Master Plan commitments and mitigation measures that serve to reduce construction-related noise impacts to surrounding areas. Measures specific to addressing nighttime noise would be included in the Construction Noise Control Plan (MM-N-7), which must be submitted by the contractor to LAWA at the beginning of the project, and through the requirements for construction scheduling (MM-N-10), which recognize noise sensitive hours as being nighttime and early morning, and anytime on Sundays and holidays.

As indicated on page 2-48 of the CFTP Draft EIR, no runway closures are anticipated to be required for construction of the CFTP improvements.

CFTP-PC00002-59

Comment: 2.4.3 The project phasing implies that no other work, such as the midfield terminal is planned before 2012. As such, how will construction of this facility at a different time interfere with the use of the CFTP?

Response: The commentor is incorrect in stating no other work is planned before 2012. In fact, the paragraph referenced by the commentor states that the addition of gates to the west side of TBIT would overlap with construction of the CFTP. Construction of other planned midfield projects, such as the MSC, would not overlap with construction of the CFTP. The extent to which construction of midfield projects in the future may interfere with the use of the CFTP will be determined during detailed engineering and construction planning for those projects and will be addressed in their respective environmental documents.

CFTP-PC00002-60

Comment: 2.4.4 Since the airport is considered to be constrained by the curbside capacity to 78.7 MAP and there are plans to improve utilization of this curbside via people movers and other CTA mods in the future, what is the next level of constraint and what is its cause? If curbside and gate embark/disembark constraints are removed what is the capacity of the airfield in terms of number of operations/15 min period and ops/ peak hour?

Response: The question provided by the commentor does not pertain to the proposed Crossfield Taxiway Project. The commentor proposes a hypothetical condition related to removal of existing curbside and expected gate constraints. These components have no direct relationship to the proposed project, which is not an airfield capacity enhancement and does not address or affect curbside and gating constraints. As stated in Section 2.2 of the CFTP Draft EIR, operational characteristics and airside simulation modeling that supported airside efficiency and capacity related to the comprehensive improvement program is provided in Appendix E of the Final LAX Master Plan.

CFTP-PC00002-61

Comment: 2.6 Question for Jan: If certified, how did our Settlement change the EIR usage?
Response: Although the comment appears to be an internal note by the commentor and does not address significant environmental issues, it should be noted that LAWA may proceed with those components of the approved LAX Master Plan that were not identified in Section 7.G. of the Specific Plan (i.e., the Yellow Light Projects), and implementation of those components that were not, and are not, dependent or contingent upon the SPAS process. One of these is the proposed Crossfield Taxiway Project, as explained more fully in Responses to Comments CFTP-AL00002-2 and CFTP-PC00002-18.

CFTP-PC00002-62

Comment: Action Denny 2.6.1 look up the 14 CFR 107 and 139. also the Airport and Airway Improvement Act of 1982

Response: The comment is noted. The comment does not raise an issue regarding the adequacy of the CFTP Draft EIR, and thus does not require a further response.

CFTP-PC00002-63

Comment: Ask Jan--even if the ROD is approved, how does this verify State Implementation Plan approval or ALUC conformance?

2. Comments and Responses

Response: The Record of Decision (ROD) referenced on page 2-51 of the CFTP Draft EIR is the ROD for the LAX Master Plan. As indicated on page 2-51, the FAA found that the LAX Master Plan conforms to the State Implementation Plan during its National Environmental Policy Act (NEPA) review of the LAX Master Plan. The CFTP does not require additional analysis or approval pursuant to the NEPA and, therefore, no ROD will be issued by the FAA for the CFTP. Because the project is not subject to federal action, a demonstration of consistency with the State Implementation Plan is not required for the CFTP.

As required by provisions of the State Aeronautics Act, the Los Angeles County Airport Land Use Commission (ALUC) has the responsibility to review certain airport development projects for consistency with the County Land Use Plan (CLUP). In accordance with Section 1.4 of the Los Angeles County Airport Land Use Commission Review Procedures (ALUC Review Procedures)1, the primary focus of the ALUC's review is on airport development proposals that can have offairport land use compatibility implications, including exposure to aircraft noise, land use safety, protection of airport airspace from hazards to flight, and general concerns, especially annoyance, related to aircraft overflights. Section 1.5.1 of the ALUC Review Procedures identifies actions that require ALUC review. As indicated in this section, adoption or modification of a master plan for an existing public use airport is subject to ALUC review. The LAX Master Plan underwent ALUC review prior to project approval. The CFTP, as a component of the LAX Master Plan, was considered in this review. However, the CFTP, as a stand-alone project, does not meet the definition of a project requiring ALUC review.

1. Los Angeles Regional Planning Commission/Airport Land Use Commission and Los Angeles County Department of Regional Planning, Los Angeles County Airport Land Use Commission Review Procedures, December 2004.

CFTP-PC00002-64

Comment: 2.6.1 With the modifications to World Way West, don't there also have to be security review approvals?

Response: The only security review necessary for the modifications to World Way West is associated with the relocation of the Airfield Operations Area (AOA) perimeter security fencing. The perimeter security fence separates the AOA from non-AOA areas; World Way West is not within the AOA. The fencing would need to be modified to account for the new intersections of both Taxiway C13 and the proposed vehicle service road with World Way West. These modifications were incorporated into the larger Phase III AOA Perimeter Fence Enhancement Project, which is described in Section 3.3.3 of the CFTP Draft EIR. LAWA met with Airport Police to review the proposed fence modifications to ensure that they met current security requirements relative to fence height and materials, proximity to adjacent structures, number and location of access gates, and other considerations.

CFTP-PC00002-65

Comment: 2.6.1 In what ways does the ROD approve other agencies" approvals of impacts such as the Federal Department of Transportation air quality allocations related to the SCAG Regional Transportation Plan?

Response: Please see Response to Comment CFTP-PC00002-63 regarding the applicability of the LAX Master Plan ROD to individual components of the LAX Master Plan, such as the CFTP. As noted on page 2-52 of the CFTP EIR, aside from the described FAA approvals, which were already contemplated as part of the ROD's approval of the LAX Master Plan and individual components therein, no other federal agency approvals are anticipated to be required for the CFTP.

CFTP-PC00002-66

Comment: 2.6.1 Although Congress assigns the FAA has overall responsibility for air emissions of aircraft on the ground and in the air, what requirements, if any, are imposed and tracked?

Response: The comment seems to be inquiring into the requirements associated with the FAA's jurisdiction over air pollutant emissions from aircraft on the ground and in the air. Implementation of the FAA's rules regarding aircraft engine emissions is beyond the scope of the CFTP and CFTP Draft EIR, hence, no response is required.

CFTP-PC00002-67

Comment: 2.6.4 Since old facilities are being torn down and new ones are being built for the fire and police, for example, what agency ensures that there are no toxins in the soil? EPA? DTSC? Is a site review required?

Response: Contaminated soils are addressed in Section 5.12.5.1 of the CFTP Draft EIR. As indicated in that section, Master Plan Commitment HM-2 was designed to ensure that any potential effects from contaminated materials encountered during construction would be less than significant. In accordance with LAX Master Plan Commitment HM-2, LAWA developed a protocol for the handling of hazardous materials encountered during construction, including contaminated soil. The protocol, titled "Procedure for the Management of Contaminated Materials Encountered During Construction," was prepared in December 2005. The intent of the protocol is to ensure that all contaminated soils and/or groundwater encountered during construction of LAX Master Plan projects are handled in accordance with all applicable regulations. In accordance with standard LAWA practices, LAWA conducts pre-construction site surveys to determine if contaminated soils are present and, if so, develops and implements an appropriate remediation plan. The protocol identifies the roles of various agencies involved in hazardous materials remediation. As indicated in the protocol, the agency normally responsible for overseeing the remediation of sites with contaminated soils is the Los Angeles County Fire Department. No special inspection or site review procedures are required for the ARFF relative to soil contamination. The CFTP does not include new facilities for police.

CFTP-PC00002-68

Comment: 3.1 The measure of non-airport use land states .75 miles from the center of the CFTP, what is the distance from the nearest location? Similarly, what is the nearest location to the other locations from the nearest location?

Response: Section 3.1 of the CFTP Draft EIR reported the distances to surrounding land uses from the center of the CFTP site. In response to this comment, the distances from the nearest edge of the CFTP site to surrounding land uses are as follows:

- The distance from the northern edge of the CFTP site to the nearest point in Westchester is approximately 0.5 mile.
- The distances from the eastern edge of the CFTP site to the nearest hotel on Century Boulevard and to the western edge of Inglewood are 1 mile and 2 miles, respectively.
- The distance from the southern edge of the CFTP site to the northern edge of El Segundo is approximately 0.47 mile.
- The distance from the western edge of the CFTP site staging area to Dockweiler State Beach is approximately 0.5 mile.

CFTP-PC00002-69

Comment: 3.2 Noise. The EIR notes that will be engine maintenance such as "run ups." What actions are being taken to ensure that these do not occur during night time hours of 8 PM and 7 AM? What about engine revving during aircraft movement?

Response: Please see Response to Comment CFTP-PC00002-52 regarding ground run-up enclosures anticipated in the LAX Master Plan.

CFTP-PC00002-70

Comment: 3.2 Traffic. Non-airfield traffic is being modified due to the 1600 space parking lot for employees and airport workers. How much of this is increased spaces and increased traffic? Will detailed reports ever be provided to the public showing the percentage by time of day that arrive to World Way West from the north or south?

Response: Please see Response to Comment CFTP-PC00002-57 regarding traffic activity associated with employee parking provided along World Way West.

Detailed automatic traffic recorder (ATR) counts showing the volume of traffic entering World Way West from the north and south were collected by LAWA on September 5, 2008. The count reports are provided on the following pages. A total of 7,228 vehicles entered World Way West, with 5,612 vehicles (78% of the total) entering from the south and 1,616 (22% of the total) entering from the north.

CFTP-PC00002-71

Comment: $\quad 3.2$ Hydrology. Although the vast majority of this area is "paved over" new materials and processes have been identified for parking and roadways that mix in permeable materials that allows for percolation of water into the land. What materials other than standard cement and asphalt have been considered in the design?

Response: The proposed project would use conventional paving materials. Paving associated with the taxiways, RON and adjacent areas is required to comply with FAA guidelines for airfield paving. These surfaces must be able to withstand the weight of aircraft that will travel across them.

The relocated American Airlines employee parking lot would be paved with conventional asphalt. Permeable materials were considered for the parking lot, but were not selected for use due to the existing groundwater contamination beneath the site and the free product recovery system that is co-located on the site. The free product recovery system consists of subsurface groundwater extraction wells connected to an above-ground treatment system. Infiltration of runoff could interfere with the ongoing remediation system. As a result of the proposed project, currently unpaved portions of the site would be paved, which would improve current conditions relative to the remediation system.

CFTP-PC00002-72

Comment: 3.2 Biotics. Due to the location of the RON on this area are there any traps or other monitors to capture insects that may inadvertently be introduced to LA from other areas?

Response: LAWA does not trap or monitor insects that could be inadvertently introduced to the area by visiting aircraft or ground vehicles. The CFTP would not introduce new aircraft to the airport and would not increase the risk of introducing invasive insects. Aircraft RON parking is currently part of baseline conditions. The existing RON aircraft parking provides four spaces; the future RON area would provide five spaces. Although an additional parking space would be provided, the proposed project would not bring additional aircraft to LAX. Rather, the additional RON space would allow for aircraft parking on the project site that would otherwise occur elsewhere on the airport. Moreover, for the most part, the developed areas of LAX do not contain sensitive species or habitat. As illustrated in Figure 2-11 of the CFTP Draft EIR, existing RON parking spaces are currently located in the midfield area, north of World Way West and south of the proposed extension of Taxiway D. The project would involve moving parking spaces for aircraft that currently park at LAX several hundred
feet to the south/southwest. Relocation of the RON would not introduce new aircraft and would not introduce new insects to the airport. Please also see Response to Comment CFTP-PC00002-123.

CFTP-PC00002-73

Comment: 3.3.1 This EIR notes that taxiways Q \& S are to be moved west? At the workshop I was told that they will remain in place while the new taxiway C13 will improve flow. Is there a plan to remove these or change their uses to local movement of aircraft to the new gates?

Response: Relocation of Taxiways Q and S are not proposed as part of the CFTP and implementation of the CFTP would not affect these taxiways. However, as part of the approved LAX Master Plan, Taxiways Q and S are planned to be moved in conjunction with future improvements to the midfield area, specifically the TBIT Reconfiguration Project. These taxiways would be required to be moved to the west in order to provide room for the gates on the west side of TBIT that were also approved as part of the LAX Master Plan.

CFTP-PC00002-74

Comment: $\quad 3.2$ RAC. This was approved in the 2006 Settlement Agreement for construction in the present Lot C Parking area. We have heard that several other locations are being reconsidered. Although we agree that this is prudent considering that community recommendations were NOT Lot C, we wonder when this "green lighted" project will be initiated since it would greatly reduce the traffic in the CTA that the rental buses create. Why can't this be accelerated to be done during the same construction time?

Response: The comment is noted. Neither the proposed Consolidated Rental Car (RAC) Facility nor the rental bus traffic within the CTA are related to the CFTP. LAWA is proceeding with planning of the RAC independently from the CFTP. As this comment does not raise an issue regarding the contents or adequacy of the CFTP Draft EIR, no further response is required.

CFTP-PC00002-75

Comment: 3.3.1 Notes that TBIT will start in Fall 2009 and finish in mid-2010. Given recent developments and changes in the TBIT project, what are the new schedules?

Response: The CFTP Draft EIR does not indicate that the TBIT Reconfiguration Project will start in fall 2009 and finish in mid-2010. Rather, the CFTP Draft EIR indicates that construction of the TBIT Reconfiguration Project, which is projected to begin in fall 2009, would overlap with construction of the CFTP, which is projected to be under construction from spring 2009 to mid-2010 (see pages 3-3 and 3-4 of the CFTP Draft EIR). The overlap would occur between fall 2009 and mid-2010. Planning for the TBIT Reconfiguration Project, including development of a proposed construction schedule, is currently underway.

CFTP-PC00002-76

Comment: The LAX Specific Plan 7.H (1d) includes the "West Satellite Concourse and associated APM segments." The 2006 Settlement states, For purposes ofclarification, the Released Claims include, but are not limited to, any and all claims challenging the South Airfield Improvement Project and the West Satellite Concourse. "Respondents" mean the City of Los Angeles, the Los Angeles City Council, the Mayor of the City of Los Angeles, LAWA and BOAC.
"Yellow Light Projects" for the purposes ofthis Settlement mean:
(a) Development of the Ground Transportation Center ("GTC"), including the baggage tunnel, associated structures and equipment;
(b) Construction of the Automated People Mover ("APM") from the GTC to the Central Terminal Area ("CTA"), including its stations and related facilities and equipment;
(c) DemoJitionofCTA Terminals 1, 2 and 3;
(e) Reconfiguration of the north airfield as contemplated in the LAX Master Plan, including center taxiways; and
(f) Improvements to on-site roadways associated with (a) and (b) above."

Although the Settlement removed, for practical purposes, the Midfield Concourse that we all want to see built, the roadways associated with the CFTP are not as in item (f) above.

Response: The commentor is correct that the roadways associated with the CFTP (i.e., the realignment of World Way West) are not the same as the roadways identified in the LAX Specific Plan, Section 7.H and defined as "Yellow Light Projects" in the Stipulated Settlement. The roadways defined as Yellow Light Projects are the roadways associated with the Ground Transportation Center and the Automated People Mover. The Stipulated Settlement (Section V, Subsection F) includes a provision allowing LAWA to move forward with the processing and development of those components of the approved LAX Master Plan that are not Yellow Light Projects. As the realignment of World Way West is not a "Yellow Light Project" as defined by the Stipulated Settlement, LAWA can advance this project to implementation.

CFTP-PC00002-77
Comment: 3.3.3 Where are the "Airfield intersection improvements -- Phase 2" and other Airfield Operating Area (AOA) that are supposed to be completed by Aug 2009 defined? We would like to know the timing of where these are being constructed so that we can feel confident that no other projects that we don't know about are in work.

Response: Construction projects at LAX that are anticipated to be underway concurrently with construction of the CFTP are identified in Section 3.3.3 of the CFTP Draft EIR. Information regarding active construction projects at LAX is provided at LAWA's website, www.lawa.org. A memorandum highlighting various airport projects is available at the following link: http://lawa.org/airops_ construction.cfm.

CFTP-PC00002-78
Comment: 3.3.3 The Westchester Golf Course "Three-Hole Expansion" should really be called "Three-Hole Replacement" since these holes were in existence before LAWA tore them out about 25 years ago with the promise that they would be restored.

Response: The comment is noted. The comment does not raise an issue regarding the contents or adequacy of the CFTP Draft EIR, and thus does not require a further response.

CFTP-PC00002-79

Comment: 3.3.3 Has LAWA approved the Westchester Rainwater Improvement Project?
Response: The lead agency for the Westchester Rainwater Improvement Project is the City of Los Angeles Department of Public Works, Bureau of Engineering. LAWA does not have approval authority over this project. The Bureau of Engineering is currently conducting environmental studies for this project. The project is anticipated to go to the City Council for approval in 2009.

CFTP-PC00002-80

Comment: 3.3.4 Table 3-1 lists residential and commercial construction, but fails to identify what road projects are planned and when. The LA City projects around Manchester/Lincoln are not listed. Also, not
yet identified is the DOT project to upgrade the area of Lincoln Blvd between Manchester and Sepulveda. What are all of the road construction projects planned to be started before, during, or with a year after the CFTP?

Response: Table 3-1 is intended only to represent the list of residential and commercial planned development projects to be implemented in the vicinity of LAX. The anticipated roadway improvement projects anticipated to be implemented within the timeframe of the CFTP construction activity are summarized in Section 4.1.5.2 of the CFTP Draft EIR. The list of roadway improvement projects includes (a) construction of High Occupancy Vehicle (HOV) lanes northbound and southbound on the I-405 freeway to be completed by winter 2008, (b) westbound I-105 off-ramp to northbound Sepulveda Boulevard scheduled for completion by January 2010, (c) Lincoln Boulevard improvements, and (d) Sepulveda Boulevard improvements from Howard Hughes Parkway to south of 92nd Street with anticipated completion in 2009.

CFTP-PC00002-81

Comment: Note to Denny: Have Jan review this section.
Response: The comment is noted. The comment does not raise an issue regarding the contents or adequacy of the CFTP Draft EIR, and thus does not require a further response.

CFTP-PC00002-82

Comment: 4.1.1 Construction surface traffic is but one level of impact that needs to be addressed. Additional truck traffic from deliveries to LAX on the west and employee/other parking also needs to be addressed for the longer term. Further, although the Settlement Agreement limits the number of gates to a "practical capacity of 78.9 MAP " the LAWA assessments states that another constraint, traffic into the CTA, is a limiting factor. When some of those traffic concerns are addressed there is a possible increase of impact after the 2020 prohibition of gate increases. When will LAWA address this future impact on traffic?

Response: The comment pertains to the need to address the longer term effects of truck traffic and employee parking accessing LAX on the west. The implementation of the CFTP and the future operation of the related facilities would not result in long term changes in airport-related traffic activity across the local area and regional access system. Furthermore, modifications to any employee parking facilities located along World Way West as a result of implementation of the CFTP would not significantly change the number of parking spaces provided. Therefore, longer term traffic patterns after the completion of the CFTP would not be materially different than existing traffic operations. Given that the CFTP would not produce longer term operational changes to traffic activity, the traffic analysis conducted for the CFTP has been limited to assessing potential construction-related impacts associated with the CFTP. However, potential traffic impacts associated with the implementation and operation of other LAX Master Plan projects will be evaluated through individual project-level EIRs prepared on a case-by-case basis.

The majority of the comment pertains to the LAX Master Plan and the LAX Master Plan EIS/EIR. It is not necessary or appropriate to respond to comments on the LAX Master Plan and related EIS/EIR because the CEQA review process for the LAX Master Plan was completed in December 2004. It should be noted that all comments on the LAX Master Plan Draft EIR and LAX Master Plan Supplement to the Draft EIR were addressed in Part 2, Volumes 1 through 11 of the LAX Master Plan Final EIR.

CFTP-PC00002-83

Comment: 4.3.3 Since the study area was set based on proposed construction patterns driven by the CFTP, where is the potential impact of all other projects to be done at similar dates that may use other
routes causing disruption of vehicle traffic in those areas and pushing it into the CFTP proposed routes?

Response: The potential cumulative impacts associated with other known projects to be under construction concurrently with the CFTP are addressed in Section 4.1 .5 of the CFTP Draft EIR. Specifically, the largest anticipated LAX development projects that would be constructed concurrently with the CFTP include: the (a) Tom Bradley International Terminal Interior Improvements Program, (b) In-Line Baggage Screening Systems, (c) Airfield Intersection Improvements, Phase II, (d) Airfield Operating Area Perimeter Fence Enhancements, Phases III and IV (d) Korean Air Cargo Terminal Improvement Project, and (e) TBIT Reconfiguration Project. A typographical error was identified subsequent to publication of the CFTP Draft EIR. The heading of the second bullet on page 4-32 of the CFTP Draft EIR should reference "Phases III \& IV" rather than "Phases III \& VI." Page 4-32 of the CFTP Draft EIR has been revised accordingly. Please see Chapter 3, Corrections and Additions to the CFTP Draft EIR.

The construction of the first two projects listed above was underway during data collection performed for the CFTP; therefore, construction volumes associated with these projects are accounted for within the background volumes. Estimated construction-related trips associated with the Korean Air Cargo Terminal Improvement Project and the TBIT Reconfiguration Project were directly calculated and addressed within the study analysis. The other two projects (Airfield Intersection Improvements, Phase II and Airfield Operating Area Perimeter Fence Enhancements, Phases III and IV) are relatively small projects that are indirectly accounted for within the conservative 2 percent per year growth rate applied to background traffic volumes. (CFTP Draft EIR pages 4-21 through 4-23.) This growth rate assumption is anticipated to be conservative because, as described in Section 4.1.3.3 (pages 4-21 through 4-23 of the CFTP Draft EIR), traffic activity within the study area has shown an average decline (Refer to Table 4.1-3 on page 4-22 of the CFTP Draft EIR for study area historical traffic volumes) during a period when airport activity has increased on an average daily basis (refer to Table 4.1-1 for airport activity).

In addition to the airport construction projects listed above, a review of local area construction and development projects was conducted and documented in Section 4.1.5.3. The anticipated list of development projects, provided in Table 4.1-11, was developed in consultation with representatives of the various jurisdictions surrounding the airport. Given the locations of these projects it is anticipated that construction-related traffic would access these project sites using freeways and surface roadways outside of the study area. Therefore, it is anticipated that any constructionrelated traffic associated with these development projects that would impact the study area would be represented by the 2 percent growth per year applied to background traffic volumes.

CFTP-PC00002-84

Comment: 4.3.3 LAWA conducted some intersection studies in August 2008 when all schools in the area (including Otis College and Loyola University) were not in session. This would necessarily understate the impacts when they are in session.

Response: Existing traffic conditions used for the CFTP roadway analysis are described in Section 4.1.3.3 of the CFTP Draft EIR. As shown in Table 4.1-1, traffic volumes generated by the CTA reach peak activity during the summer months, with August being the peak month of activity followed by July. The study area intersections are located in close proximity to the airport; therefore, we believe that obtaining traffic count information when the airport is operating at peak conditions is important in obtaining a conservative estimate of traffic activity in the study area.

Otis College (located near Lincoln Boulevard and La Tijera) and Loyola Marymount University (LMU) are both north of the airport. Otis College is over 2.5 miles north of the closest study intersection located at Imperial Highway and Sepulveda Boulevard, and LMU is even further north. Furthermore, the CFTP analysis is based on peak hour periods for CFTP construction activity which is anticipated to occur in the early morning (5:00 a.m. to 6:00 a.m.) and in the late afternoon ($3: 30 \mathrm{p} . \mathrm{m}$. to $4: 30 \mathrm{p} . \mathrm{m}$.) in order to avoid coinciding with the commuter peak hours. Given that the CFTP peak periods occur in non-commuter peak periods and these educational facilities are far
removed from the study area, it is not anticipated that traffic generated by these facilities would have a significant influence on traffic conditions.

CFTP-PC00002-85

Comment: 4.1.2.2 None of the models take into account the cost of gasoline and its impact on the number of cars traveling through this area. It doesn't take a traffic engineer to see that as the recent cost of gas declined, the number of cars increased substantially. How will LAWA look at their model and take this type of influence on traffic into account?

Response: In accordance with CEQA requirements, the baseline condition is required to describe and document the existing conditions within the study area at the time the NOP was filed for the CFTP Draft EIR. Intersection turning movement volumes collected in July and August 2008 represented the most current comprehensive set of data available and, therefore, these volumes were used as a basis for establishing baseline conditions. Although the average cost of fuel during the summer of 2008 was at an all time high, adequate evidence of the direct effect on fuel prices specifically on peak hour traffic activity within the study area is not available. However, the traffic analysis conducted for the project is conservative in nature which should account for potentially reduced volumes in summer 2008 resulting from increased fuel prices. This conservative analysis is derived from the use of an aggressive growth factor for background traffic coupled with the addition of traffic from other construction projects in direct proximity with the study area. More specifically, as described in Section 4.1.3.3 of the CFTP Draft EIR, although traffic volumes in the study area have generally declined between 2006 and 2008 (refer to Table 4.1-3) a conservative positive growth assumption of 2 percent per year has been applied to background traffic volumes. In addition, traffic generated by other known construction projects has been added to the conservative background growth assumption. It is anticipated that the combination of these two assumptions will produce a conservative estimate of traffic activity in the event that high gas prices had temporarily produced lower traffic volume activity during the summer of 2008.

CFTP-PC00002-86

Comment: section 4, footnote 21. LAWA should be commended for not blindly using the 2004 traffic studies. During this period 25\% of all housing growth in the City of LA was constructed in Council District 11 (LAX is in CD 11) along with substantial growth in the Marina (LA County). Will LAWA be making available the actual study reports or just excepts in the appendices to this EIR?

Response: The comment is noted. Section 4.1 of the CFTP Draft EIR provides a comprehensive description of the methodology used for the surface transportation (traffic) analysis for the Crossfield Taxiway Project, along with the impacts (results) of the Crossfield Taxiway Project traffic analysis. Supporting data is provided in Appendix B of the CFTP Draft EIR. There are no separate standalone traffic "study reports" for the CFTP surface transportation analysis.

CFTP-PC00002-87

Comment: 4.1.2.4 Cumulative Traffic. We all know that air commerce is down at LAX and auto, taxi and vans being the primary way people get to LAX this count would be down. As the economics improve and traffic is restored to pre-2001 levels and beyond, how will the traffic be accommodated? Right now there are some plans for APM that have not been finalized. How is the traffic flow in the area around LAX assumed? The Settlement agreed to let the Consolidated Rental Car Facility move forward with limited restraint with the objective of removing hundreds of buses from the CTA. When will this be accomplished and how are the traffic conditions assessed to accommodate this project?

Response: The comment is noted. The comment pertains to the LAX Master Plan and the LAX Master Plan EIS/EIR. It is not necessary or appropriate to respond to comments on the LAX Master Plan and related EIS/EIR because the CEQA review process for the LAX Master Plan was completed in December 2004. It should be noted that all comments on the LAX Master Plan Draft EIR and LAX

Master Plan Supplement to the Draft EIR were addressed in Part 2, Volumes 1 through 11 of the LAX Master Plan Final EIR.

CFTP-PC00002-88

Comment: 4.1.3.1 Study Area doesn't include Vista del Mar on the west even though it is used as a pathway from the South Bay to the Pershing entrances to World Way West. Why isn't this included?

Response: The study area intersections were defined by determining the expected travel paths that would be used by construction delivery vehicles and construction workers and identifying those intersections that would experience significant levels of construction related traffic activity.

Construction delivery vehicles would be accessing the construction staging areas on the west side of the airport. As described in Section 4.1.7 of the CFTP Draft EIR, LAX Master Plan Commitment ST-22, Designated Truck Routes, stipulates that truck deliveries would be on designated freeways and non-residential streets. Accordingly, delivery vehicle trips accessing the CFTP construction site on the west side of the airport would be limited to Pershing Drive (Imperial Highway to the project site at World Way West), Imperial Highway (Pershing Drive to I-105), I-105, and I-405. The designated delivery route for the CFTP was designed to minimize truck traffic using other surface streets in the vicinity of the airport. In accordance with Master Plan Commitment ST-22, it is not anticipated that Vista del Mar would experience delivery truck activity.

The construction employee parking lot would be accessed via La Cienega Boulevard on the east side of the airport. As described on page $4-35$ of the CFTP Draft EIR, it is assumed that construction employee trips would originate from geographic locations in proportion to the regional population distribution. Because the employees would be drawn from the general population, it is reasonable to assume that employee trips would be distributed in proportion to the distribution of the population. To assign trips to specific roadways and intersections within the study area, more detailed information describing specific roadway usage was analyzed. The results of the 2001 and 2006 LAX airline passenger surveys were used to estimate the proportion of construction-related traffic using the freeway system (l-405 and I-105) and the local roadways to access the study area. Based on the anticipated regional access routes and the fact that the construction employee parking lot is located on the east side of the study area near the I-405 Freeway, it is reasonable to conclude that construction employees would not use Vista del Mar to go to and from the construction parking lot.

CFTP-PC00002-89

Comment: 4.1.3.3 Study intersections includes primarily intersections on the south of LAX. Why were so few north side intersections evaluated? Those routes coming south to LAX via Sepulveda or Lincoln should have been included.

Response: Please see Response to Comment CFTP-PC00002-88 regarding the methodology for determining study area intersections based on expected CFTP vehicle travel paths.

To assign trips to specific roadways and intersections within the study area, detailed information describing specific roadway usage was analyzed. The results of the 2001 and 2006 LAX airline passenger surveys were used to estimate the proportion of construction-related traffic using the freeway system ($1-405$ and I-105) and the local roadways to access the study area. As shown in Figure 4.1-4 provided on page 4-27 of the CFTP Draft EIR, it was estimated that 24 percent of the construction employee traffic would use the local roadway system and the remaining 76 percent of the traffic would access the study area via the freeway system. Of the 24 percent comprising traffic using the surface roadway system, it was estimated that about 6 percent would use surface roadways via Sepulveda Boulevard from the north. The same methodology showed that the volume of construction employee traffic using Lincoln Boulevard north of LAX was negligible.

Based on the projected peak trip generation of the CFTP as provided in Table 4.1-6, it is anticipated that the project would add approximately 3 southbound vehicles (i.e., 37 vehicles $\times 6$ percent) and approximately 9 northbound vehicles (i.e., 144 vehicles $\times 6$ percent) to Sepulveda Boulevard during the p.m. construction peak hour. Given the relatively low contribution of traffic activity to Sepulveda Boulevard north of the airport, it was determined that intersections along this corridor would not be included in the study area.

CFTP-PC00002-90

Comment: Note - no action Table 4.1-1 shows that the CTA traffic volume is not a direct correlation to the MAP.

Response: The level of statistical correlation between the year-to-year change in CTA traffic volumes and annual passenger activity summarized in Table 4.1-1 has not been presented nor is it required for the purposes of evaluating the Crossfield Taxiway Project. The intent of the table is to show the monthly peaking characteristics of the airport and the general year-to-year trend in activity during the peak month of August. Given the very short planning horizon year for this study (approximately 2 years based on the project construction period), future growth rates were established by assuming a conservative 2 percent per year growth, rather than using other information such as CTA traffic volumes or airline passenger activity that has shown increases of less than 2 percent per year in recent history.

CFTP-PC00002-91

Comment: Figure 4.1-3 shows traffic recorder hourly volumes. What values were found for Sepulveda North of the tunnel and Century Blvd.?

Response: ATR count activity for Sepulveda Boulevard north of the tunnel and Century Boulevard were not conducted for this study. The ATR counts that were used were those that were available within the study area shown in Figure 4.1-1 of the CFTP Draft EIR.

The purpose of obtaining and publishing this ATR traffic count information was to determine the difference between background traffic activity that occurs during the construction peak hours and commuter peak hours. A.m. and p.m. commuter peak hours represent the periods of the day when roadway traffic is at its peak. Because construction activity is restricted from occurring during these peak hours, the background traffic volumes during the construction peak hours will generally be lower than the volumes during the commuter peak hours. Given this relationship, it is anticipated that the background traffic volumes from the commuter peak hour should be reduced to represent anticipated traffic activity during the construction peak hour.

As shown in Table 4.1-2 in Section 4.1.3.3 of the CFTP Draft EIR, traffic volumes during the a.m. construction peak hour are on average approximately 36 percent lower than during the a.m. commuter peak hour. During the p.m. construction peak hour, traffic volumes are on average about 11 percent lower than during the p.m. commuter peak hour. However, to avoid over adjusting (over reducing) the commuter peak hour volumes to represent background traffic activity during the construction peak hours, it was determined that a conservative adjustment would be used. The commuter peak hour volumes were reduced in accordance with the single ATR location that experienced the least amount of reduction during the construction peak hour as compared with the commuter peak hour. This resulted in a 28 percent reduction to adjust from the a.m. commuter to a.m. construction peak hours. This reduction results in a higher background traffic volume than would have been estimated had the overall average reduction of 36 percent been applied. During the p.m. period, no reduction was assumed (although the average reduction would have been 11 percent). It is anticipated that this methodology produces a conservatively high estimate of traffic activity during the a.m. and p.m. construction peak hours. The information obtained and reviewed from the existing available ATR counts is sufficient for the purposes described above and does not necessitate count activity for Sepulveda Boulevard north of the tunnel and Century Boulevard.

CFTP-PC00002-92

Comment: 4.1.3. X all of these analyses were done before the school year started. The assessment also fails

 to reflect changes due to the relationship between traffic amounts and the cost of fuel. Further, the basic $4 x$ table showed a non-linear relationship between MAP and cars into the CTA. What other factors could have been used to assess the impacts on the amount of traffic?Response: Please see Response to Comment CFTP-PC00002-84 for discussion of traffic counts collected during August 2008 as compared to summer periods when area schools may not be in full session.

Please see Response to Comment CFTP-PC00002-85 for discussion regarding traffic volume activity and the cost of fuel.

Please see Response to Comment CFTP-PC00002-90 for discussion regarding the relationship between airline passenger activity and CTA traffic volume.

The methodology used for this study is intended to provide a conservative estimate of the traffic volumes using the study area roadway intersections in order to address known factors and other likely unknown factors that may affect future traffic volumes during the anticipated time frame required for the construction of the CFTP. Conservative assumptions include: (a) using base traffic volumes for the a.m. and p.m. construction peak hours that are likely higher than would be expected if traffic counts were conducted during off-peak periods when construction traffic would be accessing the study area; (b) applying a 2 percent growth factor to existing volumes when recent historical traffic activity has shown a decline; and (c) including a conservative estimate of additional traffic volumes associated with other construction projects that may be underway during the construction of the CFTP.

CFTP-PC00002-93

Comment: 4.1.4.1 Passenger traffic due to construction was calculated in a straight forward, formula way. What additional traffic will occur as a result of movement of parking spaces in the reconstruction? How will traffic be impacted by any events at the Proud Bird restaurant? Other venues or special events?

Response: While the construction of the CFTP would result in modifications to employee parking facilities located along World Way West, the number of employee parking spaces on World Way West would not change substantially. Therefore, regional traffic patterns would not be materially different after the project is constructed as compared with the traffic patterns that would be expected if these parking facilities were not modified. Therefore, it is not anticipated that changes to parking facilities as a result of the CFTP would result in a traffic impact.

As described in Section 4.1.7 of the CFTP Draft EIR, in accordance with Master Plan Commitment ST-14, construction employee shift hours for the CFTP will be established to avoid coinciding with the busiest commuter peaks from 7:00 to 9:00 a.m. and from 4:30 to 6:30 p.m. Similarly, in accordance with Master Plan Commitment ST-12, construction delivery hours will be established to avoid the commuter peaks. As a result of these restrictions, the traffic conditions analyzed for the CFTP are based on the anticipated traffic conditions during the a.m. construction peak hour (6:00 to 7:00 a.m.) and during the p.m. construction peak hour (3:30 to 4:30 p.m.). While special events conducted at the Proud Bird and other private venues in the LAX area are not within the control of LAWA, it is not anticipated that special events generating significant volumes of traffic within the study area would routinely occur during the early morning periods and mid-afternoon periods that were analyzed for the CFTP. In the unlikely event that a significant special event were to occur at the Proud Bird concurrent with the construction period peak hours, it is anticipated that traffic activity could be greater than currently projected in the immediate vicinity of the venue for that specific day. However, this is not a routine occurrence and the effects would be short-lived. It is not anticipated that other "special events" located outside of the study area would have a material effect on the study area roadways and would likely be included as part of the conservative estimate used to estimate future growth in background traffic. Please see to Response to Comment CFTP-

PC00002-85 for discussion regarding the conservative methods used to estimate background traffic.

CFTP-PC00002-94

Comment: Figure 4.1-4 shows a 6\% increase on Sepulveda north of LAX and a 21% increase on the I-405 North. What is the basis of these numbers? Were they measured or predicted via some formula?

Response: The information provided in Figure 4.1-4 on page 4-27 of the CFTP Draft EIR illustrates the distribution of construction related traffic using the study area roadway network. The numbers quoted by the commentor refer to the proportion of traffic accessing the study area from a particular roadway, rather than the increase in traffic using that roadway.

Please see Response to Comment CFTP-PC00002-89 regarding the basis for establishing the regional and local area trip distributions. In addition, more discussion is provided in the last four paragraphs of Section 4.1.5.1 and in Table 4.1-10 of the CFTP Draft EIR.

CFTP-PC00002-95

Comment: Table 4.1-6 When calculating the construction related trips were any trips allocated for food trucks or other support activities?

Response: No specific trips were added to the estimate of construction vehicle traffic to account for catering trucks or similar support activities. However, it is anticipated that these support vehicles would be entering or exiting the construction area when the construction employees are already at work. Therefore, any trips associated with food catering or similar support would be negligible during the a.m. and p.m. construction peak periods, which was determined based on the time when employees would be entering the parking lot prior to shift start and exiting the parking lot upon shift end.

CFTP-PC00002-96

Comment: 4.1.5.1 identifies TBIT Interior Improvements. Is this the old program or the more comprehensive one where a new building is constructed in phases and the size of the facility is increased? No mention of changes in the CTA area are addressed either.

Response: The project referred to on page 4-30 of the CFTP Draft EIR, the Tom Bradley International Terminal Interior Improvements Program (also known as the TBIT Renovation Project), is currently under construction and consists of interior renovations, a boarding gate for new large aircraft, and an inline checked-baggage security screening facility. This is different from the TBIT Reconfiguration Project, which is currently undergoing detailed planning and design by LAWA. The TBIT Interior Improvements Program does not involve any changes in the CTA.

CFTP-PC00002-97

Comment: 4.5.1 Impacts of additional concurrent projects are discussed. There were discussions of how to best utilize construction gates for ease of security access. What assumptions have been made for the various projects? Will all of the access be from the World Way West side or will some be from the CTA? What percentages and amounts of additional trafffic is assumed?

Response: The commentor's statement that "There were discussions of how to best utilize construction gates for ease of security access." is non-specific and it is unclear to what those discussions entailed. As such, a response to that portion of the comment is not possible.

2. Comments and Responses

Please see Response to Comment CFTP-PC00002-83 for discussion regarding the trip generation of traffic associated with additional concurrent LAX construction projects.

The additional LAX construction projects anticipated to be underway concurrently with the CFTP and the associated trip generation characteristics of these projects is described in Section 4.1.5.1 of the CFTP Draft EIR. The anticipated construction sites and associated staging areas supporting construction at these locations are depicted in Figure 4.1-5 provided in the same Section.

It is anticipated that during the timeframe analyzed for the CFTP, all construction site access for the CFTP, TBIT Interior Improvements, and TBIT Reconfiguration projects would be provided via driveways located along World Way West. Access to the In-Line Baggage Screening Systems T1 \& T3 and Airfield Intersection Improvements projects would be accessed off of Westchester Parkway; however, it is anticipated that all truck delivery traffic would be required to use the freeway system (I-105 and I-405), Imperial Highway, and Pershing Drive to access these staging areas in accordance with LAX Master Plan Mitigation Monitoring and Reporting Program Commitment ST22. Please see Response to Comment CFTP-PC00002-88 for additional discussion regarding construction vehicle delivery route designations.

The Westchester Rainwater Improvement Project is not an LAX project, but is a local area improvement that will contribute construction-related traffic to the study area. The construction zone would be accessed via Westchester Parkway. Additional information is provided in Subsection 4.1.5.3.

It is anticipated that construction employees would follow the general regional routes assumed for the surface roadway distributions depicted in Figure 4.1-5. During the timeframe analyzed for the CFTP, employee associated with the CFTP and TBIT Reconfiguration projects would park at the construction parking lot on La Cienega Boulevard. The anticipated number of employee trips associated with the CFTP by hour of the day during the project peak condition is depicted in Table 4.1-6 for the peak project condition (fourth quarter (Q4) 2009) and in Table 4.1-7 for the peak cumulative condition (second quarter (Q2) 2010). During the peak project condition in Q4 2009, for example, it is estimated that 37 employee vehicles would enter and 144 employee vehicles would exit the construction parking lot during the p.m. construction peak hour. Traffic volumes associated with the TBIT Reconfiguration Project are provided in Table 4.1-8 for Q4 2009 and Table 4.1-9 for Q2 2010.

It is not anticipated that any other LAX project expected to be under construction concurrent with the CFTP would use the CTA roadway system to deliver construction-related goods to their respective project sites.

CFTP-PC00002-98

Comment: Table 4.1-10 is supposed to be allocating the origination of construction traffic based on the 2001 and 2006 air passenger distribution information. How was the correlation between air passengers and construction workers validated?

Response: To analyze traffic associated with the CFTP, it was necessary to estimate the routes that construction employees and delivery trucks would use to access the study area and to travel within the study area. Using this information, the estimated trips generated by the CFTP and other anticipated LAX construction projects were assigned to the individual intersections studied in the CFTP Draft EIR. Because the actual points of origination and travel paths used by these future employees and delivery trucks cannot be definitively determined until the CFTP construction contracts are in place and the construction employees have been hired, the assumptions used for the distribution of construction trips are based on the best available information. As described in the CFTP Draft EIR, it is assumed that construction employee trips would originate from geographic locations in proportion to the regional population distribution. Because CFTP employees would be drawn from the general population, it is reasonable to assume that employee trips would also be distributed in proportion to the distribution of the regional population. This information was used to determine the primary flow patterns originating from the north, south, and east.

Passenger survey data from the 2001 and 2006 Air Passenger Surveys were reviewed to provide general guidance on the specific freeways and roadways that would be used to access the study area. However, because the construction employee destination is different than for airline passengers destined for the CTA, this information was then adjusted using professional judgment to estimate the routes that would be used by employees to access their respective parking areas, as well as the proportion of traffic using these routes. The route selections were determined based on logical paths that would be used by employees in order to minimize travel time and to avoid delays due to congestion. The detailed travel paths are provided in Appendix B of the CFTP Draft EIR.

Although specific survey data regarding employee travel patterns were not available to determine the level of correlation with regional population distribution and local area roadway selections used by airline passengers, it is anticipated that the information derived from the population and passenger survey data provides a reasonable basis for estimating regional and local area trip distributions.

CFTP-PC00002-99

Comment: Table 4.1-11 lists very few LA City projects and missed many of them. It fails, for example, to list the 520+ apartment mixed use at Lincoln/Manchester. It failed to list the 270' high complex to be built in Culver City at Sepulveda and Centinela. It failed to list the 300+' proposed building in Howard Hughes Center. Where did the authors of this EIR get their list and how old is it? It certainly is not current.

Response: \quad The list of planned development projects is provided as Table 4.1-11 in Section 4.1.5.3 of the CFTP Draft EIR. The information provided in the table is based on a review of available information from Los Angeles Department of Transportation (LADOT), Culver City, El Segundo, Hawthorne, Inglewood, Los Angeles County, and Manhattan Beach obtained through published sources and direct consultation with planning and transportation staff at these agencies and jurisdictions. On August 8, 2008, the list of projects identified for each agency was distributed to representatives from each of the respective agencies for review and comment. As a result, the table is believed to contain the most current information provided at the time the document was prepared; however, given the fluid nature of the planning and development process within the local area, the listing of projects will continue to fluctuate over time.

The commentor indicated that the table "lists very few LA City projects and missed many of them." It should be noted that the list is intended to cover only those projects within the greater LAX area and will, therefore, not include those projects outside of the LAX general area.

The commentor indicated that the list failed to include "the 520+ apartment mixed use at Lincoln/Manchester." This project is listed as \#130, Residential Mixed Use Project, 8601 Lincoln Boulevard, 527 apartments, 12 live/work units, $22,600 \mathrm{sq}$. ft. of ground retail uses and 8,000 sq. ft. of restaurant.

The commentor indicated that the list failed to include "the 270' high complex to be built in Culver City at Sepulveda and Centinela." This project is listed as \#17, Entrada Office Tower, 6161 Centinela Avenue, $342,409 \mathrm{sq}$. ft. office tower and 9 -level parking structure.

The commentor indicated that the list failed to include "the 300+' proposed building in Howard Hughes Center." As a result of receiving this comment, LAWA staff contacted LADOT's Bureau of Planning and Land Use Development to inquire about this project. Hui M Huang, Transportation Engineering Associate II, Los Angeles Department of Transportation West LA/Coastal Development Review, provided contact information for the project. On November 18, 2008, LAWA staff spoke with Mr. John Hartz of Equity Office regarding the project at 5901 Center Drive, which is a proposed 5 -story, approximately 250,000 sq. ft. office building at the corner of Howard Hughes Parkway. The development company is in the process of obtaining a building permit from the City of Los Angeles. However, the development will be built to suit, and with the current downturn in the economy, Mr. Hartz does not believe that the project will be constructed in the near future. Even if the project were to begin construction before the completion of the CFTP, the project's construction haul route
is to use Howard Hughes Parkway to access the I-405 Freeway. As a result, construction traffic associated with this development project should not affect the CFTP traffic study area.

The project on Howard Hughes Parkway described above has been added to the list of Planned Development Projects provided as Table 4.1-11 in the CFTP Draft EIR. In addition, other projects that have been identified subsequent to the publication of the CFTP Draft EIR current through November 19, 2008 have also been added to the table. Please see Chapter 3, Corrections and Additions to the CFTP Draft EIR. Based on a review of these additional projects, it is anticipated that any construction-related volumes generated by these projects during the a.m. and p.m. construction peak hours would be represented within the 2 percent growth factor applied to background traffic.

CFTP-PC00002-100

Comment: 4.1.7 Mitigation measures listed mention construction coordination, but there was no mention of enforcement. The SAIP (south airfield) had specific construction routes marked and a dedicated call in number to enforce suspension of violations. Where is the plan to provide minimization of noise and pollution times away from those when people are trying to sleep? Where is all of this to be documented?

Response: Please see Response to Comment CFTP-PC00002-28 regarding the LAX Master Plan commitments and mitigation measures that would serve to reduce construction-related traffic, fugitive dust, and noise impacts to surrounding areas associated with the CFTP. Response to Comment CFTP-PC00002-28 also identifies sensitive noise hours for purposes of construction.

As indicated in CFTP-PC00002-28, a Construction Traffic Management Plan (CTMP), a Fugitive Dust Control Plan (FDCP), and a Construction Noise Control Plan (CNCP) specific to the CFTP will be prepared prior to initiation of construction of the project. Compliance with these plans, as well as with all of the commitments and mitigation measures associated with the project, will be included in a CFTP Mitigation Monitoring and Reporting Program (MMRP), which will be monitored by LAWA or a qualified third party. Compliance with the CFTP MMRP will be documented in LAWA's LAX Master Plan Mitigation Monitoring and Reporting Program Progress Report, which is prepared on an annual basis and available to the public at http://www.ourlax.org/publications.cfm.

As part of the CFTP FDCP, a publicly visible sign will be posted within 50 feet of the project site entrance that includes a contact person and phone number for dust-related complaints. As part of the CFTP CTMP, signage and marking of construction traffic routes will be implemented. Prior to initiation of CFTP construction activities, LAWA will establish a 24 -hour construction noise hotline program for the general public to file noise complaints and, within one hour of receipt of a call, LAWA will investigate the complaint and communicate the results of the investigation to complainants. Monthly CFTP noise hotline reports will be included in an appendix to LAWA's annual LAX Master Plan Mitigation Monitoring and Reporting Program Progress Reports.

CFTP-PC00002-101

Comment: \quad| 4.1.8.3 and Table 4.1-12 Impact significance is trivialized for several intersections of poor condition |
| :--- |
| because this project only makes it a little worse. This is like beating your head against a wall so |
| that when you quit it feels good. I guess the position of LAWA on these pathetic traffic intersections |
| is that "if this project is only a small part of the blame" then making people a little worse doesn't |
| really matter since they are already impacted. This comment applies to all of these LOS analyses. |
| It also is of concern that there are few intersections to the north of LAX in this evaluation (ie |
| Sepulveda/Manchester). |

Response: \quad| The commentor suggests that "impact significance is trivialized for several intersections of poor |
| :--- |
| condition because this project only makes it a little worse." The methodology used for this study |
| complies with LADOT guidelines for analyzing traffic impacts relative to meeting the intent and |
| requirements of CEQA. Specifically, future cumulative traffic conditions were analyzed in |

accordance with the requirements set forth in Section 15355 of the CEQA Guidelines which indicates cumulative impacts are to be defined as "two or more individual effects which, when considered together, are considerable or which compound or increase other environmental impacts." In addition, the study is intended to provide a conservative estimate of the traffic volumes using the study area roadway intersections in order to address known factors and other likely unknown factors that may affect future traffic volumes during the anticipated time frame required for the construction of the CFTP. Conservative assumptions include (a) using base traffic volumes for the a.m. and p.m. construction peak hours that are likely higher than would be expected if traffic counts were conducted during off-peak periods when construction traffic would be accessing the study area, (b) applying a 2 percent growth factor to existing volumes when recent historical traffic activity has shown a decline, and (c) including conservative estimates of additional traffic volumes associated with other LAX construction projects and other local projects that may be underway during the construction of the CFTP.

The thresholds of significance for determining traffic impacts are defined in Section 4.1.6 of the CFTP Draft EIR. These criteria were applied in accordance with procedures established by LADOT.

Impact analysis procedures and results are provided in Section 4.1.8 of the CFTP Draft EIR and were prepared in compliance with guidance provided in Section 15355 of the CEQA Guidelines. Impact Comparison 1 provides a direct measure of CFTP traffic as measured against the 2008 Baseline condition which is a requirement of CEQA. Impact Comparison 2 provides a direct measure of two future cumulative conditions occurring during (a) the peak CFTP activity period in Q4 2009 and (b) the period during the CFTP construction schedule when overall cumulative traffic is highest in Q2 2010. Analysis for both these future cumulative conditions was conducted to ensure that potential impacts associated with the project did not occur during the peak project conditions or during other points in the construction schedule. In formulating these study conditions, LAWA analyzed all potentially critical demand scenarios to fully assess potential impacts in accordance with CEQA guidelines. Furthermore, LAWA has chosen to conduct a full traffic study for construction conditions when, as described on page 4-6 of Section 4.1.2.1., LADOT had stated that LAWA is not obligated to prepare a study to assess the temporary impacts associated with construction and that the preparation of a traffic study is voluntary.

Please see Response to Comment CFTP-PC00002-89 for discussion regarding the determination of the study area and the rational for not including the analysis of intersections to the north of LAX.

CFTP-PC00002-102

Comment: 4.2.1 Air quality claims improved air quality due to reduced taxiing times, but what about a less generalized area of the areas where the engine exhaust is facing? Although LAWA has begun a landmark apportionment study little has been released for evaluation of the methods or expected results. The UCLA/Froines study of about 2006 showed that during takeoffs and landings there were sub-sub particle plumes that went into the surrounding communities that were not revealed by "normal" testing. What study of these impacts has been done to validate that movement of the taxiways doesn't move this pollution into new residential areas? A curt, "no requirement for this testing" as a response is unacceptable if the purpose and objective of CEQA is to highlight environmental issues. What mitigations are proposed for reducing this enveloping pollution?

Response: The aircraft that would utilize the new crossfield taxiway (Taxiway C13) after completion of the CFTP would have used either the existing west crossfield taxiway (AA), or one of the existing two midfield crossfield taxiways (Q and S) if the CFTP were not implemented. The new Taxiway C13 would be located roughly in the middle of the airport between these existing crossfield taxiways, and would have the same north-south orientation as the existing crossfield taxiways. Therefore, the impacts from aircraft emissions associated with the new Taxiway C13 would disperse in the same general manner, in the same direction, and from the same general area as from the existing crossfield taxiways. Since the aircraft emissions on these taxiways would be reduced with implementation of the CFTP, and operations on the runways (takeoffs and landings) would not be
expected to change as a result of the CFTP, the operational air quality impacts of the CFTP at community locations are not expected to increase.

As noted in the comment, LAWA has begun the LAX Air Quality and Source Apportionment Study (AQSAS). The initial demonstration study was conducted over the summer (2008) and, at this time, the AQSAS Technical Working Group (TWG) is reviewing the demonstration study draft reports. Note that the TWG includes representatives from the SCAQMD, California Air Resources Board (CARB), California Office of Environmental Health Hazard Assessment (OEHHA), U.S. Environmental Protection Agency (USEPA), FAA, and community groups. Background information regarding the LAX AQSAS is available at:

http://www.lawa.org/welcomeLAX.cfm?id=1060

Study reports and results will be posted to this web site as they are completed. The LAX AQSAS will include measurement of very small particles (also called ultrafine particles or UFP). Since the CFTP is anticipated to reduce aircraft emissions due to reduced taxi times, no specific analysis of aircraft UFP was deemed necessary or appropriate. Potential health risk impacts from exposure to construction equipment DPM, which would include UFP from the diesel engines, were analyzed in Section 4.3 of the CFTP Draft EIR. Mitigation of construction engine particulate matter emissions was discussed in Section 4.2 of the CFTP Draft EIR.

Please also see Response to Comment CFTP-PC00003-4 regarding ultrafine particles.

CFTP-PC00002-103

Comment: 4.2.1.2 Fugitive Dust and other sources of pollution normally addresses construction sources that are supposed to be covered to prevent wind blowing particulate matter or limited exposure in numerous ways. What analysis has been done to establish the impacts of aircraft tire dust and other particulate matter that increases due to changes in runway and taxiway use patterns during construction and afterwards? Is there any plan to sweep these runways and taxiways more often? What other mitigations are proposed and necessary to avoid other harmful gases during construction?

Response: Air quality impact analysis of construction-related dust emissions and emissions of gaseous pollutants, and their related control measures, are included in Section 4.2 and Appendix C of the CFTP Draft EIR.

The CFTP would not change travel patterns on the airfield to a degree that would materially change the amount of aircraft tire dust generated at the airport. Moreover, no data exist that provide a methodology to quantify the amount of aircraft tire dust generated by taxiing aircraft. (It is reasonable to assume that most aircraft tire dust is generated by aircraft during landing and, secondly, during departure.) Nevertheless, if such a methodology existed, such an impact would only occur if the length of the travel route were materially changed as a result of a proposed project. As shown in Figures 2-1 and 2-3 of the CFTP Draft EIR, Taxiway C13 would predominantly be used by aircraft that arrive on the north runway complex and that are destined for gates on the south side of the CTA. As illustrated in these figures, use of Taxiway C13 by these aircraft would not result in any additional distance traveled. Therefore, changes in taxiway use patterns associated with CFTP would not generate any additional aircraft tire dust at LAX.

As indicated in Section 4.2.6.2, increased efficiency of aircraft movement on the airfield with implementation of the proposed project would reduce taxi/idle times, resulting in a reduction of particulate matter of 0.48 tons per year each of inhalable particulates (PM10) and fine particulates (PM2.5).

Runways and taxiways would continue to be maintained clear of foreign object debris as needed to promote safety of aircraft. (FAA Advisory Circular No. 150/5380-5B, Debris Hazards at Civil Airports) Please also see Response to Comment CFTP-AF00001-2 regarding construction specifications for the CFTP pertaining to foreign object debris removal.

CFTP-PC00002-104

Comment: Table 4.1-1 Aircraft codes and EDMS Modeling lists aircraft types. Since the Recondo fleet mix estimates were only just released, what differences in the assumptions exist between any simulations done for this EIR and these fleet mix estimates? Will LAWA be releasing the Recondo reports for independent assessment and analysis for consistency with the newly determined estimates of aircraft usage in the present and future?

Response: As indicated in Section 2.1.3 of the CFTP Draft EIR, the implementation of the CFTP would not change the fleet mix at LAX. However, the operational taxi time for aircraft associated with implementation of the CFTP would be reduced relative to the operational taxi time for aircraft without implementation of the project. Since slightly lower taxi times would occur regardless of the fleet mix, operational emissions would also be lower, regardless of the fleet mix. While the magnitude of the reduction may vary as the fleet mix changes, the project operational impact would still be beneficial for air quality. Therefore, no revision to the analysis for varying fleet mix is warranted.

Please also see Response to Comment CFTP-PC00002-31 regarding the fact that the differences between the 2005 fleet mix assumptions used in the CFTP Draft EIR analysis and the 2008 fleet mix estimates are relatively minor and immaterial to the basic conclusions of the EIR.

CFTP-PC00002-105

Comment: 4.2.3.1 Climatological Conditions talks about the high pressure area, easterly winds at night, and "marine layer." Where has LAWA prepared a table of which of the air pollutions tend to precipitate out of the air and which tend to be additive exposure? Where to these pollutants amass the highest concentrations? I.e. is it at ground level or at some height above the ground? Where are the studies of air quality at various heights and distances from the airport into the surrounding areas? Again, the objective of CEQA is to highlight environmental risks. How does the aircraft generated pollution (which includes known carcinogins) propagate into the surrounding areas? What impact is imposed on communities subject to landings and takeoffs as well as go arounds?

Response: The purpose of an EIR prepared to comply with CEQA is to disclose the significant environmental impacts associated with developing a specific project or plan and indicate the manner in which those significant impacts can be mitigated or avoided [Public Resource Code, Division 13, Section 21002.1(a)]. The methodology and results of the air quality impact analysis are presented in Section 4.2 and Appendix C of the CFTP Draft EIR. The analysis generally follows the methodology presented in the SCAQMD CEQA Handbook (dated 1993), as supplemented by updates and additions located on the SCAQMD CEQA web page: http://www.aqmd.gov/ceqa/hdbk.html. The analysis was developed to address impacts at community locations from CFTP-related sources. The aircraft airborne operations would not be affected by the CFTP, therefore, analysis of airborne aircraft emissions are not addressed in the CFTP Draft EIR.

Please also see Response to Comment CFTP-AR00001-2 regarding air dispersion modeling of construction-related criteria pollutants. Air dispersion modeling of toxic air contaminants is discussed in Section 4.3 and Appendix D of the CFTP Draft EIR.

CFTP-PC00002-106

Comment: Table 4.2-2 National and California Ambient Air Quality Standards identifies USEAP and several other agencies responsible for air quality requirements monitoring, but a major source of pollution, the aircraft operations, is not monitored in the sky and only partially considered during ground operations. Has LAWA requested of the agency responsible for this pollution, the FAA, a list of standards? Please provide documentation of these requests for follow up. What are the impacts at night versus daytime release of toxins into the air? What USA or foreign studies has LAWA considered in assessing these "less defined pollution sources?"

Response: The ambient air quality standards apply to ambient air, which is defined in the Code of Federal Regulations at Title 40, Part 50, as meaning that portion of the atmosphere, external to buildings, to which the general public has access. The National Ambient Air Quality Standards (NAAQS) apply to contaminants referred to as criteria pollutants in the ambient air over the United States, and the California Ambient Air Quality Standards (CAAQS) apply to criteria pollutants in the ambient air over California. Note that these are not emissions standards applied to a source but the level of air quality necessary to maintain human health with an adequate margin of safety. The NAAQS and CAAQS are presented in Section 4.2, Table 4.2-2 of the CFTP Draft EIR.

With regard to aircraft emission standards, USEPA (not FAA) has primary responsibility for establishing such standards. The aircraft emission standards are included in the Code of Federal Regulations at Title 40, Part 87. These standards set emission limits on carbon monoxide (CO), hydrocarbons (HC), nitrogen oxides (NOx), and smoke (as a smoke number) from newly manufactured engines. The U.S. standards are essentially the same as those developed by the International Civil Aviation Organization (ICAO), the United Nations agency with authority to set international aircraft engine emission standards. The FAA issues regulations to ensure compliance with the USEPA emission standards; the FAA regulations are included in the Code of Federal Regulations, Title 14, Part 34.

The impact of nighttime versus daytime release of air toxics is implicitly incorporated into the health risk assessment contained in Section 4.3 and Appendix D of the CFTP Draft EIR. Equipment emissions presented in Section 4.2 and Appendix C of the CFTP Draft EIR were varied by the hour of day in the AERMOD dispersion model based on expected temporal equipment operational patterns. The dispersion analysis was conducted using hourly meteorological data which included wind speed and wind direction for each hour of the day for an entire year. Using the hourly inputs for both emissions and wind data allows for a better representation of the long-term (annual average) impacts as well as identification of the peak hourly (acute) impacts, which are presented in the health risk assessment. The CFTP health risks were calculated and shown to be less than significant.

The analysis approach described here and in the CFTP Draft EIR is consistent with SCAQMD and California Office of Environmental Health Hazard Assessment (OEHHA) guidance for addressing inhalation pathway health risks from airborne contaminants. Additional assessment of time-of-day variation in emissions or winds, beyond those described above, is not necessary.

CFTP-PC00002-107

Comment: \quad 4.2.1 So Cal Association of Governments is responsible for creating a Transportation Plan that is used as a basis for assessing air quality contributions and meeting requirements. What documentation is provided and where, specifically (document, paragraph, page number) to show compliance with standards?

Response: The Southern California Association of Governments' (SCAG) Regional Transportation Plan (RTP) is a 25 -year plan that provides a vision for transportation investments in the SCAG region. Projects that are in the RTP become eligible for federal and state funding, and federal environmental clearance. SCAG indicated that the LAX Master Plan (Alternative D) was consistent with the RTP in a letter to FAA dated February 4, 2004. This letter is presented in the LAX Master Plan Final General Conformity Determination, Appendix C, Attachment C-5B2. The Final General Conformity Determination is included as Appendix A-2a to the LAX Master Plan Final EIS (available at http://www.ourlax.org/publications.cfm). The CFTP is an implementing project under the LAX Master Plan; therefore, it is also consistent with the RTP. Note that vehicular traffic in and around the airport would not be impacted after completion of construction.

The Transportation Conformity Determination made for the RTP was included in the RTP as Appendix E, and can be found on the SCAG web page at:
http://www.scag.ca.gov/rtp2004/2004/techappendix/FinalTechAppend.htm.

Finally, please see Response to Comment CFTP-AR00001-2 regarding air dispersion analysis of CFTP construction-related criteria pollutants and their impacts relative to significance thresholds.

CFTP-PC00002-108

Comment: Table 4.2-7 Construction-Related Air Quality Mitigation Measures lists some key sources of pollution. What specific monitoring will be done and, how will it be reported to the public?

Response: Measures to mitigate construction-related air quality impacts as identified in Section 4.2 .5 of the CFTP Draft EIR will be included in the Mitigation Monitoring and Reporting Program for the CFTP. Compliance with these mitigation measures, as well as all of the commitments and mitigation measures included in the CFTP Mitigation Monitoring and Reporting Program, will be monitored by LAWA or a qualified third party and the results included in LAWA's LAX Master Plan Mitigation Monitoring and Reporting Program Progress Report, which is prepared on an annual basis and available to the public at http://www.ourlax.org/publications.cfm. The MMRP will be prepared in conjunction with the Final EIR and will be considered by decision-makers in their deliberations regarding certification of the EIR and approval of the project.

CFTP-PC00002-109

Comment: Table 4.2-8 lists uncontrolled CFTP emissions and levels. Why are fine particulates, PM 2.5 shown as N/A? What controls or monitoring will be done for particle sizes below PM 2.5 such as PM 0.1 as were studied in the UCLA/Froines study?

Response: The SCAQMD's 1993 CEQA Air Quality Analysis Handbook (Handbook) includes construction emission significance thresholds on both pounds-per-day (lbs/day) and tons-per-quarter bases. SCAQMD has provided updates and additions to the Handbook as air quality standards have changed. The current summary of SCAQMD air quality significance thresholds (dated July 2008) is available at: http://www.aqmd.gov/ceqa/handbook/signthres.pdf. As indicated in the table at this website location, which is titled "SCAQMD Air Quality Significance Thresholds" (Significance Thresholds table), the current significance thresholds summary only lists the construction significance thresholds in $\mathrm{Ibs} / \mathrm{day}$, including the threshold for PM2.5 (55 lbs/day). It does not list construction significance thresholds in tons per quarter for any pollutant. However, such thresholds still exist for CO, ROG, NOx, SOx and PM10 in the 1993 Handbook. Because the 1993 Handbook was published before the PM2.5 ambient air quality standards were adopted, the Handbook does not include tons-per-quarter thresholds for PM2.5. Therefore, Table 4.2-8 of the CFTP Draft EIR identifies the tons-per-quarter threshold for PM2.5 as "N/A" (not available/not applicable).

It should be noted that the CFTP Draft EIR did include the analysis of construction air quality impacts in Section 4.2.6, and compared those impacts to the lbs/day threshold for PM2.5 included in Table 4.2-8. The uncontrolled PM2.5 emissions from construction were shown to be significant. Control of particulate matter from construction sources is discussed in Section 4.2.5 of the CFTP Draft EIR. The controlled emissions were shown to be less than significant in Table 4.2-9 of the CFTP Draft EIR. Since the definition of PM2.5 includes particles with an aerodynamic diameter less than or equal to 2.5 micrometers [Code of Federal Regulations, Title 40, Part 50, Section 50.7(a)], PM0.1 (ultrafine particles) would be included in the mass of PM2.5 particles that are controlled.

Please also see Response to Comment CFTP-PC00003-4 for a discussion of PM0.1.

CFTP-PC00002-110

Comment: Table 4.2-11 lists Cumulative Construction Project Emission Estimates. What about projects passenger convenience projects that were "green lighted" in the Feb 2006 Settlement yet have not yet been started? When will these be accomplished? What about surrounding construction projects such as those from local LADOT, CalTrans, et. al. along with the major development activity in surrounding areas?

Response: Please see Response to Comment CFTP-AL00003-3 regarding analysis of the environmental impacts associated with all of the improvements contemplated as part of the LAX Master Plan, including improvements that are able to move forward in light of the Stipulated Settlement (referred to as "green lighted" projects by the commentor). As indicated in that response, as stated on page 3-3 of the CFTP Draft EIR, ". . . the LAX Master Plan provides a comprehensive plan for a number of improvement projects planned to be implemented over many years throughout the airport. The LAX Master Plan Final EIR addresses the overall effects of all of the improvements, essentially providing a cumulative impacts analysis of all the improvements that comprise the LAX Master Plan
..."
The CFTP Draft EIR addresses cumulative air quality impacts in Section 4.2.7. This analysis focuses on nine construction projects located in the immediate area of the project site, including several on-airport projects being implemented by LAWA, tenants or other agencies. These nine projects represent the planned development projects most relevant and proximate to the CFTP air quality analysis and have detailed construction plan information available. (CFTP DEIR Section 4.2.7.) The analysis found that CFTP air quality impacts, when combined with all other on-airport projects being constructed at the same time, would be significant for all criteria pollutants, except sulfur oxides (SOx). (See Table 4.2-11 of the CFTP Draft EIR). Note that operational emissions from the CFTP would be lower than those for existing conditions, and thus are considered beneficial.

Regarding the commentor's question as to the timing of Master Plan improvements that may move forward in accordance with the Stipulated Settlement, these projects are discussed in Section 3.3.1 of the CFTP Draft EIR. As indicated in that discussion, construction of the TBIT Reconfiguration Project is anticipated to start in the fall of 2009. Planning and preliminary engineering for the MSC Project and the Consolidated Rental Car Facility are currently underway but construction is not anticipated to begin until after completion of the CFTP.

CFTP-PC00002-111
Comment: 4.3 Health Risk Assessment studies. What studies have been conducted on the surrounding areas to identify cancer clusters and other greater than normal incidences of health risk around LAX? Where are these studies documented? Has LAWA identified any potential sources of funding for treatments? What are these funding agencies and how have they been contacted?

Response: LAWA is not aware of any studies of cancer clusters or of other health effects directed at identifying impacts from LAX. However, as noted in Section 4.3.7.1 of the CFTP Draft EIR, "[t]he SCAQMD [South Coast Air Quality Management District] conducted an urban air toxics monitoring and evaluation study for the South Coast Air Basin from April 2004 through March 2006 called MATESIII [Multiple Air Toxics Exposure Study in the South Coast Basin]. Recently released results of MATES-III provide a follow up to MATES-II and provide a general evaluation of cancer risks associated with TACs [toxic air contaminants] from all sources within the South Coast Air Basin. According to the study, cancer risks in the Basin range from 870 in a million to 1,400 in a million, with an average of 1,200 in a million. These cancer risk estimates are high and indicate that current impacts associated with sources of TACs from past and present projects in the region are significant. The MATES-III study is an appropriate estimate of present cumulative impacts of TAC emissions in the South Coast Air Basin. It does not, however, have sufficient resolution to determine the fractional contribution of current LAX operations to TACs in the airshed. Only possible incremental contributions to cumulative impacts can be assessed."

Identification of potential sources of funding for treatments and contacting these funding agencies is beyond the scope of the CFTP Draft EIR. The analysis of human health risk conducted for the CFTP Draft EIR was prepared in accordance with California Environmental Protection Agency (CaIEPA) and U.S. EPA guidance. Neither of these agencies require the actions requested by the commentor.

CFTP-PC00002-112

Comment: 4.3.2.1 Estimates of Human Health Impacts are referenced for an on-airport grid. What Toxic Air Concentration (TAC) studies are being done beyond the boundaries of LAX property since pollution generated by LAX operations cannot be contained on the property?

Response: The grid used for analysis of TAC concentrations used the airport boundary as a "worst case" for off-site impacts. Previous modeling of dispersion of TAC emissions demonstrates that predicted concentrations decrease with distance from the fence line. Thus, using concentrations of TAC at the fence line provide a conservative (protective) estimate of possible LAX-related TAC concentrations farther from the airport. With this approach, estimates for human health impacts are likely to err on the high side and thus will be protective for people living, working, recreating and going to school off-site near the airport.

In the LAX Master Plan EIS/EIR, the grid used in the human health risk assessment (HHRA) extended beyond the boundaries of the airport. This analysis evaluated the impacts associated with all of the planned Master Plan improvements, including the CFTP. The commentor is referred to the LAX Master Plan Draft EIS/EIR regarding TACs estimated for off-airport locations.

For further discussion of regional studies of air toxics in the South Coast Air Basin, please see Response to Comment CFTP-PC00002-111.

CFTP-PC00002-113

Comment: Figure 4.3-1 shows the max annual average concentration of TACs at the eastern end of runway 24L/end of terminal 1 . What are the primary sources are blamed for this? We have been verbally told that auto traffic is, and has been for years, a major contributor in this area. What changes have been proposed to spread and move the ground traffic operations from this key location? What proportional amount of the pollution comes from aircraft? What is planned for changing this? How will it be assessed and reported to the public? The only Peak TAC Concentration point (acute) is shown at the end of runway 25L near El Segundo residences. What will be done to reduce this? If future plans are to add a parking structure just to the west of this area, how will this be an improvement?

Response: The CFTP Draft EIR HHRA addresses projected emissions of TACs during construction of the CFTP. Once completed, the CFTP is expected to reduce aircraft emissions somewhat as a result of shorter taxi/idle times for aircraft arriving and leaving the airport. Overall, implementation of the CFTP is expected to have a beneficial impact on operational emissions from aircraft. Thus, no impacts due to operational changes are considered.

Emissions during construction would come from TAC sources including off-road heavy duty construction equipment, on-road equipment and vehicles, generators, and construction material. The primary source for the maximum annual average concentration of TACs at the eastern end of runway 24 L/end of Terminal 1 is diesel-powered construction equipment located on the construction site in the middle of the airfield. Because the prevailing wind direction over time is from the westsouthwest, diesel engine exhaust would be blown eastward across the airfield to the nearest eastern property line, the maximum annual average TAC concentration point shown in Figure 4.3-1 of the CFTP Draft EIR. This point is adjacent to the northwest corner of Park One, an off-airport private parking facility located west of Sepulveda Boulevard. Note that the maximum cancer and chronic non-cancer risks associated with the maximum annual average concentration at this
location are less than the SCAQMD significance thresholds identified in Table 4.3-6 of the CFTP Draft EIR.

The acute TAC concentration point is the location where the 1-hour average TAC concentrations are the highest. The acute health risk impacts from TACs are typically driven by organic compounds. The organic compounds that generally contribute most to acute risks are acrolein and formaldehyde. Acrolein would be emitted from the on-site gasoline powered construction equipment, while formaldehyde would be emitted from both gasoline and diesel-powered construction equipment. The peak acute impact location on the south property line would occur when winds from the north blow the construction emissions from the staging area on the west end and the construction site in the middle of the airfield toward the south. Because acute impacts by definition occur over a short time period, the wind does not need to be steadily out of the north for very long to produce impacts at this location. Note that the maximum acute non-cancer risk associated with the peak acute 1-hour air concentration of TACs at this location is less than the SCAQMD significance threshold identified in Table 4.3-7 of the CFTP Draft EIR.

Regarding the comment on auto traffic, as noted above, during construction of the CFTP, the source of the maximum annual average concentrations of TACs at the eastern end of Runway 24L is not due to auto traffic, but is instead caused by project-related construction equipment emissions that would be blown eastward on the prevailing winds. Although the project would result in temporary changes in ground traffic during construction, the analysis found that only 6 percent of construction-related traffic would travel along Sepulveda Boulevard east of runway 24L. (Please also see Response to Comment CFTP-PC00002-89 regarding the potential for construction-related traffic along Sepulveda Boulevard.) As noted on page 9 in Section 3.1.2 of Appendix D of the CFTP Draft EIR, changes in airport operations are not expected for the CFTP, therefore, emissions were not estimated for operational sources, such as aircraft, ground support equipment, ground access vehicles on airport roadways and in airport parking lots, and stationary sources. All concentrations used in the risk assessment are incremental concentrations associated with construction activities. Therefore, none of the incremental concentrations of TACs estimated at the eastern end of runway 24 L in Figure 4.3-1 are from aircraft. It should be noted that, consistent with this comment, auto traffic has been documented as a major contributor to toxic air contaminants in the South Coast Air Basin by the recently completed urban air toxics monitoring and evaluation study called "Multiple Air Toxics Exposure Study in the South Coast Basin" (MATES-III) conducted by the SCAQMD. This study identified diesel exhaust as the major contributor to air toxics risk, accounting for 84 percent of cancer risks in the basin. The modeling results in MATES-III identified elevated risks near the ports, Central Los Angeles, and higher levels of risks along transportation corridors and freeways.

The commentor raises questions regarding changes proposed to improve off-airport ground traffic operations and the amount of airport-related pollution that is attributable to aircraft. As noted above, the CFTP would not affect operational ground traffic operations on or near the airport and, although the project would have a slight beneficial impact on the taxi/idle times, the project would not materially change the relative contribution of airport sources to pollution. It should be noted that, an air quality source apportionment study for LAX, which is a Master Plan Commitment included in the LAX Master Plan Mitigation Monitoring and Reporting Program, is ongoing and results of this study will help identify LAX contributions to reduced air quality near the airport.

The question regarding future plans for a parking structure on the west side of LAX pertains to the LAX Master Plan (i.e., the West Employee Parking designated in the Master Plan) and the LAX Master Plan EIS/EIR. It is not necessary or appropriate to respond to comments on the LAX Master Plan and related EIS/EIR because the CEQA review process for the LAX Master Plan was completed in December 2004.

CFTP-PC00002-114
Comment: Table 4.3-1 What are "ROG" type contaminants and how are they reduced?
Response: CARB defines reactive organic gases (ROG) as any compound of carbon, excluding: carbon monoxide, carbon dioxide, carbonic acid, metallic carbides or carbonates, ammonium carbonate,
methane, ethane, acetone, perchloroethylene, and specific lists of chlorinated or fluorinated hydrocarbons. The complete definition is available at:
http://www.arb.ca.gov/ei/speciate/voc_rog_dfn_11_04.pdf
Most organic compounds that can be measured in the air fall under the definition of ROG. The USEPA's definition of volatile organic compounds (VOC) is very similar to that for ROG and the terms VOC and ROG are often used interchangeably.

USEPA, CARB, and SCAQMD have developed numerous regulations to control ROG emissions. The engine emission standards for gasoline- and diesel-powered motor vehicles developed by USEPA and CARB have generally provided the greatest reduction in ROG emissions and exposure concentrations for most people. ROG emissions from engines are primarily products of incomplete combustion; therefore, engine manufacturers typically control ROG emissions by improving engine combustion efficiencies to burn the hydrocarbon fuel more completely and/or install oxidation catalysts in the exhaust system to oxidize the ROG to carbon dioxide and water. ROG emissions from paints and coatings are limited by several SCAQMD rules. These rules typically limit the amount of ROG compounds allowed in paints and coatings, which typically means that paints that are oil-based are phased out over time and replaced with water-based paints. Conversion of combustion equipment, such as airport ground support equipment, to alternative fuels or electric power is another means of reducing ROG emissions.

CFTP-PC00002-115

Comment: Section 4, page 4-91 states that "Fence-line concentrations of TACs are like to represent the highest concentrations....and school children." Since there are several schools and churches near (within 0.5 miles) what studies of the school children and/or monitoring of the school and church facilities has been done? What about residences where children live and spend even more time that at school or church?

Response: The CFTP Draft EIR addresses possible future impacts of releases of TACs during project construction. Studies of health status and/or monitoring of school and/or church facilities are outside the scope of the EIR and would not provide information on which to base estimates of future impacts. Sensitive receptors were included in the HHRA and were addressed using modeling from predicted construction emissions. Sensitive receptors include children in schools, children in daycare facilities, and patients in hospitals. Church attendees are not included as sensitive receptors; they are assumed to be included among a typical cross-section of people in the community and would not be, as a group, more or less sensitive than the general population. Evaluation of identified sensitive receptors in the HHRA would thus be protective of any receptors attending church.

As noted on page 4-79 in Section 4.3.2.1 of the CFTP Draft EIR, "Since the fence-line is the closest location with unrestricted access to CFTP construction emission sources, concentrations in these locations can be used to evaluate exposure to a MEI [maximally exposed individual] and thus provide a ceiling risk [estimate] for risks and hazards for off-airport residential, commercial, and student receptors." This means that residents, students, and commercial workers were evaluated for risks and hazards assuming that they are all located on the fence-line regardless of their actual location. As noted on page 4-91 in Section 4.3.2.4 of the CFTP Draft EIR, this modeling simplification is, "...likely to represent the highest concentrations and potential impacts for residents, workers and school children. Thus risk and hazards estimated for the LAX fence-line are likely to overestimate risks and hazards that may occur in actual residential or commercial areas."

Some reports, including ones from studies conducted in the Los Angeles area, do suggest some association between some respiratory illnesses, such as asthma and allergies, and levels of some criteria pollutants and/or TACs. Some people may be more sensitive than the majority of the population to the effects of TACs. These people are considered "sensitive" receptors, and may include children, the elderly, people in poor health and/or those suffering from illness, such as chronic bronchitis. Sensitive individuals may form a subpopulation of people living in the Los

2. Comments and Responses

Angeles basin that do suffer some health impacts due to poor air quality. Possible associations between illness and air quality, and the existence of sensitive individuals suggest that common sources of air pollutants could cause some health impacts at the concentrations in air found in the Los Angeles basin. However, concentrations of TACs in the vicinity of LAX do not appear to be greater than those in other parts of the basin, according to SCAQMD studies. In fact, some of the higher pollution levels are found in areas such as Pomona and Riverside, at substantial distances from LAX. 1 This observation suggests that health impacts may result from general air pollution due mainly to car and truck traffic, not single sources, such as LAX, that would have locally greater impacts within the immediate area.

The ARB has proposed an airborne toxic control measure (ATCM) that would limit school bus idling as well as idling at or near schools to only when necessary for safety or operational concerns. This approach is intended to reduce diesel particulate matter and other TACs from heavy-duty motor vehicle exhaust. The proposed ATCM is a high priority because children riding in and playing near school buses and other heavy-duty vehicles are disproportionately exposed to pollutants from these sources. 2 In addition, the Carl Moyer and Low Emission School Bus programs will provide funds to replace some of the dirtiest diesel engines, including those in school buses. 3

1. South Coast Air Quality Management District, Multiple Air Toxics Exposure Study (MATES-II) for the South Coast Air Basin, March 2000.
2. California Air Resources Board, Stationary Source Division, Project Assessment Branch, Staff Report: Initial Statement of Reasons for Proposed Rulemaking. Airborne Toxic Control Measure to Limit School Bus Idling and Idling at Schools October 2002.
3. California Air Resources Board, Reducing Toxic Air Pollutants in California's Communities, 2002.

CFTP-PC00002-116

Comment: \quad 4.3.8 MEl is a term used 13 times in volume 1. Please define this term.
Response: MEI is defined in Section 4.3 .1 on page 4-78 of the CFTP Draft EIR as "maximally exposed individual." The term has been adopted by CalEPA's OEHHA to define the target for assessment of possible risks in human health risk assessments.

CFTP-PC00002-117

Comment: 4.3.9 The Level of Significance after Mitigation is considered to be below for construction related mitigations, where in this document (or in the Program Level EIR) is the total levels of pollution in the future use to determine level of significance? Although this document defines the critical path of capacity to be due to vehicle capacity of the CTA and states that this will improve transit times between gates and runways, what incremental capacity improvement will result if the leading factors are improved and this becomes the critical factor? This could become reality in the future after the 2020 prohibition of gate increase expires. What increases in pollution will then occur from the increased number of operations?

Response: As described in Section 4.3.1 of the CFTP Draft EIR, the human health risk assessment presented in the Draft EIR focuses on construction-related emissions, based on the fact that it was not possible to complete such analysis as part of the LAX Master Plan EIR. The construction-related human health risk assessment presented in the CFTP Draft EIR addresses the emissions associated with the project alone and also addresses cumulative impacts related to emissions from other construction activities occurring at the same time as those of the CFTP. The future levels of human health risk are calculated using future levels of TACs (or "pollution" as referred to by the commentor). These future levels of risk are then compared to the significance thresholds to determine the level of significance associated with the project.

The human health risk assessment presented in Section 4.24.1 of the LAX Master Plan EIR addresses operations-related emissions associated with the overall LAX Master Plan at buildout,
which includes the CFTP improvements. While it is true that the gate limits set forth in the Stipulated Settlement expire at the end of 2020, it would be speculative to hypothesize about the airport's operational characteristics and corresponding potential operations-related human health risk impacts beyond that point. The CFTP would have no effect or relationship to potential future curbside improvements within the CTA or future additions or removals of aircraft gates.

CFTP-PC00002-118

Comment: 4.4.2.2 Operational Sources for green house gases. The primary source calculation for CO2 was based on the 2005 CCAR emission report from LADWP with a statement that LAWDP uses a higher than average percentage of coal. Since the City Council is considering several alternative "Green Fuel Initiatives" how will this change the calculations?

Response: To the extent that the Los Angeles Department of Water and Power (LADWP) secures power from alternative energy sources other than coal, which is relatively high in greenhouse gas (GHG) emissions, the GHG emissions associated with the project's electricity consumption would be lower than indicated in the CFTP Draft EIR. It is not possible, however, to quantify how much lower the emissions would be, as that would depend on the specifics of the alternative energy sources secured by LADWP.

CFTP-PC00002-119

Comment: Table 4.4-2 Lists the engines used in EDMS Modeling and states that the SIMMOD modeling used is 2005. How is this number used to extrapolate to future volumes when there is at least 78.9 MAP worth of operations or even more when the gate cap limitation of the Settlement Agreement expires?

Since a new fleet mix assumption was created by Ricondo in 2008 why has this not been used and how can this assessment be used to extrapolate ahead to future years? How can the actuals from the 2005 schedule be compared with model estimates to validate assumptions?

Response: The CFTP Draft EIR addressed potential impacts relating to global climate change in Section 4.4, with supporting technical data provided in Appendix E. The analysis was prepared in light of available international, federal and state regulations and directives.

The EDMS modeling completed for the CFTP Draft EIR pertains to the impacts of the CFTP. The CFTP Draft EIR does not, and need not, evaluate the air quality impacts of the operation of LAX at 78.9 MAP, inasmuch as those impacts have already been addressed in the LAX Master Plan EIR.

Please refer to Response to Comment CFTP-PC00002-31 regarding a comparison of the 2008 fleet mix to the 2005 fleet mix. As described therein, the differences are immaterial relative to the basic conclusion of the CFTP Draft EIR.

CFTP-PC00002-120
Comment: Table 4.4-3 Construction related Green House Gases. The first mitigation listed is to have employees work during off-peak hours. This assumes that the level of service of the roads used as the routes is below acceptable. This may be true for some routes, but according to tables previously presented there were only a few intersections that had LOS below C. Couldn't they be directed to use routes that avoid these intersections?

Response: The mitigation measure for construction employees to work/commute during off-peak hours is not intersection specific or particular to whether an intersection operates as Level of Service C or better/worse, but rather reflects the fact that traffic is, in general, greater during peak hours. During such times, vehicle movement tends to be slower and more erratic (i.e., more "stop and go" traffic) than during non-peak periods. During such peak traffic conditions, engine operations tend to be

2. Comments and Responses

less efficient than during non-peak periods, with gas consumption and associated greenhouse gas emissions being comparatively higher. As such, the provision for CFTP construction employees to work/commute during off-peak hours serves to mitigate GHG emissions in an overall manner, not intersection-by-intersection.

CFTP-PC00002-121

Comment: Table 4.4-7 defines the cumulative amounts of CO2 emissions from all projects. Where in this EIR or in the Program level EIR does it define how the CO2 concentration in a smaller area impacts green house gases more than if these same quantity of gases are generated and disbursed over a larger area? When concerned about CO2 total emissions, there were studies in Europe that indicated that time of emission has increased impacts at night. Where in this EIR is this considered?

Response: The evaluation of GHG emissions related to global climate change is, in general as a matter of industry practice, evaluated in terms of volume such as tons/metric tons, and not concentration. LAWA is not aware of any GHG inventory or reporting protocols that are based on carbon dioxide (CO2) concentrations rather than CO2 volumes. The portion of the comment relative to "there were studies in Europe that indicated that time of emission has increased impacts at night" is unclear as to how it specifically relates to the CFTP and/or the CFTP Draft EIR and, as such, it is not possible to provide a written response.

CFTP-PC00002-122

Comment: Table 4.4-8 indicates that most Green House Gas mitigations are beyond the scope of this project? If these mitigations are contemplated why can't they be defined or assessed?

Response: As described in the second paragraph of Section 4.4.8, starting on page 4-118, of the CFTP Draft EIR, Table 4.4-8 provides a comprehensive listing of all GHG mitigation measures suggested by the California Office of the Attorney General for new development projects. The subject paragraph goes on to state that the table describes how the proposed project relates to each of the measures. In several instances, measures suggested by the Office of the Attorney General, which are general in nature and are not necessarily particular to projects such as the CFTP, simply do not apply and are indicated as "NA - Beyond the scope/control of the project." A couple of examples of such measures include "Design transportation centers where various public transit modes intersect" and "Assess transportation impact fees on new development in order to facilitate and increase public transit service." This approach reflects the fact that LAWA considered each and every one of the measures suggested by the Office of the Attorney General relative to mitigating GHG emissions. All feasible mitigation measures have been applied in this project.

CFTP-PC00002-123

Comment: 4.5.1 Biotic Communities was stated to not have a significant indirect impact. Since the RON is being moved and more autos are being allowed into this area, is there not a potential for undesirable biotics to be distributed by the movement of these vehicles?

Response: The CFTP would not introduce new aircraft to the airport. Although the project would bring construction vehicles to the area, these vehicles would not have any greater likelihood to transport invasive species than vehicles that currently visit LAX. No impacts to biotic communities at LAX resulting from the inadvertent transport of invasive species by vehicles have ever been documented. Moreover, for the most part, the developed areas of LAX do not contain sensitive species or habitat. As illustrated in Figure 2-11 of the CFTP Draft EIR, existing RON parking spaces are currently located in the midfield area, north of World Way West and south of the proposed extension of Taxiway D. The project would involve moving parking spaces for aircraft that currently park at LAX several hundred feet to the south/southwest. Relocation of the RON would not introduce new aircraft that, in turn, could potentially introduce new undesirable species to the
airport. Similarly, the CFTP would result in the relocation of an existing employee parking lot from its current location adjacent to the American Airlines High-Bay Hangar to a location approximately 1,500 feet to the west. The proposed parking lot is situated on a site that is currently disturbed. With implementation of the project, the entire parking lot site would be paved. As the site does not currently contain sensitive habitat, the use of the site by automobiles would not introduce invasive species to a sensitive habitat.

It should be noted that, as indicated in Section 4.5 of the CFTP Draft EIR, 29 southern tarplant individuals, a special status plant species, are located on the proposed parking lot relocation site. Southern tarplant often exist in highly disturbed areas. Construction of the CFTP would directly affect these individuals, which is considered to be a significant impact. Mitigation is provided in the CFTP Draft EIR that would reduce this impact to a less-than-significant level. No indirect impacts to biotic communities would result from the relocation of the employee parking lot. Please also see Response to Comment CFTP-PC00002-72.

CFTP-PC00002-124

Comment: $\quad 4.5 .8$ indicates that Southern Tarplant will be moved and transplanted to other airport and/or northside development areas. How will these areas be identified and protected?

Response: As part of Mitigation Measure MM-BC (CFTP)-1, LAWA will prepare a special status plant mitigation program to mitigate the loss of 29 southern tarplant individuals associated with relocation of the American Airlines employee parking lot. The procedures for identifying an appropriate relocation site and for maintaining and monitoring the relocated plants are identified in the mitigation measure. See pages 4-130 and 4-131 of the CFTP Draft EIR.

CFTP-PC00002-125

Comment: Section 5. "Other Environmental Resources" appears to be restricted to CFTP construction only. When operations are moved to other locations within the airport and additional functions are moved to the CFTP area these should be reassessed for impact and they are apparently have not been.

Response: The commentor is correct that Chapter 5 primarily evaluates construction-related impacts associated with the CFTP. As stated in the introduction to Chapter 5, potentially significant effects related to the operation of the airport after the completion of the CFTP are largely addressed in the LAX Master Plan Final EIR. Some additional discussion of certain operational impacts is provided in the CFTP Draft EIR, particularly the analysis of changes in greenhouse gas emissions that are attributable to operations of the CFTP. (CFTP Draft EIR Section 4.4) The relocation of existing uses on the project site is addressed in Section 2.4.2 of the CFTP Draft EIR and summarized in Table 2-1. As indicated in this section, most of the uses to be relocated would be consolidated with existing similar uses or relocated to available buildings nearby. As a result, no changes in operational impacts are expected. In some cases, uses that are currently located in the midfield portion of the airport would be relocated to other areas of the airport. Please see Response to Comment CFTP-PC00002-55, above, for a discussion of these relocations.

CFTP-PC00002-126

Comment: \quad 5.1.1 Noise. Numerous issues were identified with the LAX Master Plan Final EIR that were never addressed. Since this assessment only addresses construction issues then these same issues remain open.

Response: The comment is noted. The majority of this comment pertains to the LAX Master Plan and the LAX Master Plan EIS/EIR. It is not necessary or appropriate to respond to comments on the LAX Master Plan and related EIS/EIR because the CEQA review process for the LAX Master Plan was completed in December 2004. It should be noted that all comments on the LAX Master Plan Draft

EIR and LAX Master Plan Supplement to the Draft EIR were addressed in Part 2, Volumes 1 through 11 of the LAX Master Plan Final EIR.

The commentor is incorrect in stating that ". . . This assessment [the CFTP Draft EIR] only addresses construction issues . . .". In addition to noise impacts associated with construction of the Crossfield Taxiway Project, Section 5.1 of the CFTP Draft EIR addresses noise impacts related to aircraft operations. As discussed on page 5-5 of the CFTP Draft EIR, implementation of the CFTP would not affect the overall airport noise contours for LAX that are reflected in the LAX Master Plan Final EIR. Those contours are defined primarily by aircraft takeoff and landing operations, which would not be affected at all by the CFTP. Implementation of the CFTP would improve aircraft ground movement activity in the midfield area by helping to alleviate periodic congestion occurrences, which in turn would reduce the need for aircraft to stop and start while taxiing. This would result in an operational noise benefit by reducing the frequency of aircraft engine "run-ups" associated with start and stop movements during aircraft taxiing. The midfield area where the existing congestion occurs and the areas where aircraft are directed by the control tower to hold until the congestion clears is, however, near the center of the airfield, which is well removed from noise sensitive uses near LAX. As such, the reduced noise levels associated with improved aircraft taxiing operations through the course of an average may not be readily perceptible at off-airport locations.

As described in Section 2.4.1 of the CFTP Draft EIR, the southernmost aircraft parking spot of the proposed RON area would be designated as available for future construction of an aircraft GRE. Presently aircraft ground run-ups at LAX are conducted at unenclosed blast-fence/wall areas situated near the maintenance operations for Federal Express, Continental Airlines, American Airlines, Delta Airlines, and at the former TWA Hangar area. Future development of a GRE would provide a "U"-shaped enclosure to serve as a noise barrier. The LAX Master Plan includes the future development of two GREs, one of which would be in the midfield area for replacement ancillary facilities displaced in conjunction with the future MSC. None of the improvements proposed to be constructed as part of the CFTP would displace or affect the current need for, and continued operation of, the existing ground run-up areas at LAX. As such, implementation of the proposed project would not have an impact relative to existing ground run-up activities.

Because the location shown in the LAX Master Plan for the future GRE falls within the currently proposed alignment of Taxiway C13, the CFTP designates one of the proposed RON aircraft parking spots as the location of the future GRE. This designated location allows for future development of the subject GRE as a replacement for existing ground run-up areas displaced by the MSC. Although the GRE location proposed under the Crossfield Taxiway Project would be approximately 1,000 feet closer to the City of El Segundo than the location identified in the Master Plan, there would still be a substantial future noise reduction (benefit) associated with providing a GRE. A GRE typically provides between 15 and 20 dB of noise reduction. From a cumulative impacts perspective relative to other Master Plan projects, such as the future MSC, there would still be an improvement over existing conditions.

CFTP-PC00002-127

Comment: 5.1.2 Setting (for noise) defining the distances from the center of the site is not as meaningful as from the edges of these operational areas to the residences, schools, churches and other buildings as this is much closer. In the past LAWA has steadfastly refused to look at single event and other parametric approaches to noise as relates to impacting health or annoyance. Since no additional reviews to account for changes in aircraft movement and locations for repair including run ups we assume this policy continues.

Response: The second paragraph on page 5-2 of the CFTP Draft EIR describes the nature and general locations of noise sensitive receptors around the project site, including residential uses in El Segundo to the south, Inglewood and Lennox to the east, and Westchester to the north. As stated in that paragraph, "Of these sensitive noise receptors, residential development in El Segundo is the closest to the site, being approximately 0.75 mile from the center of the site, and approximately 0.47 mile from the closest point of the site, which is southern edge of the Taxiway C13 construction
area." As such, the Draft EIR does, in fact, delineate the closest distance between the project site and the nearest noise sensitive receptor, and the noise impacts of the project are addressed accordingly. Please also see Response to Comment CFTP-PC00002-68 regarding the distances to surrounding land uses from the edges of the project site.

Notwithstanding that the CFTP would not result in any material change to aircraft operations as related to single event noise, it should be noted that LAWA has paid close attention to single event noise related to existing and future operations at LAX, as evidenced by the comprehensive analysis of single event noise presented in Section 4.2 of the LAX Master Plan EIR.

Regarding noise impacts associated with changes in aircraft ground movements upon completion of the CFTP, the first full paragraph on page 5-5 of the CFTP Draft EIR states as follows:
"Implementation of the CFTP would not affect the overall airport noise contours for LAX that are reflected in the LAX Master Plan Final EIR. Those contours are defined primarily by aircraft takeoff and landing operations, which would not be affected at all by the CFTP. Implementation of the CFTP would improve aircraft ground movement activity in the midfield area by helping to alleviate periodic congestion occurrences, which in turn would reduce the need for aircraft to stop and start while taxiing. This would result in an operational noise benefit by reducing the frequency of aircraft engine "run-ups" associated with start and stop movements during aircraft taxiing. The midfield area where the existing congestion occurs and the areas where aircraft are directed by the control tower to hold until the congestion clears is, however, near the center of the airfield, which is well removed from noise sensitive uses near LAX. As such, the reduced noise levels associated with improved aircraft taxiing operations through the course of an average may not be readily perceptible at off-airport locations."

None of the improvements proposed to be constructed as part of the CFTP would displace or affect locations for aircraft repair or the current need for, and continued operation of, the existing ground run-up areas at LAX. Please also see Response to Comment CFTP-PC00002-126.

CFTP-PC00002-128

Comment: 5.1.3 Noise significance. It is noted that noise is not significant under the conditions assumed. Where in any of the assessments are topography or weather environment or reflections from structures taken into consideration? Where is anything but the C scale noise ranges addressed?

Response: The noise analysis presented in the CFTP Draft EIR is considered conservative in that it does not take into account topography, weather, or structures, which, if included, could actually reduce the estimated noise levels at the nearest noise-sensitive receptor. The analysis assumes an unobstructed line-of-sight between the noise source and the noise receptor. If one were to factor in any intervening topography between the noise source and noise receptor that protrudes that line-ofsight, the noise levels at the receptor would be several decibels less than estimated in the CFTP Draft EIR, depending on the extent to which the line-of-site is blocked (i.e., the basic physics of a noise barrier). The noise analysis did not make any adjustments for atmospheric absorption, which takes into account temperature, humidity, and wind speed and direction. To the extent these weather considerations combine to create resistance for sound waves emanating from the noise source, the noise levels at the receptor would be less than otherwise predicted. The CFTP noise analysis did not take into account the presence of structures which, on one hand, could act to reflect and redirect/combine sound waves from the source, but at the same time would block a certain amount of sound from an otherwise unobstructed path. Given that making adjustments to noise propagation estimates based on topography, weather, and building considerations is very site specific and case specific, the noise impacts analysis provided in the CFTP Draft EIR is considered to be reasonable, if not conservative, and appropriate to disclose the noise impacts of the project.

The noise impact analysis used the A-weighted noise metric "dBA." The dBA metric incorporates a weighting methodology used to account for changes in human hearing sensitivity as a function of frequency. The A-weighting network de-emphasizes the high (6.3 KHz) frequencies, and
emphasizes the frequencies between $1-\mathrm{KHz}$ and 6.3 KHz , in an effort to simulate the relative response to human hearing.

CFTP-PC00002-129

Comment: [No text in comment.]
Response: It is noted that the commentor submitted a copy of page 5-33 of the CFTP Draft EIR, with text related to estimated annual energy consumption within the LAX Master Plan boundaries under Year 2000 highlighted by the commentor. No specific comment on the contents or adequacy of the CFTP Draft EIR was provided, and thus, no further response is required.

CFTP-PC00002-130

Comment: [No text in comment.]
Response: It is noted that the commentor submitted a copy of page 5-34 of the CFTP Draft EIR, with text related to the availability of electricity resources to meet projected City of Los Angeles electrical demand through 2025 highlighted by the commentor. No specific comment on the contents or adequacy of the CFTP Draft EIR was provided, and thus, no further response is required.

CFTP-PC00002-131

Comment: 5.10.3 Aesthetics. What level of threshold is considered significant for the noise impacts that will be heard during demolition of old facilities and existing ground paving as well as reclamation activities? Where are the detailed schedules?

Response: Thresholds of significance used in the analysis of construction noise impacts for the Crossfield Taxiway Project are identified on page 5-3 in Section 5.1.3 of the CFTP Draft EIR. A discussion of the Crossfield Taxiway Project construction schedule, including the sequence of construction activities, is provided in Section 2.4.3 of the CFTP Draft EIR.

CFTP-PC00002-132

Comment: The EIR didn't identify details of the old drainage pipes, but showed information in broad generalities. When will detailed investigations be done to ensure that these items can be refurbished and not leak? What is the drainage slope characteristics of this area? Will any of these cause potential for sink holes, and if so, which areas are most at risk?

Response: The commentor is correct that the CFTP Draft EIR did not discuss details regarding the existing conditions of individual drainage pipes at LAX. Instead, the analysis of drainage was provided at a level of detail that was adequate to determine if the proposed project would result in any significant drainage impacts.

The project area is very flat. As indicated in Section 5.4.5.1 of the CFTP Draft EIR, the storm drain system is designed to flow to an existing trunk line in World Way West and a secondary trunk line at the southern edge of the project site. LAWA is currently developing a comprehensive Utility Master Plan for LAX, which will include a system by system analysis of the existing capacity and condition of the storm drain system. Much of the proposed CFTP storm drain system would consist of new construction. During construction, connections to existing storm drains would be inspected and repaired if necessary. This would substantially reduce the risk of sink holes in the CFTP area resulitng from the proposed project, and has the potential to result in an improvement to current conditions.

CFTP-PC00002-133

Comment: 5.11.5 When will the site specific report be available that will identify the uses of the graded soil? In particular what portions are contaminated and need to be cleaned prior to reuse? Also, what amount is to be transported out of LAX boundaries?

Response: As indicated in Section 5.12.5.1 of the CFTP Draft EIR, LAWA has taken borings to investigate the extent of contaminated soils that may be present on-site. The results of these borings, as well as estimates as to the quantity of contaminated soils, are reported in this section. As indicated in the section, the total volume of soil anticipated to be excavation due to contamination is 21,500 cubic yards. As part of pre-construction planning, LAWA is currently conducting additional studies to refine these estimates, including the quantity of soil that is contaminated, as well as the appropriate remediation or treatment method, including the quantity of contaminated soil requiring offsite treatment or disposal. As indicated in Section 5.11.5.1, soils that are not contaminated would either be stockpiled on the airport or transported off-site for reuse at another location.

CFTP-PC00002-134

Comment: 5.12 Risks from upset. If a major fuel fire would occur either at the storage or in the RON or repair activity area what is the smoke/potentially dangerous gas cloud likely path and level of disbursement? What areas would need to be evacuated and how would all be notified?

Response: The risk of upset discussion on page 5-46 of the CFTP Draft EIR, where the commentor poses specific questions, is a summary of the information presented in the LAX Master Plan relative to the overall Master Plan improvements. The risk of upset discussion applicable to the CFTP is provided on page 5-54. As described therein, the two facilities of relevance to the CFTP include the Fuel Farm and the Compressed Natural Gas/Liquefied Natural Gas (CNG/LNG) Facility, for which in both cases the risk of upset impact would be less than significant.

Implementation of the CFTP would have no effect on the storage of fuel at LAX; hence, the potential for, and implications and consequences of, a major fuel fire at the Fuel Farm are no different with or without the CFTP. Similarly, the relocation of the existing RON area within the project site is not considered to create the potential for a major fuel fire or potentially dangerous gas cloud, based on the nature of a typical RON area and the fact that parked aircraft are not typically known to be associated with major fuel fires or releases of a dangerous gas cloud, certainly not at LAX. Other than fuel contained within aircraft parked at the RON, there would be no storage or presence of notable quantities of fuel within the relocated RON area. The only notable project-related impact to maintenance facilities would be the relocation of several GSE maintenance operations (i.e., servicing and maintenance of the equipment itself, not relocation of where GSE service aircraft at LAX). Based on the size and nature of the GSE maintenance operations, which are generally similar to auto repair facilities, it is not expected that their relocation would create the potential for a major fuel fire or potentially dangerous gas cloud.

The proposed project would include relocation of the existing fire station/ARFF to a location immediately west of the proposed RON. The fire station/ARFF would provide nearby emergency response personnel in the event of an incident at the RON or other location within the airport operations area.

CFTP-PC00002-135

Comment: 5.12.4 Relevant LAX Master Plan Commitments and Mitigation Measures list several items including designated haul routes, construction traffic management plans, etc. When, and how, will these be generated and provided to the public for review?

Response: Please see Responses to Comments CFTP-PC00002-28 and CFTP-PC00002-100 regarding the project-specific Construction Traffic Management Plan (CTMP), Fugitive Dust Control Plan (FDCP),
and Construction Noise Control Plan (CNCP) that would be prepared prior to initiation of construction of the project.

CFTP-PC00002-136

Comment: 5.13 Water use. LAX uses reclaimed grey water in many areas. Will this reclaimed water also be used for cleaning the paved over areas? Will all of this "dry water run off" be collected for treatment?

Response: Reclaimed water would be used during construction of the CFTP for dust control on both paved and unpaved areas. As indicated in Section 5.4.2 of the CFTP Draft EIR, dry weather flows from the project site flow into an existing detention basin and oil/water separator prior to discharge to Hyperion Treatment Plant. Please also see Response to Comment CFTP-PC00002-53 regarding dry weather flows from the project site.

It is noted that the commentor submitted a copy of page 5-55 of the CFTP Draft EIR with highlighted text in the second and third paragraphs in Section 5.13.2.1 concerning the City's water supply and the use of reclaimed water at LAX. No specific comment on the contents or adequacy of this text was provided and, thus, no further response is required.

CFTP-PC00002-137

Comment: 5.13.2.2 Wastewater lists several sewer lines and depths. Have these been verified? Details were unavailable at the workshop.

Response: The information provided in the CFTP Draft EIR, as modified by corrections and additions included in Chapter 3 of the Final EIR, regarding the depth of sewer lines is adequate to determine if the project would have any adverse impacts on these facilities. As indicated in the corrections and additions to Section 5.13.5.1 of the CFTP Draft EIR, construction of the CFTP may require minor relocations of sewer lines in the project area. The North Outfall Relief Sewer (NORS) crosses beneath the CFTP project site at a depth of approximately 60 feet and would not be adversely affected by the project construction. Implementation of Master Plan Commitment PU-1 in the LAX Master Plan MMRP would ensure that impacts to wastewater collection facilities would be less than significant.

The North Central Outfall Sewer (NCOS) crosses beneath the American Airlines employee parking lot relocation site at a substantial depth and, as no substantial excavation would occur in this area, the NCOS would not be adversely affected by project construction. In addition no wastewater collection lines would be affected by construction of the relocated American Airlines employee parking lot.

No additional investigations regarding the depths of these lines have been undertaken. However, LAWA is currently developing a comprehensive Utility Master Plan for LAX. This Master Plan will address all utilities at the airport, including wastewater collection lines.

CFTP-PC00002-138

Comment: 6.3 Project objectives says that Group VI aircraft uses is expected to substantially increase by early 2012 yet the 2020 Ricondo projection of aircraft use just provided to us by LAWA only lists 16 aircraft per day. Is the primary purpose of this cross taxiway to accommodate Group VI or to better meet all needs? What are the schedules for elimination of taxiways S and Q when the new backside TBIT gates are built in addition to the new Midfield terminal? The NOP identified two taxiways (one for each direction). When will this be completed? What volume threshold that will make this manditory?

Abstract

Response: There are multiple objectives for the CFTP. They are: to accommodate ADG VI aircraft at LAX; to help alleviate existing periodic congestion of aircraft ground movement in the midfield area; to support the continuing phased implementation of the approved LAX Master Plan; and to provide for near-term and long-term environmental benefits. (CFTP Draft EIR, Section 6.3.)

At the time the CFTP NOP and Draft EIR were completed, there were no ADG VI aircraft operating on a scheduled basis at LAX. There is now one airline carrier operating A380 service at LAX and two or three other carriers are expected to begin A380 service in the near future. Based on the size of ADG VI aircraft and the unique operating requirements of such aircraft, combined with the fact that multiple carriers will start integrating such aircraft into their operations at LAX in the near future, even a relatively minor increase in the number of NLA operating at LAX, compared to current conditions, is considered substantial.

The relocation of Taxiway Q and Taxiway S is not part of the CFTP, but rather will occur as part of the TBIT Reconfiguration Project described on page 3-3 of the CFTP Draft EIR. The CFTP includes the construction of a new north-south taxiway (Taxiway C13) and the extension of an existing eastwest taxiway (Taxiway D).

CFTP-PC00002-139

Comment: [No text in comment.]
Response: It is noted that the commentor submitted a copy of page 6-13 of the CFTP Draft EIR, with text related to the Environmentally Superior Alternative highlighted by the commentor. No specific comment on the contents or adequacy of the CFTP Draft EIR was provided, and thus, no further response is required.

CFTP-PC00002-140

Comment: 7.2 List of Parties receiving NOP failed to list either Denny Schneider, Pres. ARSAC or our attorney, Jan Chatten Brown.

Response: The comment is noted. The commentor correctly points out that Denny Schneider, President of the Alliance for a Regional Solution to Airport Congestion, and Jan Chatten-Brown of Chatten-Brown \& Carstens were omitted from the list provided in Section 7.2 of the CFTP Draft EIR. Further examination of the list identified several other missing addressees. In response, Section 7.2 of the Draft EIR has been revised. Please see Chapter 3, Corrections and Additions to the Draft EIR. It should be noted that all of the missing addressees did receive copies of the NOP.

\section*{CFTP-PC00003 Cope, Danna

\section*{Los Angeles International Airport

Los Angeles International Airport Advisory Committee

11/10/2008

CFTP-PC00003-1

Comment: The members of the LAX Area Advisory Committee (LAXAAC) are concerned about several aspects of the proposed LAX Crossfield Taxiway Project (CFTP), as described in the Draft Environmental Impact Report (EIR), issued in late September.

Although we, as airport neighbors, are encouraged by the expected improvements to air quality projected once the CFTP is operational due to improved traffic flow and less aircraft idling, we are concerned about the insufficient plans to mitigate the environmental impacts from the construction of the CFTP. Although the Draft EIR proposes to require construction measures to mitigate air pollution, noise, dust, hours of operation, construction workers' parking and transportation, and disturbance for neighboring communities, the methods and procedures designed to ensure compliance with these directives should be made more clear.

2. Comments and Responses

Response: The comment is noted. Please see Response to Comment CFTP-PC00002-28 regarding the LAX Master Plan commitments and mitigation measures that serve to reduce construction-related traffic, fugitive dust, and noise impacts to surrounding areas, and Response to Comment CFTP-PC00002100 regarding monitoring of the commitments and mitigation measures that will be included in the CFTP Mitigation Monitoring and Reporting Program.

CFTP-PC00003-2

Comment: This is particularly significant given that the Draft EIR anticipates that without such mitigation measures, an additional four of every million residents near the airport will develop cancer as a result of the construction of the CFTP, and that even with such mitigation measures, two additional people in every million nearby residents are likely to develop cancer.

Response: The commentor's concern regarding potential impacts to human health associated with the proposed project is noted. The commentor correctly states that, without mitigation, the CFTP would result in an incremental cancer risk to the maximally exposed adult result of 4 in one million, and that, with mitigation, the risk would be 2 in one million. As noted on page 4-92 in Section 4.3.4 of the CFTP Draft EIR, which defines the CEQA thresholds of significance for human health risk, a significant impact relative to human health risk is considered to occur if the direct and indirect changes in the environment that may be caused by construction of the CFTP would potentially result in an increased incremental cancer risk greater than, or equal to, 10 in one million for potentially exposed residents or school children. Therefore, an increment of four in one million or two in one million as identified in the comment is well below the CEQA threshold and is not considered to be a significant impact.

The commentor presumes that cancer risk estimates indicate a definitive number of actual cases of disease and not an estimate of potential risk. In fact, the estimates provided are "worst case" since they are based on the assumption that people will live at the LAX fence line for 70 years. Since no one does or will live in such a location, and since Toxic Air Contaminant (TAC) concentrations decrease with distance from the fence line, all exposures and risk will actually be less than predicted for all residents living near the airport. This approach is typical for human health risk assessments. These assessments are used to estimate the potential for health impacts resulting from a given set of exposure conditions. In order to avoid underestimating chemical exposure, the HHRA prepared for the CFTP estimated risks for the hypothetical maximally exposed individual (MEI), an individual that lives, works, or goes to school at a location with the highest predicted concentrations of TACs in air, and who has other characteristics, such as a particular inhalation rate and years of exposure, that result in maximum intake of TACs. In addition, toxicity criteria used in all health risk assessments are developed to be protective of groups that may be exceptionally sensitive to a chemical, such as children and the elderly. The result is a conservative estimate of potential health impacts associated with the CFTP. Please refer to Section 5 of Appendix D of the CFTP Draft EIR for further discussion of the uncertainties involved with the risk assessment. Thus, when risk estimates are low, as in the case for the CFTP, one can be confident that actual exposure and risk will be minimal.

CFTP-PC00003-3

Comment: Other health impacts also will be significant, and the Draft EIR does not adequately account for all of them. For example, the high incidence of asthma in communities adjacent to the airport is not discussed in the Draft EIR.

Response: Emission estimates and risk assessment performed for the CFTP are adequate for evaluation of potential health risks and hazards associated with emissions of TACs. These evaluations are different from studies of health effects in populations. These differences and the results of past studies of health impacts near large airports are described below.

The term "health risk assessment" is sometimes misinterpreted. A health risk assessment does not indicate whether a specific, observed health problem or symptom, such as asthma, was caused by
chemical exposure. Epidemiological studies are used to evaluate whether past chemical exposures may be responsible for actual health problems observed in real populations. Health risk assessments are used to estimate potential health impacts resulting from current or future chemical exposures in a population. In order to avoid underestimating chemical exposure, the health risk assessment prepared for the CFTP Draft EIR estimated risks for the MEI, a hypothetical individual that lives, works, or goes to school at a location with the highest predicted concentrations of TACs in air, and who has other characteristics, such as an inhalation rate and years of exposure, that result in maximum intake of TACs. In addition, toxicity criteria used in all health risk assessments are developed to be protective of groups that may be exceptionally sensitive to a chemical, such as children and the elderly. The result is a conservative estimate of potential health impacts associated with the CFTP. Health risk assessment is the appropriate tool to evaluate whether estimated future emissions associated with the CFTP may potentially result in human health impacts.

Health risk assessment cannot be used to link individual illnesses to past chemical exposures, nor can health risk assessments and epidemiological studies prove that a specific toxic substance caused an individual's illness. 1 It would be difficult to substantiate potential health risks estimated by risk assessment for an airport through epidemiological studies because of the typical lack of exposure information about the study population. It is necessary to understand all of the factors that may lead to an adverse effect. The population evaluated in the epidemiological study may have lived in the area for many years or just a few years. They may have had exposure to chemicals from other sources, such as work or emissions from other sources (e.g., automobile exhaust). They may have engaged in behavior such as smoking, drinking, overeating, or other lifestyle habits that increased their risk of adverse health effect. An observation of adverse effect would not necessarily correlate with exposure to airport emissions.

Although subject to a number of uncertainties common to epidemiological studies, these types of studies have been performed at other airports in large metropolitan areas to determine whether individuals living near airports have a greater incidence of disease than populations living in other areas. For example, the Illinois Department of Public Health2 examined actual cancer incidence observed in communities near Chicago's O'Hare and Midway airports between 1987 and 1997. Results of the study showed no elevation in cancer incidence for all cancers combined among whites, non-whites, males and females living near the airports. Trend analysis did not indicate a higher cancer burden for populations near the airports as compared to populations living farther away. This observation held true for all cancers combined as well as site-specific cancers. A study conducted by the Washington State Department of Health3 provided an examination of actual cancer cases near Washington State's SeaTac airport. Results of the study indicated that incidence of cancer was not statistically significantly higher for the SeaTac area.

One of the limitations to airport epidemiological studies is that they treat living adjacent to an airport as an approximation for increased likelihood of exposure to carcinogens. This approximation would be invalid if people living near airports have a shorter duration of residence than people living further away. This lack of knowledge about the length of residence as well as the inability to assess actual exposure of individuals renders the use of distance a crude and unreliable measure of exposure. Other factors likely to impact the studies include population migration patterns, occupational exposures, and personal and lifestyle habits. 2

Some reports, including ones from studies conducted in the Los Angeles area, do suggest some association between some respiratory illnesses, such as asthma and allergies, and levels of some criteria pollutants and/or TACs. Some people may be more sensitive than the majority of the population to the effects of TACs. These people are considered "sensitive" receptors, and may include children, the elderly, people in poor health and/or those suffering from illness, such as chronic bronchitis. Sensitive individuals may form a subpopulation of people living in the Los Angeles basin that do suffer some health impacts due to poor air quality. Possible associations between illness and air quality, and the existence of sensitive individuals suggest that common sources of air pollutants could cause some health impacts at the concentrations in air found in the Los Angeles basin. However, concentrations of TACs in the vicinity of LAX do not appear to be greater than those in other parts of the basin, according to South Coast Air Quality Management District (SCAQMD) studies. In fact, some of the higher pollution levels are found in areas such as

Pomona and Riverside, at substantial distances from LAX. 4 This observation suggests that general air pollution due mainly to car and truck traffic, not single sources, such as LAX, would have locally greater impacts on health impacts within the immediate area.

Health risk assessment is the best method to evaluate potential health impacts for the CFTP. Epidemiological studies cannot predict future impacts associated with estimated future emissions and inherent uncertainties, as discussed above, exist for the performance and use of epidemiological studies to determine potential health impacts of living near an airport. The health risk assessment performed in the CFTP Draft EIR used up-to-date risk assessment methodologies and modeling as well as conservative measures of exposure and toxicity to provide conservative estimates of potential risk and impact associated with the CFTP.

1. California EPA, Office of Environmental Health Hazard Assessment, A Guide to Health Risk Assessment, 2001.
2. Illinois Department of Public Health, Office of Epidemiology and Health Systems Development, Cancer Incidence in Populations Living Near Chicago O'Hare and Midway Airports, Illinois 19871997, November 2001.
3. Washington State Department of Health, Office of Epidemiology. Cancer Rates in the Proximity of SeaTac International Airport (Questions 1 and 2 of the August 1998 Work Plan), February 1999. 4. South Coast Air Quality Management District, Multiple Air Toxics Exposure Study (MATES-II) for the South Coast Air Basin, March 2000.

CFTP-PC00003-4

Comment: We are also concerned that the project's effects on air pollution are not examined thoroughly enough, particularly because the Draft EIR did not address particulate matter smaller than the PM2.5 level. Inasmuch as technology is now available to look at this smaller particulate matter, we believe LAX should do so.

Response: The comment implies that particulate matter smaller than PM2.5 (particles less than 2.5 micrometers in diameter) were not analyzed in the Draft EIR, and that since these smaller particles can be measured they should have been addressed.

It is assumed that the comment is referring to ultrafine particles (UFP), often described as particles less than 0.1 micrometers in diameter. Currently, no separate ambient air quality standards exist for UFP beyond the National and California standards for PM2.5. Note that the PM2.5 standards were specifically developed to protect the public health with an adequate margin of safety [42 USC 7409 (b)(1)]. In addition, no defined health risk factors have been developed for UFP. The State of California has developed health risk factors for total diesel particulate matter (DPM, which includes UFP in diesel exhaust), and specific toxic metals (e.g., cadmium) which may be components of UFP. Health risks associated with DPM and toxic metals are described in Section 4.3 and Appendix D of the Draft EIR.

Note that the definition of PM2.5 provided in the Code of Federal Regulations, Title 40, Part 50, Section 50.7(a) is as follows:

- particles with an aerodynamic diameter less than or equal to a nominal 2.5 micrometers.

From this definition it is clear the analysis of PM2.5 would include particles that are smaller than the 2.5 micrometer size. The air quality impact analysis, including the analysis of PM2.5, is presented in Section 4.2 and Appendix C of the Draft EIR. As stated in the Impact Analysis subsection in Section 4.2 of the Draft EIR, uncontrolled PM2.5 emissions from construction activities would be significant, and the various mitigation measures and commitments are described in subsection 4.2.5. The controlled CFTP construction emissions of PM2.5 would be less than significant with controls.

Finally, USEPA typically includes four elements when promulgating an ambient air quality standard: 1) definition of the pollutant, 2) numerical limits, 3) relevant averaging times, and 4) a reference method for measuring the pollutant. Although several techniques have been developed to measure UFP, there is no generally accepted and approved reference method.

CFTP-PC00003-5

Comment: To insulate the communities from noise and air pollution impacts, LAWA should include an operation plan (in conjunction with the FAA Tower) that would ensure the preferential runway usage (takeoffs on inboard runways and landings on outboard runways on both the North and South Airfields) during all construction phases. This could be a concern if runways need to be closed during the construction. We see no discussion of this in the Draft EIR.

It appears that the Air Traffic Controllers in the FAA Tower will not have line-of-sight access to the entire Crossfield Taxiway at all times, but we see no discussion of that in the Draft EIR. What measures will be in place to make sure they know everything that will be happening there?

Response: As stated in Section 2.4.3 of the CFTP Draft EIR, the goal of the construction phasing plan is to minimize the nature, extent and duration of disruption to airport operations. With this in mind, along with input from FAA Air Traffic Control Tower (ATCT) staff, a construction phasing schedule was developed that does not anticipate any temporary closures of existing runways during the construction of the CFTP. Therefore, runway utilization during construction is not expected to change. The existing operating procedures applied by FAA today are not expected to change during construction.

Aircraft operations on Taxiway C13 would be managed by the ATCT, which includes positive control of all aircraft ground movements at LAX (i.e., aircraft pilots must follow the instructions of the ATCT at all times while on the ground). Although the presence of the existing American Airlines low bay hangar may partially obscure views from the ATCT of the southern portion of Taxiway C13, it is anticipated that the tails of most, if not all, aircraft would be visible from the ATCT. An FAA Line-ofSight analysis would be completed prior to operations occurring on Taxiway C13 to determine the extent of any view blockage. If it is concluded that portions of the taxiway are blocked from controllers' view in the control tower, LAWA expects that the FAA would manage the flow of traffic in a similar manner for existing Taxiway S and Taxiway Q , which currently traverse through an ATCT non-visible area. The FAA provides safe movement along Taxiway S and Taxiway Q via published standard taxi routes and instructions. According to the standard taxi route instructions, pilots are instructed to switch over to the appropriate ground controller when at a specified checkpoint located on either Taxiway S or Q . If not cleared by the ground controller, pilots are to hold short of Taxiway D if traversing north along Taxiway Q or hold short of Taxiway B if traversing south along Taxiway S. Standard routes and use of checkpoints would most likely be utilized for Taxiway C13 if it traversed through a non-visible area. Additionally, it is important to note that the recent installation of the ASDE-X ground radar system provides the FAA ATCT with aircraft location information throughout the airfield, including in areas that may be blocked from view from the tower.

CFTP-PC00003-6

Comment: We also believe that there must be a better delineation of the relationship and traffic patterns between the CFTP and the proposed Midfield Satellite Concourse, and the reconfiguration of the Tom Bradley International Terminal (TBIT) and its associated gates. As this subject is not addressed in this draft EIR, we fully expect it to be addressed when the Midfield Satellite Concourse draft EIR is prepared. It is not at all clear how the flow of both aircraft and passenger traffic into and around that proposed terminal will occur and whether that would impact the CFTP. Exactly how access would be accomplished to and from the Midfield Satellite Concourse and Central Terminal Area and the proposed passenger processing facility just east of the TBIT must be delineated.

2. Comments and Responses

Response: As described in Section 2.1 of the CFTP Draft EIR, implementation of the proposed taxiway improvements would help alleviate periodic congestion of aircraft ground movement in the midfield area and provide for certain efficiencies in the taxiing of future New Large Aircraft (NLA), but would not increase the number of daily operations at LAX. Surface transportation impacts associated with the CFTP project are discussed in Section 4.1 of the Draft EIR.

The environmental impacts associated with all of the improvements contemplated for the midfield area, including the CFTP, the TBIT Reconfiguration Project (i.e., addition of aircraft gates to the west side of TBIT), and the Midfield Satellite Concourse (MSC) combined, are addressed in the LAX Master Plan EIS/EIR. As stated on page 3-3 of the CFTP Draft EIR, "...the LAX Master Plan provides a comprehensive plan for a number of improvement projects planned to be implemented over many years throughout the airport. The LAX Master Plan Final EIR addresses the overall effects of all of the improvements, essentially providing a cumulative impacts analysis of all the improvements that comprise the LAX Master Plan, while also identifying the more notable impacts that are attributable to specific components, where appropriate." The information and analysis developed for the CFTP Draft EIR further evaluates the combined impacts of the proposed midfield improvements by addressing cumulative construction impacts in light of more detailed information that was not available at the time the Master Plan EIR was completed. As indicated on page 3-3 of the CFTP Draft EIR, construction of the TBIT Reconfiguration Project is anticipated to overlap with construction of the CFTP, and the impacts of the combined construction activities are addressed in Section 4.1 of the CFTP Draft EIR. Construction of the MSC is not expected to overlap with construction of the CFTP; hence, no combined construction impacts are anticipated to occur relative to those two projects.

CFTP-PC00003-7

Comment: Our Committee members believe that the Draft EIR must address these issues.
Response: The comment is noted. Please see Responses to Comments CFTP-PC00003-1 through CFTP-PC00003-6 above.

CFTP-PC00004-1

Comment: Here are my comments for this project(S),

1) First and most important that no runways are to be extended North impinging onto Westchester parkway. WE DO NOT WANT ANY EXPANSION OF THE NORTH RUNWAY.

Response: The comment is noted. The proposed Crossfield Taxiway Project is independent from any potential future reconfiguration of the north airfield, including potential runway movements. Please see Response to Comment CFTP-PC00002-19 regarding the relationship of the CFTP to the LAX Master Plan and the Specific Plan Amendment Study.

CFTP-PC00004-2

Comment: 2). The Airport infrastructure is a mess. I fly all over the world and this airport is in extreme disrepair. Gates and terminals are run down, Baggage terminals are a nuisance to get to, TSA security setup and passanger handling is the worst I have seen in any airport.

Response: The comment is noted. The comment does not raise an issue regarding the contents or adequacy of the CFTP Draft EIR, and thus does not require a further response. (Public Resources Code §21091(d); CEQA Guidelines, §15204(a).)

CFTP-PC00004-3

Comment: 3).Understanding the secondary runways are undersized to handle aircraft as the A380. This aircraft should be able to be serviced in existing terminals. Again we do not want any expansion of runways to impinge upon existing businesses or roads.

Response: The comment is noted. As noted in Response to Comment CFTP-PC00004-1, the proposed Crossfield Taxiway Project is independent from any potential future reconfiguration of the north airfield, including potential runway movements. The Crossfield Taxiway Project would not displace or otherwise alter any off-airport businesses or roadways.

As described on pages 2-11 and 2-12 of the CFTP Draft EIR, New Large Aircraft (NLA), such as the A380, are currently accommodated at Gates 101 and 123 at the Tom Bradley International Terminal. The proposed project would provide an additional crossfield taxiway (Taxiway C13), designed to accommodate NLA, to improve the safety and efficiency of aircraft ground movement in the midfield area of LAX.

CFTP-PC00004-4

Comment: 4). General transportation is terrible at this airport. Very little public transportation exists (rail or buses). The 105 freeway should have been extended into the airport and NOT dumped ontpo Sepulveda. The train parallel to the 105 needs to have a spur added to the airport as well. Why terminate it at the current position of Imperial Highway? This make little sense.

Response: The comment is noted. The comment does not raise an issue regarding the contents or adequacy of the CFTP Draft EIR, and thus does not require a further response.

However, it should be noted that the Stipulated Settlement between the City of Los Angeles and plaintiffs challenging the approval of the LAX Master Plan Program includes a provision requiring that "LAWA will study feasible methods to connect LAX to the Green Line in ways that will maximize the use of public transit to LAX." (Stipulated Settlement, Section XII.) Conceptual Green Line extension alternative(s) will be carried forward and considered as part of the LAX Specific Plan Amendment Study (SPAS), which is separate from the CFTP. (CFTP Draft EIR Sections 1.2.2 and 3.3.2.) It should further be noted that the LAX SPAS EIR, currently underway, is not intended to provide environmental clearance for approval or construction of a Green Line extension to LAX. As the agency responsible for the continuous improvement of an efficient and effective transportation system for Los Angeles County, the Los Angeles County Metropolitan Transportation Authority is the lead agency responsible for preparing project-level environmental documentation and clearance, as well as for all planning, funding, and construction activities, associated with any extension of the Green Line.

Finally, please note that the existing Green Line does not terminate at Imperial Highway (the Aviation Station) but rather four stations to the south at the Redondo Beach Station.

CFTP-PC00004-5

Comment: 5). The fire station and fire fighting facility should be done since the existing facility is outdated.
Response: The comment is noted. As described on pages 2-29 and 2-30 in Chapter 2 of the CFTP Draft EIR, in conjunction with the modifications and improvements proposed within the CFTP project site, a new fire station/aircraft rescue and firefighting facility (ARFF) is proposed to be constructed as a replacement for the existing undersized Fire Station No. 80/ARFF located on the airfield adjacent to Taxiway S. The proposed ARFF would provide approximately 27,895 square feet of administrative office area and station living quarters within a 2-story structure, six bays for emergency vehicles along with a service bay, storage area for various emergency response equipment, and briefing and training rooms. The proposed location and floor plan of the new fire station/ARFF are illustrated in Figures 2-9 and 2-12, and Figure 2-13 in Chapter 2 of the CFTP Draft EIR, respectively. Please

2. Comments and Responses

see Response to Comment CFTP-PC00002-42 for further discussion of the proposed fire station/ARFF under the Crossfield Taxiway Project.

2. Comments and Responses

This page intentionally left blank.

3. CORRECTIONS AND ADDITIONS TO THE CROSSFIELD TAXIWAY PROJECT DRAFT EIR

3.1 Introduction

As a result of clarifications to, and comments received on, the Draft Environmental Impact Report (Draft EIR) for the Crossfield Taxiway Project (CFTP), the following revisions are hereby made to the text of the CFTP Draft EIR. Changes in text are signified by strikeouts where text is removed and by italics where text is added, unless otherwise noted. These changes do not add significant new information to the EIR, nor do they disclose or suggest new or more severe potentially significant environmental impacts of the CFTP.

3.2 Corrections and Additions to the Draft EIR Text

Chapter 1, Introduction

1. The second sentence of the first paragraph on page 1-1 of the Draft EIR is hereby revised as follows:

LAX is owned and operated by the City of Los Angeles, whose Board of Airport Commissioners oversees the policy, management, operation, and regulation of LAX, as well as LA/Ontario International Airport, Van Nuys Airport, and LA/Palmdale Regional Airport.
2. The first sentence of the last paragraph on page 1-10 of the Draft EIR is hereby revised as follows:

In the processing of subsequent activities in the program, Section 15168(b)(c) of the CEQA Guidelines requires that the activities be reviewed in light of the program EIR to determine whether an additional environmental document must be prepared.
3. The third sentence under the heading 1.3 Organization of this EIR on page 1-12 of the Draft EIR is hereby revised as follows:

Appendices are included in Volumes 2 and 3.

Chapter 2, Project Description

1. The first sentence of the second paragraph under Section 2.1.3 on page 2-2 of the Draft EIR is hereby revised as follows:

According to LAX ATCT traffic management personnel, arrivals from the north runway complex (primarily Runway $24 R \mathrm{E}$) exiting at Taxiway Z could be assigned to Taxiway C13 to transition to the south terminal complex, allowing for an additional queuing point at the intersection of Taxiway B and Taxiway T .
2. The text of the first and second bullets under "Utilities" on page 2-35 of the CFTP Draft EIR is hereby revised as follows:

- Water Line Relocation - Preliminary engineering for the project shows that water lines that cross beneath World Way West may need to be relocated to allow the construction of the realigned and depressed road. Other minor water line relocations may also be required. In addition, construction of the proposed Taxiway C13 and associated vehicle service road would interrupt an existing north south fire water loop north of World Way West. A new connection is proposed to maintain the fire water service loop north of World Way West. South of World Way West another fire water loop would be protected in place and existing hydrants would be replaced with flush mounted types to meet FAA clearance requirements. The proposed water line relocations are in World Way West is shown in Figure 2-14.

3. Corrections and Additions to the Crossfield Taxiway Project Draft EIR

- Sewer Line Relocation - A sewer line is proposed that would connect a new oil/water separator to the existing sewer line in Coast Guard Road. The proposed sewer line is shown in Figure 2 14. Minor sewer line relocations may be required as a result of the proposed project.

3. The text of the first bullet under Section 2.4.2 on page 2-36 of the CFTP Draft EIR is hereby revised as follows:

- GSE Facilities. Ground Service Equipment (GSE) maintenance facilities currently operated by Mercury Air Services and-Evergreen Aviation and a GSE maintenance building formerly occupied by Mercury Air Services are located in the southwest corner of the project area, east of Taxiway C15. The Mercury operations is proposed to be relocated to, and consolidated within, another existing Mercury GSE maintenance facility at LAX, while the existing Evergreen operations is proposed to be relocated to the American Airlines cargo operations area. Mercury Air Services recently ceased operations at LAX; hence, the GSE maintenance building formerly occupied by Mercury Air Services is no longer used or needed for that purpose and no replacement/relocation for this building is proposed. The American Airlines GSE maintenance operations located at the end of the High-Bay Hangar would be relocated to an existing building at the United Airlines Cargo Complex.

4. Table 2-1 on pages 2-47 and 2-48 of the CFTP Draft EIR is hereby revised as follows:

Table 2-1

Summary of Existing Facilities to be Removed/Relocated

Facility	$\begin{gathered} \text { Approximate Size } \\ \text { (Sq. Ft.) } \end{gathered}$	Current Use	Disposition of Facility/Use
Mercury GSE Maintenance Building formerly occupied by Mercury Air Services	2,000	Vacant Equipment Service/Repair	Building would be demolished. Operation would be consolidated into another existing GSE maintenance facility. Would not be relocated or replaced.
Evergreen GSE Maintenance Building	4,500	Vehicle Service/Repair	Building would be demolished and current operation would be relocated to, and reestablished in, existing cargo warehouse.
American Airlines GSE Maintenance Building	$\begin{gathered} 11,000 \\ 2,000 \end{gathered}$	Vehicle Service/Repair Office	Building would be demolished and existing operation would be relocated to, and reestablished in, existing cargo warehouse.
American Airlines Employee Parking Lot	610,000+/- (14 acres)	Vehicle Parking	Replacement parking lot to be constructed on an unleased area approximately 1,500 feet west of existing lot.
American Airlines HighBay Hangar Canopy	5,600	Building Canopy	Canopy to be removed. Not essential to hangar's function and operation. Would not be relocated or replaced.
LSG Sky Chefs Flight Kitchen	68,000	Food Preparation	Building would be demolished and current operation would be consolidated within another existing LSG Sky Chefs flight kitchen, located adjacent to the American Airlines Low-Bay Hangar.
LAWA Records Center	$\begin{gathered} 12,000 \\ 1,500 \end{gathered}$	Storage Office	Building would be demolished and current operation would be moved to another existing building located in Delta Airlines complex.

Table 2-1
Summary of Existing Facilities to be Removed/Relocated

Facility	$\begin{gathered} \text { Approximate Size } \\ \text { (Sq. Ft.) } \end{gathered}$	Current Use	Disposition of Facility/Use
Qantas Maintenance Office	3,500	Office	Building would be demolished and operation would be relocated to a building at 7001 World Way West.
LAPD Bomb Squad Building	5,760	Office	Building would be demolished. Current operation would be relocated in Delta Airlines complex.
Former LAWA Police Department Decision Center	800	Storage	Building would be removed. Would not be relocated or replaced.
DHL Freight	2,160	Office	Building would remain and only operation would be relocated to existing building in freight area.
Source: CDM, 2008.			

5. The paragraph under the heading South Coast Air Quality Management District (SCAQMD) on page 2-52 of the Draft EIR is hereby revised as follows:

The SCAQMD is the regional agency granted the authority to regulate air pollutant emissions from stationary sources in the air basin and has been involved throughout the development of the LAX Master Plan Final EIR, the Final General Conformity Determination for the LAX Master Plan, and this EIR. No new permanent operational stationary sources would be added as a result of the CFTP; therefore no additional permits for permanent operational facilities would be needed. A permit to Construct and Operate is required for each piece of equipment to be used for construction that is not specifically exempt from the permit requirement. On-airport concrete batching and aggregate rock crushing facilities are planned to be used for construction of the CFTP. These facilities may be required to be permitted under Regulation XIII - New Source Review, as well as Rule 1156 - PM10 Emission Reductions from Cement Manufacturing Facilities, and Rule 1157-PM10 Emission Reductions from Aggregate and Related Operations. LAWA will coordinate with SCAQMD to determine the applicable permitting requirements.

Chapter 3, Overview of Project Setting

1. Table 3-1, on pages 3-9 through 3-13 of the Draft EIR has been revised. Please see the following revised table.

Chapter 4, Setting, Environmental Impacts, and Mitigation Measures

1. The heading of the second bullet on page 4-32 of the Draft EIR is hereby revised as follows:

- Airfield Operating Area (AOA) Perimeter Fence Enhancements - Phases III \& VIIV

2. Table 4.1-11, on pages $4-41$ through $4-45$ of the Draft EIR has been revised. Please see the following revised table.
3. The second paragraph under the heading Off-Road Equipment on page 4-60 of the Draft EIR is hereby revised as follows:

Off-road exhaust emission factors for CO, ROG, NOx, and PM10 were developed using the CARB OFFROAD2007 Model. ${ }^{33}$ PM2.5 emission factors were developed using the PM10 ratio of

PM2.5-to-PM10 emission factors derived from the CARB-approved California Emission Inventory Development and Reporting System (CEIDARS), Version 2.5. The emission factors used to estimate emissions for off-road construction equipment are presented in Appendix C.
33 California Air Resources Board, OFFROAD2007 Model and South Coast Air Basin Fleet Averages, Available: http://www.aqmd.gov/CEQA/handbook/offroad/offroad.html, April 2008.
4. The following text is hereby added to the end of Section 4.2.2.1:

Construction Dispersion Modeling Methodology

Air dispersion modeling was used to estimate CFTP construction-related concentrations of CO, $\mathrm{NO}_{2}, ~ P M 10$, and PM2.5. The USEPA AERMOD ${ }^{40}$ dispersion model was used to conduct this analysis.
Receptors ${ }^{41}$ included in the modeling analysis were located at or near the airport fence-line. Since the fence-line is generally the closest location with unrestricted access to airport emission sources, modeled concentrations at these locations will generally be higher than concentrations modeled farther out from the airport (because ambient concentrations determined following the Gaussian algorithm generally used in the AERMOD model are typically higher closer to the emission source). Figure 4.3-1 in Section 4.3 provides the location of the fence-line receptors relative to the airport. The area encompassing the CFTP sources and receptors is relatively flat; therefore, the flat terrain option was used in the modeling analysis.
The averaging period selected and significance thresholds used were dependent on the ambient air quality standard averaging periods and the attainment status of the given pollutant. The Basin has a national designation of attainment/maintenance for NO_{2} and CO and a state designation of attainment for these pollutants; therefore, the CFTP impacts were compared to the more stringent of the National Ambient Air Quality Standards (NAAQS) and California Ambient Air Quality Standards (CAAQS). As described in Section 4.2.3.2, USEPA has established an annual average NAAQS for NO_{2} and 1-hour and 8-hour NAAQS for CO. CARB has established 1-hour and annual average CAAQS for NO_{2} and 1-hour and 8-hour CAAQS for CO. The Basin has a national designation of nonattainment-serious and nonattainment, respectively, for PM10 and PM2.5 and a state designation of nonattainment for both pollutants; therefore, the SCAQMD developed Rule 403 to limit fugitive dust emissions from construction projects, and established a CEQA threshold for construction concentrations of $10.4 \mu \mathrm{~g} / \mathrm{m}^{3}$ for a 24 -hour average. The federal government has no threshold specific to construction-related PM10 or PM2.5 concentration impacts. The highest 1-hour, 8-hour, 24-hour, and annual averages, as appropriate for a given pollutant, were modeled for comparison to the NAAQS, CAAQS, or SCAQMD CEQA significance threshold for construction concentrations.

To allow for consistent comparison of concentration impacts presented in the LAX Master Plan Final EIR, SAIP Final EIR, and this CFTP EIR, the same meteorological data file used in the Master Plan and SAIP modeling was used in the CFTP modeling to provide the hourly meteorological input parameters to AERMOD.

The off-road equipment used on the construction site and staging area and on-road on-site equipment transfer and haul trucks described above were included in the dispersion modeling of NO_{2} and CO. The off-road equipment, on-road on-site equipment, and fugitive dust emission sources described above were included in the dispersion modeling of PM10 and PM2.5.

Table 3-1
Planned Development Projects

No.	Project Name	Address	Description	City ${ }^{1}$	Net Daily Trips	$\begin{gathered} \hline \hline \text { Net AM } \\ \text { Trips }{ }^{2} \\ \hline \end{gathered}$	$\begin{gathered} \hline \hline \text { Net PM } \\ \text { Trips }^{3} \\ \hline \end{gathered}$	Comments
1	Baldwin Hills Scenic Overlook Park	Hetzler Road	10,300 sq. ft. visitor center, passive recreation area	CC/CO	265	3	12	Under construction
2	Baldwin Site	12803 W. Washington Boulevard	New 3-story mixed use develoopment totaling 37,308 sq. ft.	cc				Entitlement stage
3	Brentwood Site Mixed Use	8810/8840/8850 Washington Boulevard	New mixed use development w/ preliminary concept of up to (approx.) 133 residential units and 17,084 sq. ft. retail	cc				Pre-application stage
4	Brooke Kaufman	4227 Ince Boulevard	6 condo units on 3 lots	cc				In construction
5	Child Care Center	4024/4026 Wade St.	Conversion of a 1,371 sq. ft. duplex into a day care; no new square footage.	cc				Building permit
z6	Condominiums	3846 Bentley Avenue	4 units	cc	23	2	2	Anticipated completion 2009Building permit; anticipated completion 2009
37	Condominiums	3873 Bentley Avenue	2 units	cc	12	1	1	Existing abandoned home per field visit 8/7/08Under construction
4	Gondominiums	$3823 / 3388$ Huron Avenue	15 units, with 3 existing units to be removed	${ }_{\text {c }}^{6}$	70	${ }^{6}$	${ }^{6}$	Under consturction as of 8 87/108
58	Condominiums	3862 Huron Avenue	5 units	cc	30	3	3	Existing home per field visit of 8/7/08Building permit; existing home per field visit of 8/7/08
6	Condominiums	4067/ 4073 Lincoin Boulevard	8 units and 20 parking spaces	cc	47	4	4	Construction complete per field visit 8/7/08
9	Condominiums	4048 Lincoln Avenue	3 townhome condominiums	cc				Building permit
710	Condominiums	9650 Lucerne Avenue	6 units townhome condominiums	cc	35	3	3	Entitlements approvedPre-application stage
811	Condominiums	4058 Madison Avenue	4 units	cc	23	2	2	Building permit; Aanticipated completion 2009
912	Condominiums	4228 Madison Avenue	2 units	cc	12	1	1	Existing homes;-Building permit; no such address per field visit 8/7/08
1013	Condominiums	38383972 Tilden Avenue	4 units	cc	23	2	2	Nearing end of construction per field *isit 8/7/08 Under construction as of 8/7/08
11	Gondominiums	39683972 Tilden Avenue	8 units	${ }_{\text {cG }}$	${ }^{46}$	4	4	Under construction as of 877108
1214 1315	Condominiums	4014 Van Buren Place	4 units 4 units	cc	23 23	2	2	
1315	Condominiums	4025 Wade Street	4 units	CC	23	2	2	Anticipated completion 2009 Under construction
1416	Condominiums (Former Burger King site)	13340 Washington Boulevard	41 unit condominium development with 6 live/work condominium units in Culver City and 35 Units in LA	CC/ LA	240	18	21	Entitlement stage; Nno construction per field visit $8 / 7 / 08$
15	Condominium Conversion	3910 Girard Avenue	7 units	CC	41	3	4	Existing structure per field visit 877/08; possibly completed?
17	Czuker Site Mixed Use	8770 Washington Boulevard	New mixed use development w/ preliminary concept of up to (approx.) 115 residential units, 41,600 sq. ft. retail; 1,400 sq. ft. café; 53,500 sq. ft. office	cc				Pre-application stage
1618	Distribution \& Warehouse	3434 Wesley Street	10,500 sq. ft. office, warehouse and distribution	cc	137	16	86	Entitlements; no building permit
19 1720	Dr. Brenold Dutt	58800 Uplander Way	Add 3 stories; 57,050 sa. fit to a 2 -story office 342.409 sq. ft office tower and 9-lvel parking structure	${ }_{\text {cc }}^{\text {c }}$				Entitlement stage
1720	Entrada Office Tower	6161 Centinela Avenue	342,409 sq. ft. office tower and 9 -level parking structure	cc	3,442	502	462	EIR under review by-CityEntitlements; CEQA lawsuit
1821	FAYNSOD Family Trust	11501-11509 Washington Boulevard	Mixed Use: 2,359 sq. ft. retail; 937 sq. ft. office, and 2 apartments (1,867 sq. ft.)	cc	155	9	87	Entitlement stage
1922	Fire Station No. 3 \%	6030 Bristol Parkway	Two-story, 12,156 sq. ff.t fire station	cc	${ }_{3}^{67}$	14	24	Building permit
2023	Glencoe/Washington Mixed Use	13365 Washington Boulevard	$5,0004,183$ sq. ft. retail and 19 condominium units	cc	333	14	24	Building permit; Eexisting closed restaurant per field visit 8/7/08
24	Greg Reitz	8665 Hayden Place	63,679 sq. ft of office	cc				Entitlement stage
2125	Hampton Inn	3954 Sepulveda Boulevard	77-unit hotel	cc	629	43	45	Building permit; Ano construction per field visit 8/7/08
26	Huron Townhouses	3823 / 3388 Huron Avenue	15 new townhouses; 3 existing units to be removed	cc	70	6	6	Under construction as of 8/7/08
${ }_{2228}^{27}$	Irving Residential/ Office	4043 Irving Place 10839 Washington Boulevard	Four story; 26 residential units and 3 office units 3 Live/ Work units and 12 parking spaces	CC C	33	5	4	Entitlements going through appeal Anticipated completion 2009
23	Max Leather AUP	8533 Washington Botlevard	An additional 3,763 sq. ft. of manufacturing	cc	14	3	3	No construction per field visit 8/7/08; possibly completed?
29	Lux @ 9910 Mixed Use	9901 Washington Boulevard	14,112 sq. ft. mixed use development with 131 dwelling units; 12,178 sq ft. of retail and three levels of subterranean parking with 244 parking spaces	CC/LA				Entitlement stage
2430	Mixed Use Development	11281 Washington Place	5,340 sq. ft. retail and 8 units of residential for a total of 17,500 sq. ft.	cc	284	10	18	Entitlements but extensions required; Eexisting abandoned gas station per field visit 8/7/08

Table 3-1
Planned Development Projects

No.	Project Name	Address	Description	City ${ }^{1}$	Net Daily Trips	$\mathrm{Net} \mathrm{AM}^{\mathrm{Na}}$ Trips ${ }^{2}$	$\begin{gathered} \hline \hline \text { Net PM } \\ \text { Trips }^{3} \\ \hline \end{gathered}$	Comments
3	Office Building	9919 Jefferson Boulevard	113,467 sq. ft. , 3-story office building	CC				Entitlement stage
2532	Office \& Retail Bldg.	700-701 Corporate Pointe	240,612 sq. ft. of office and 4,242 sq. ft. of retail	cc	2,811	384	359	Entitlements; Ano construction per field visit 8/7/08
33	Parcel B	9300 Culver Boulevard	74,600 sq. ft of office, 21,700 sq. ft of restaurant and 21,700 sq. ft. of retail	cc	6,340	461	627	Building permit Under construction; 2008 completion date
2734	Park Century School	3939 Landmark Street	Conversion of industrial space to school use and additional $6,950 \mathrm{sq}$. ft.; for a total of $43,950 \mathrm{sq}$. ft. of new school	cc	365	162	-25	Nearing end of completion per field visit 8/7/08
28	Public Storage Expansion	8512 National Boulevard	Addition of 71,570 sq. ft. to an existing public storage facility	cc	355	32	34	No construction per field visit 8/7/08; possibly completed?
35	School Expansion	12095-12101 Washington Boulevard	Conversion of a 28,000 sq. ft. office building into classrooms and administrative offices; addition of 2,000 sq. ft.	CC				Application stage
2936	Sony	10202 Washington Boulevard	Approved to build net new 100,000 sq. ft. of office, post-production, stage, and support uses.	cc				Unsure of status per field visit 8/7/08; gated lotUnder construction; 2008 completion date
37 38		4139/4145 Duquesne Avenue Corner of Washington and National Boulevards	6 units on 2 lots New transit oriented development to include light rail station and mixed use development (preliminary	$\begin{aligned} & c c \\ & c C \end{aligned}$				Pre-application stage Pre-application stage
38	Triangle Site - Washington/National Transit Oriented Development	Corner of Washington and National Boulevards	New transit oriented development to include light rail station and mixed use development (preliminary concept includes up to 290 dwelling units; 149 room hotel; 70,000 sq. ft. office; 31,500 sq. ft. retail and 10,000 sq. ft. restaurant	cc	19,874	1,235	2,071	Pre-application stage
3039	Turning Point School (K through 8)	8794 National Boulevard	Addition/remodel of net 9,000 sq. ft.	cc	N/A	107	61	Building permit
3140	Union 76	10638 Culver Boulevard	Gas station and convenience store with new car wash; 2,500 sq. ft.	cc	N/A	N/A	N/A	No construction per field visit 8/7/08; no car washBuilding permit
41	Uptown Lofts	9900 Culver Boulevard	$5,5005,457$ sq. ft. of office and 18 condominium units	cc	248	26	94	Building permit; Anticipated completion 2009
42	Warner Parking Structure	8511 Warner Drive	51,520 sq. ft. retailrestaurant; 784 parking spaces on 5 levels	cc				Entitlement stage
43	Washington Boulevard Office Project	11957 Washington Boulevard	73,569 sq. ft., 4 -story office building					Pre-application stage
3344	Washington Place Office Condos	12402 Washington Place	42,000 sq. ft. 4 -story office and retail building; 9,300 sq. ft. of retail; $30,400 \mathrm{sq}$. ft. of office	cc				Building permit; Aanticipated completion 2009
34	Washington/National Specific Plan and EIR Phase 1	Washington Boulevard/National Boulevard	638 dwelling units; 206,608 sq. ft. retail; 154,361 sq. ft. office; 485,996 sq, ft. light industrial	cc	19,874	1,235	2,071	EIR in preparation
3545	Westield Fox Hills Mall Expansion	200 Fox Hills Mall	293,786 sq. ft. of retail and 427 parking spaces	cc	13,682	299	1,275	Anticipated Under construction; ϵ Completion 10/2009
3646	West Los Angeles Community College Master Plan	Overland Avenue at Freshman Drive	8,592 additional studentsApprox. 291,300 sq. ft. of new building and renovation. Anticipate future student population of approx. 18,904 students and 1,248 employees by Fall 2022. Project includes second access road, parking structures, landscaping and development of athletic facilities	CC/ $\mathrm{CO}^{\text {O}}$	10,034	669	664	Parking lot and math/science bldg. under construction; Anticipated completion of the Master Plan is 2011
3747	Admiralty Apartments (Parcel 140)	4160 Admiratty Way	179 Apartments, with removal of 64 existing apartments	co	417	40	37	No construction per field visit 8/5/08
3848	Best Western Jamaica Bay Inn (Parcel 27R)	4175 Admiralty Way	Renovation \& Expansion 42-room hotel by an additional 69 rooms.	co	564	38	24	No construction per field visit 8/5/08
3949	Boat Central (Parcels 52 and GG)	13501 Fji Way	Dry-stack boat storage of 345 parking spaces; boat trailer storage of 24 parking spaces; mast-up sail boat storage of 30 parking spaces	co	1,081	47	51	No construction per field visit 8/5/08
50	Del Rey Shores Apartments (Parcels 100 and 101)	4247-4275 Via Marina	544 apartments (202 existing units to be removed)	co	800	120	111	No construction per field visit 8/5/08
4151	Diner (Parcel 33)	4211 Admiralty Way	351 Apartments; 24,500 sq. ft. retail; 10,000 sq. ft restaurant (existing restaurant to be removed)	co	1,145	184	22	Existing Panifico's Restaurant per field visit 8/5/08
52	Esprit Phase 1 (Parcel 12)	13900 Marquesas Way	35 town homes; 2,000 sq. ft. of specialty retail; 2,000 sq. ft. of restaurant	co	548	40	56	Construction complete per field visit 8/5/08; also at 13924 Marquesas Way
353	Fisherman's Village (Parcels 55, 56 \& W)	13715 Fiji Way	26,570 sq. ft. of specialty retail; 785 -seat restaurant; 132 -room hotel; 9 boat slips	co	2,375	98	209	No construction per field visit 8/5/08
4454	Gateway Marina Del Rey (Parcel 95)	404-514 Washington Boulevard	16,350 sq. ft. specialty retail center; 9,160 sq. ft. high turn-over, sit-down restaurant with 240 seats; 7,890 sq. ft. of general office building, 6,100 sq. ft. walk-in bank 72 Apartments; 337 Parking Spaces (removal of 7,500 sq. ft. drive-up bank)	co	199	-36	128	No construction per field visit 8/5/08; Existing Islands restaurant and Caldwell Bank
4555	Government Office Building	Panay Way and Via Marina	26,000 sq. ft.	co	286	40	57	No construction per field visit 8/5/08
4656	Holiday Harbor Courts (Parcels 21 and OT)	Admiralty Way and Palawan Way, NW Corner	Congregate Care Facility 114 Occupied DU's, 5,000 sq. ft. of specialty retail; parking lot with 94 parking spaces, 6,000 sq. ft. of general office/commercial; parking structure with 447 parking spaces; removal of 6,000 sq. ft health club	co				Nearing end of construction per field visit $8 / 5 / 08$
4757	Legacy Partners Neptune Marina Apartments / Woodfin Suites Hotel (Parcels 10R, FF \& 9U)	Marquesas Way and Via Marina	526 apartments (removal of 136 apartments); 288-room hotel; 1.47-acre public park	co	3,104	253	228	No construction per field visit 8/5/08

Planned Development Projects

No.	Project Name	Address	Description	City ${ }^{1}$	Net Daily Trips	Net AM Trips ${ }^{2}$	Net PM Trips ${ }^{3}$	Comments
58	Lincoln Boulevard Mixed Use Project	4363 Lincoln Boulevard	158 high-rise residential condominium units; 3,178 sq. ft. of specialty retail; parking structure with 409 parking spaces. Beverly Hills Rent-a car facility (48,000 sf. ft.) to be removed.	co	386	47	71	Existing rent-a-car facility per field visit 8/5/08
4859	Lloyd Taber Marina del Rey Library (Parcel 40)	4533 Admiralty Way	Library	co				Existing Library. No construction per field visit 8/5/08
4960	Marina City Club Towers Marina del Rey	4333 Admiralty Way	600 units	co	3,516	264	196	No construction per field visit 8/5/08
5061	Marina del Rey Apartment Community (Parcels 12 \& 15)	Panay Way and Via Marina	940 apartments; 82 units senior apartments; 4,000 sq. ft. retail; 6,000 sq ft. commercial	co	1,785	171	152	No construction per field visit 8/5/08
5162	Marina Del Rey Center (Parcel 97)	514-586 Washington Boulevard	Replace two 1-story commercial structures with two larger 1-story structures (+486 sq. ft.)	co	18	1	2	No construction per field visit 8/5/08
5263	Marina del Rey Residential Project (Parcels 12, 15 and FF)	Panay Way and Via Marina	1201 residential units on 2 parcels on the west side of Marina Del Rey	co				No construction per field visit 8/5/08
53	Hatina del Rey Tower Project	4363 Lincoln Boulevard	158 high rise residential condominium units; 3,180 sq. ft. of specialty retail; parking structure with 409 parking spaces	60	386	47	71	Existing Beverly Hills Rent a Car per field visit $8 / 5 / 08$
5464	Marina Expressway Homes	Marina Expressway Eastbound \& Mindanao Way	28 Single family condominiums	co				No construction per field visit 8/5/08
5565	Marriott Residence Inn (Parcel IR)	Admiralty Way and Via Marina	149-room hotel	co	1,201	82	52	No construction per field visit 8/5/08
5666	Sea Glass Town Homes	6719 Pacific Avenue	36 condominiums	co				No construction per field visit 8/5/08
5767	Villa Venetia Residential (Parcel 64)	13900-13910 Fiji Way	478 mid-rise apartments (removal of 224 existing apartments); 34 boat slips; 5,000 sq. ft. restaurant	co	1,106	93	88	No construction per field visit 8/5/08
5868	Waterside Shopping Center (Parcels 50 and 83)	13555 Fiji Way	4,880 sq. ft. of specialty retail, with removal of 2,400 sq. ft.	co	208	6	21	Existing West Marine Boats appears to be a new facility.
5969	1950 Grand Avenue Office	1950 Grand Avenue	93,569 sq. ft. Office Building	ES				Construction complete per field visit 8/5/08; not fully occupied
6070	2151 East Grand Avenue Office	2151 East Grand Avenue	125,000 sq. ft. Office Building	ES				Construction complete per field visit 8/5/08; not fully occupied
6171	Commercial Buildings	126, 130, 134 \& 138 Lomita Street	4 new commercial buildings	ES				Nearing end of construction per field visit 8/5/08
6272	Condominiums	347 Concord Street	3 units	ES	20	3	3	Existing apartments per field visitit $8 / 5 / 08$
6373	Condominiums	505 W. Grand Avenue	4 units	ES	27	4	4	Construction complete per field visit 8/5/08
6474	Condominiums	425 \& 429 Indiana Street	8 units	ES	54	11	11	No construction per field visit 8/5/08
6575	Condominiuss	${ }^{1700}$ Mariposa Avenue	11 units 8 units	ES	74 54	11 8	11 8	Empty lot per field visit of 815/08 Construction complete per field visit
	Condominiums	$215-223$ Penn Street						Construction complete per field visit $8 / 5 / 08$; not fully occupied
6777	Condominiums	412 Richmond Street	4 units	ES	27	4	4	No construction per field visit 8/5/08
6878	Condominiums	712 Virginia Street	4 units	ES	27	4	4	Construction complete per field visit of 8/5/08
6979	Condominiums	203 Whiting Street	4 units	ES	27	4	4	Under construction as of 8/5/08
7080	Corporate Headquarters Office	455/475 Continental Boulevard	3330000 sq. ft. office; 22,500 sq. ft. Research and Development	Es		664	632	No construction per field visit of 8/5/08
7181	El Segundo Athletic Field	2201 E. Mariposa Avenue	Public Recreation Facility (Soccer Field)	ES				Construction complete per field visit 8/5/08; possibly incorrect address?
7282	El Segundo Corporate Campus	700-800 N Nash Street	$1,740,000 \mathrm{sq}$. ft. office; $75,000 \mathrm{sq}$. ft. retail; $7,000 \mathrm{sq}$. ft. child care; $7,000 \mathrm{sq}$. ft. medical office; 19,000 sq. ft. health club; $75,000 \mathrm{sq}$. ft. restaurant; 100 -room hotel; $25,000 \mathrm{sq}$. ft. light industrial, $75,000 \mathrm{sq}$. ft. research \& development; 65,000 sq. ft. technology/ telecommunications	ES	21,366	2,267	2,795	Construction appears to be complete on Phase I, but no construction on Phase II per field visit 8/5/08
7383	El Segundo Plaza	307-331 N. Sepulveda Boulevard	commercial	ES				Construction complete per field visit 8/5/08; not fully occupied
7484	Electronics Superstore	Aviation Boulevard and Utah Avenue/ 135th Street	152,504 sq. ft. Electronics Superstore in place of 90,243 sq. ft. R\&D, 51,209 sq. ft. Office, and 11,502 sq. ft. Warehouse	ES				Existing vacant office building per field visit 8/5/08
7585	Equinox	445 N . Douglas Street	314,000 sq. ft computer Data Center	ES				Construction complete per field visit 8/5/08
7686	Grand Park Plaza	Grand Ave between Arena and Eucalyptus		ES				Construction complete per field visit $8 / 5 / 08$ if this project is the strip mall on south side.
7787	High Bay Lab	901 N Nash Street	55,772 sq. ft.	ES		69	60	Existing Boeing facility per field visit 8/5/08
7888	LA Air Force Base - Area A	SE corner of El Segundo Boulevard and Aviation Boulevard	625 condominiums	ES		330	405	Under construction as of 8/5/08
7989	LA Air Force Base - Area B	NW corner of El Segundo Boulevard and Aviation Boulevard	63,000 sf warehouse; 560,000 sf office park; 93,750 sf base exchange; 43,125 sf health club; 34,463 sf medical office	ES	7,499	815	711	Existing surface parking lot per field visit of $8 / 5 / 08$

Table 3-1
Planned Development Projects

No.	Project Name	Address	Description	City ${ }^{1}$	Net Daily Trips	$\begin{gathered} \text { Net AM } \\ \text { Trips }^{2} \\ \hline \end{gathered}$	$\begin{gathered} \text { Net PM } \\ \text { Trips }^{3} \\ \hline \end{gathered}$	Comments
8890	Northrup-Grumman	SE corner of Mariposa Avenue and Douglas Street	190,000 sq ft. industrial uses	ES	1,324	175	186	Existing facility per field visit 8/5/08; no construction
8191	Office	888 N Sepulveda Boulevard	120,000 sq. ft.	ES		217	214	Existing retail per field visitit $8 / 5 / 08$
8292	Office	141 Main Street	commercial	ES				Existing closed restaurant per field visit 8/5/08
393	Plaza El Segundo, Phase 1B	NE Corner of Sepulveda Boulevard and Rosecrans Avenue	70,000 sq. ft. retail shopping center	ES	2,108	60	197	No construction per field visit 8/5/08
8494	Plaza El Segundo Phase 2A	NE Corner of Sepulveda Boulevard and Rosecrans Avenue	commercial	ES				No construction per field visit 8/5/08
8595	Self Storage Facility (Pacific Planning Group)	Southern California Edison Property at Hughes Way		ES				Could not locate
8696	The Aerospace Corp. (Office and Laboratory)	2350 E El Segundo Boulevard	150,000 sq. ft. office and 15,000 sq. ft lab	ES				Existing Aerospace Corp. facility per field visit 8/5/08; no construction
8797	Xerox Phase IV	1951-1961 El Segundo Boulevard	255,242 sq. ft office; 350 -room hotel	ES		629	614	Existing office building per field visit 8/5/08; no construction
8898	Condominiums	13429-31 Kornblum Avenue	6 units	HA				Existing single family home per field visit 8/6/08
8999	Condominiums	14629 Lemoli Avenue	3 units	HA				Under construction per field visitit 8/6/08
90100	Condominiums	11533 Freeman Avenue	5 unit conversion	HA				Existing apartment building per field visit 8/6/08
91101	Condominiums	11975 Manor Drive	3 units ${ }^{171}$ units and 32500 sa 1 of ffice space	HA				Vacant lot per field visitit 8/6/08
${ }_{93103}^{92102}$	Condominiums/Office Condominiums	13806 Hawthorne Boulevard 13632 Cerise Avenue	171 units and 32,500 sq. ft of office space 6 unit conversion	HA	80	213		Closed mortuary per field visit 8/6/08 Completed per field visit 8/6/08
94104	Condominiums	11418 Grevillea Avenue	7 units	HA				Existing lawn mower business per field visit $8 / 6 / 08$
95105	Hotel Extensions	4334 W. Imperial Highway	165 rooms	HA				Under review by City, per the City's website on $8 / 6 / 08$
96106	L.A. Air Force Base - Lawndale Annex	East of Aviation Boulevard and South of Rosecrans Avenue	285 condominium units	нА	122	142		Fusion Development at Aviation Boulevard and 149th Place is completed per field visit $8 / 6 / 08$. No other condominium projects seen.
97107	Prestige Villas	4500 116th Street	116 condominium units	HA	72	85		
98108	Recycling Center at Ralph's Grocery Store	11873 Hawthorne Boulevard	Recycling center	HA				Status listed as "continued" per City's website on $8 / 6 / 08$
99109	Single Family Homes	14000 Yukon Avenue	6 units	HA				Four existing single family homes per field visit 8/6/08
100110	Wiseburn School District	5403 W. 138th St and 5309 W. 135th St and 13500 Aviation Boulevard	School Renovation. Existing Peter Burnett School at 5403 W. 138th Street	HA				Juan Cabrillo Elementary School under construction at 5309 W .135 th Street per field visit 8/6/08
101111	Adult School and Day Care	106 East Manchester Boulevard	27,477 sq. ft:; office conversion	IN				Existing adult school under renovation per field visit of $8 / 6 / 08$
102112	Auto Sales and Retail	Prairie Avenue and Imperial Highway, NE Cor	49,000 sq. ft.	in				Under construction per field visit of 8/6/08
103113	Commercial Building Addition	234 W. Manchester Boulevard	12,029 sq. ft. 12 units	IN				Construction nearing completion per field visit of 8/6/08 Existing home per field visit of 8/6/08
105115	Condominiums	940 North Cedar Street	14 units	IN				Existing apartments per field visit 8/6/08
106116	Condominiums	448 North Edgewood Street	6 units	in				Existing home per field visit of 8/6/08
107117	Condominium	417-420 N. Market Street	12 units	IN				Existing home per field visit of 8/6/08
108118 109119	Condominiums Condominiums	450 N. Market Street 912 S. Myrtle Avenue	12 units	IN				Not started per field visit of 8/7/08 Existing apartments per field visit 8/6/08
110120	Condominium	546-568 W. Olive Street	12 units	IN				Completed, but not fully occupied per field visit of 8/6/08
111121	Condominiums	927 South Osage Avenue	7 units	in				Existing home per field visit of 8/6/08
112122	Condominium	222 W. Spruce Avenue	10 units	IN				Vacant lot per field visist of 8/6/08
113123	Condominium	311 W. Queen Street	8 units	in				Completed, but not fully occupied per field visit of 8/6/08
114124	Hollywood Park Mixed-Use	1050 South Prairie Avenue	2,995 dwelling units; 300 -room hotel; 620,000 sq. ft. retail; 75,000 sq. ft. office; 10,000 sq. ft. of civic use;	in				Final EIR scheduled for August 2008

Table 3-1
Planned Development Projects

No.	Project Name	Address	Description	City ${ }^{1}$	Net Daily Trips	$\begin{gathered} \hline \hline \text { Net AM } \\ \text { Trips }^{2} \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { Net PM } \\ & \text { Trips }^{3} \\ & \hline \end{aligned}$	Comments
	Development		120,000 sq ft. casino					
115125	Mixed retailrestaurant	Forence Avenue and La Brea Avenue, SE corner	49,800 sq.ft.	N				
117127	Residential	704 N. Market Street	6 units	in				Vacant lot per field visit of 8/6/08
118128	Retail and Office	10318 S. Prairie Avenue	10,000 sq. ft.	IN				Under construction per field visit of 8/6/08
119129	Senior Center and Housing	111 N. Locust Street	95,188 sq.ft.	iN				Vacant lot per field visit of 8/6/08
120130	Shopping Center	11441 S. Crenshaw Boulevard	101,323 sq. ft.	in				Burlington Coat Factory store complete; further construction pending per field visit 8/6/08
124131	Shopping Center	433 North Centinela Avenue	7,384 sq. ft.	in				Vacant lot per field visit of 86/08
122132	Shopping Center	10922 South Prairie Avenue	8,416 sq. ft.	IN				Vacant paved lot per field visitiof 8/6/08
123133	Single Family Homes	11901 S. Yukon Avenue	9 units	IN				Existing housing per field visit of 8/6/08
124134	Transitional Housing	733 S. Hindry Avenue	232,966 sq. ft.	in				Existing transitional housing per field visit of 8/6/08
125135	Transitional Housing	812 S. Osage Avenue	20 units	in				Vacant lot per field visit of 8/6/08
126136	Ambrose Hotel	901 Abbot Kinney Boulevard	57 -room hotel, 1,200 sq. ft. of retail and 4,300 sq. ft. restaurant	LA	723	30	54	No construction per field visit 8/7/08; existing business open
127137	Animo High School	841 California Avenue	402-student Charter School	LA	1,470	332	176	Unsure of status per field visit $8 / 7 / 08$; fenced and screened lot
138	Bank of America	7215 W. Manchester Avenue	Walk-in bank	LA	607	16	65	Previous building has been demolished
139	Car Wash	9204 Airport Boulevard	15,251 sq. ft. of car rental facility to be removed	LA	536	20	74	
140	Central Region Elementary School	Teale Street E/O Lincoln Boulevard	650 students	LA		221		
141	Daycare Center	7900 S. Loyola Boulevard	16 student daycare center	$\llcorner A$	72	13	13	
128142	Grosvernor Court	5550 Grosvernor Boulevard	215208 condo units	LA	1,260 1,219	9592	112146	Now surface lot for church per field check 8/7/108
129143	Lincoln Boulevard Mixed Use	4004 S. Lincoln Boulevard	98 unit condos \& 6020 sf retail	LA	1,550	108	101	Nearing end of construction per field visit 8/7/08
144	Lincoln Boulevard/ Manchester Avenue	7280-7298 W. Manchester Avenue	Apartments to replace specialty retail	LA	156	36	32	
145	Office Building	5901 Center Drive (at Howard Hughes Pkwy)	Approximately 250,000 sq. ft, 5 story office building	LA				Building permit application in review but no start date. Will be built to suit.
146	Private School	5401 Beethoven Street	420 students	LA	3,171	378	256	
130147	Residential Mixed Use Project	8601 Lincoln Boulevard	527 apartments, 12 live/work units, 22,600 sq. ft. of ground retail uses and $8,000 \mathrm{sq}$, ft. of restaurant.	LA	899	2	105	Under construction
131148	Villa Allegra	Sepulveda Boulevard, W/S, south of Howard Hughes	Townhomes	LA				Under construction with Spring 2009 opening
132149	The Village at Playa Vista (Playa Vista Phase II)	Jefferson Boulevard between McConnell Drive and Centinela Avenue	2,600 residential units; 175,000 sq. ft. office; 150,000 sq ft. retail; 40,000 sq. ft. community serving	LA	24,220	1,626	2,302	No construction per field visit $877 / 08$
150	Warehouse and Office	12700 Braddock Drive	134,557 sq. ft. warehouse; 1,357 sq. ft. office. 58,323 sq. ft. of University of CA laundry building to be removed	LA	459	20	172	
133151	Washington Square	300 Washington Boulevard (at Via Dolce)	123 unit condominiums; 6,000 sq. ft. office space. (Existing 176,671 sq. ft. office building to be removed)	LA	-1,194	-222	-250	Under construction per field visit of 8/5/08
134	Hotel	1800 Sepulveda Boulevard	52 room hotel	MB				Existing strip mall per field visit 8 /5/08
152	Westchester Lutheran School Expansion	7831 Sepulveda Boulevard	600 students	LA	774	252	168	
153	Bank and Retail	1129 N. Sepulveda Boulevard	4,000 sq. ft. bank and 2,000 sq. ff. retail; demolition of existing gas station	MB				New project
135154	Medical Office	10081000 Sepulveda Boulevard	$22,79023,000 \mathrm{sq}$. ft. medical office; 665700 sq ft. pharmacy; 1,715 1,700 sq. ft coffee shop; (existing 5,400 sq. ft. restaurant to be removed)	мB				Construction complete per field visit 8/5/08
136155	Manhattan Village Shopping Center	3200 N. Sepulveda Boulevard	52,000 sq. ft. mall expansion	MB				Existing shopping center per field visit 8/5/08; no construction
137	Medical Office	2200 Sepulveda Boulevard	29,000 sq. ft. medical lffice (6,700 sq. ff. existing retail to be removed)	MB				Existing retail per field visitit $1 / 5 / 08$
138156	Mixed-Use Project (former Good Stuff restaurant)	1300 Highland Avenue	15,000 sq. ft. commercial/office/condominium	мв				Under construction as of 8/5/08
139	Mixed Use Development	2201 Highland Avenue	1,500 sq. ft. retaillrestaurant; 2 condominiums	MB	N/A	25	34	Construction complete per field visit 8/5/08
140157	Medical Plaza	222 Sepulveda Boulevard (NE Corner of Sepulveda Boulevard and 2nd Street)	2112,000 sq. ft. medical office building and 1,000 sq. ft. retail. (Existing 4,770 5,000 sq. ft. auto repair shop to be removed.)	MB				Existing building closed. No construction per field visit 8/5/08.

Table 3-1
Planned Development Projects

No.	Project Name	Address	Description	City ${ }^{1}$	Net Daily Trips	$\begin{gathered} \hline \hline \text { Net AM } \\ \text { Trips }^{2} \\ \hline \end{gathered}$	$\begin{gathered} \hline \hline \text { Net PM } \\ \text { Trips }{ }^{3} \\ \hline \end{gathered}$	Comments
141	Office Building	330 S. Sepulveda Boulevard	56,000 sq. fl. office burilding	${ }^{\text {AB }}$				Gonstruction complete per field visit $8 / 5 / 08$
142158	Retail	1727 Artesia Boulevard	5,800 sq. ft. retail	MB				
	Retail	1700 Rosecrans Avenue	10,000 sq ft. retail (from warehouse)	MB				New project
143160	Rite Aid Store	1100 Manhattan Beach Boulevard	13,000 sq. ft. retail (Existing 8,600 sq. ft. gas station to be removed.)	MB				In construction as of 8/5/08
144161	Sketchers Office Building	330 S. Sepulveda Boulevard	56,000 sq. ft. office	MB	N/A	117	142	Construction complete per field visit 8/7/08
145162	Walgreens	2400 Sepulveda Boulevard	15,000 sq. ft. retail (demolition of vacant Albertsons store)	MB				Not started per field visit of 8/5/08
$\mathrm{CC}=$ Culver City; CO = County of Los Angeles; ES = EI Segundo; HA = Hawthorne; IN = Inglewood; LA = City of Los Angeles; MB = Manhattan Beach. Represents peak hour trips during the am commuter peak hour ($8: 00 \mathrm{am}$ to $9: 00 \mathrm{am}$). Represents peak hour trips during the pm commuter peak hour ($5: 00 \mathrm{pm}$ to $6: 00 \mathrm{pm}$). LADOT via e-mail on August 6, 2008. Trips for Projects \# 3 and \# 17 are included in the total trips listed in Project \# 38.								

Table 4.1-11
Planned Development Projects

No.	Project Name	Address	Description	City ${ }^{1}$	$\begin{gathered} \text { Net Daily } \\ \text { Trips } \\ \hline \end{gathered}$	$\begin{gathered} \text { Net AM } \\ \text { Trips }^{2} \\ \hline \end{gathered}$	$\begin{gathered} \text { Net PM } \\ \text { Trips }^{3} \\ \hline \end{gathered}$	Comments
1	Baldwin Hills Scenic Overlook Park	Hetzler Road	10,300 sq. ft. visitor center, passive recreation area	$\mathrm{CC/CO}$	265	3	12	Under construction
2	Baldwin Site	12803 W. Washington Boulevard	New 3 -story mixed use develoopment totaling 37,308 sq. ft.	cc				Entitlement stage
3	Brentwood Site Mixed Use	8810/8840/8850 Washington Boulevard	New mixed use development w/ preliminary concept of up to (approx.) 133 residential units and 17,084 sq. ft. retail	cc				Pre-application stage
4	Brooke Kaufman	4227 Ince Boulevard	6 condo units on 3 lots	cc				In construction
	Child Care Center	4024/4026 Wade St.	Conversion of a 1,371 sq. ft. duplex into a day care; no new square footage.	cc				Building permit
${ }^{2} 6$	Condominiums	3846 Bentley Avenue	4 units	cc	23	2	2	Anticipated completion 2009Building permit; anticipated completion 2009
37	Condominiums	3873 Bentley Avenue	2 units	cc	12	1	1	Existing abandoned home per field visit 8/7/08Under construction
4	Gondominiums	$3823 / 3388$ Huron Avenue	15 units, with 3 existing units to be removed	${ }_{\text {c }}$	70	${ }^{6}$	${ }^{6}$	Under construction as of f 87/708
58	Condominiums	3862 Huron Avenue	5 units	cc	30	3	3	Existing home per field visit of 8/7/08Building permit; existing home per field visit of 8/7/08
6	Condominiums	4067/ 4073 Lincoin Boulevard	8 units and 20 parking spaces	cc	47	4	4	Construction complete per field visit 8/7/08
9	Condominiums	4048 Lincoln Avenue	3 townhome condominiums	${ }_{\text {cc }}$				Building permit
710	Condominiums	9650 Lucerne Avenue	6 units 5 townhome condominiums	cc	35	3	3	Entitlements approvedPre-application stage
811	Condominiums	4058 Madison Avenue	4 units	cc	23	2	2	Building permit; Aanticipated completion 2009
912	Condominiums	4228 Madison Avenue	2 units	cc	12	1	1	Existing homes;-Building permit; no such address per field visit 8/7/08
1013	Condominiums	38383972 Tilden Avenue	4 units	cc	23	2	2	Aearing end of construction per field visit 817108 Under construction as of 8/7/08
11	Condominiums	$3968 / 3972$ Tilden Avenue	8 units	${ }_{G C}$	${ }^{46}$	4	4	Under construction as of 877108
1214	Condominiuss	4014 Van Buren Place	4 units 4 units	cc c	23 23	${ }_{2}^{2}$	2	
1315	Condominiums	4025 Wade Street	4 units	CC	23	2	2	Anticipated completion 2009Under construction
1416	Condominiums (Former Burger King site)	13340 Washington Boulevard	41 unit condominium development with 6 live/work condominium units in Culver City and 35 Units in LA	CC/ LA	240	18	21	Entitlement stage; Nno construction per field visit $8 / 7 / 08$
15	Condominium Conversion	3910 Girard Avenue	7 units	cc	41	3	4	Existing structure per field visit 8/7/08; possibly completed?
17	Czuker Site Mixed Use	8770 Washington Boulevard	New mixed use development w/ preliminary concept of up to (approx.) 115 residential units, 41,600 sq. ft. retail; 1,400 sq. ft. café; 53,500 sq. ft. office	cc				Pre-application stage
1618	Distribution \& Warehouse	3434 Wesley Street	10,500 sq. ft. office, warehouse and distribution	cc	137	16	86	Entitlements; no building permit
19	Dr. Brenold Dutt	5800 Uplander Way	Add 3 stories; 57,050 sp. ft. to a 2 --story office	cc				
1720	Entrada Office Tower	6161 Centinela Avenue	342,409 sq. ft. office tower and 9 -level parking structure	cc	3,442	502	462	EIR under review by CityEntitlements; CEQA lawsuit
1821	FAYnSOD Family Trust	11501-11509 Washington Boulevard	Mixed Use: 2,359 sq. ft. retail; 937 sq. ft. office, and 2 apartments (1,867 sq.f.t.)	cc	155	9	87	Entitlement stage
1922	Fire Station No. 3	6030 Bristol Parkway	Two-story, 12,156 sq. ft.t fire station	cc	67	9	9	Building permit
2023	Glencoe/Washington Mixed Use	13365 Washington Boulevard	$5,0004,183$ sq. ft. retail and 19 condominium units	cc	333	14	24	Building permit; Eexisting closed restaurant per field visit 8/7/08
24	Greg Reitz	8665 Hayden Place	63,679 sq. ft of office	cc				Entitlement stage
2125	Hampton Inn	3954 Sepulveda Boulevard	77-unit hotel	cc	629	43	45	Building permit; Ano construction per field visit 8/7/08
26	Huron Townhouses	3823 / 3388 Huron Avenue	15 new townhouses; 3 existing units to be removed	cc	70	6	6	Under construction as of 8/7/08
${ }_{2228}^{27}$	Irving Residential/ Office Live/ Work Lofts	4043 Irving Place 10839 Washington Boulevard	Four story; 26 residential units and 3 office units 3 Live/ Work units and 12 parking spaces	cc CC	33	5	4	Entitlements going through appeal Anticipated completion 2009
23	Max Leather AUP	8533 Washington Boulevard	An additional 3,763 sq. ft. of manufacturing	CG	14	3	3	No construction per field visit 8/7/08; possibly completed?
29	Lux @ 9910 Mixed Use	9901 Washington Boulevard	14,112 sq. ft. mixed use development with 131 dwelling units; 12,178 sq ft. of retail and three levels of subterranean parking with 244 parking spaces	CC/LA				Entitlement stage
2430	Mixed Use Development	11281 Washington Place	5,340 sq. ft. retail and 8 units of residential for a total of 17,500 sq. ft.	cc	284	10	18	Entitlements but extensions required; Eexisting abandoned gas station per field visit 8/7/08

Table 4.1-11
Planned Development Projects

No.	Project Name	Address	Description	City ${ }^{1}$	Net Daily Trips	$\begin{aligned} & \hline \hline \text { Net AM } \\ & \text { Trips }^{2} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Net PM } \\ & \text { Trips }^{3} \\ & \hline \end{aligned}$	Comments
31	Office Building	9919 Jefferson Boulevard	113,467 sq. ft. , 3 -story office building	CC				Entitlement stage
2532	Office \& Retail Bldg.	700-701 Corporate Pointe	240,612 sq. ft. of office and 4,242 sq. ft. of retail	cc	2,811	384	359	Entitlements; Ano construction per field visit 8/7/08
33	Parcel B	9300 Culver Boulevard	74,600 sq. ft of office, 21,700 sq. ft of restaurant and 21,700 sq. ft. of retail	cc	6,340	461	627	Building permit Under construction; 2008 completion date
2734	Park Century School	3939 Landmark Street	Conversion of industrial space to school use and additional 6,950 sq. ft.; for a total of 43,950 sq. ft. of new school	cc	365	162	-25	Nearing end of completion per field visit 8/7/08
28	Public Storage Expansion	8512 National Boulevard	Addition of 71,570 sq. ft. to an existing public storage facility	cG	355	32	34	No construction per field visit 8/7/08; possibly completed?
35	School Expansion	12095-12101 Washington Boulevard	Conversion of a 28,000 sq. ft. office building into classrooms and administrative offices; addition of 2,000 sq. ft.	cc				Application stage
2936	Sony	10202 Washington Boulevard	Approved to build net new 100,000 sq. ft. of office, post-production, stage, and support uses.	cc				Unsure of status per field visit 8/7/108; gated lotUnder construction; 2008 completion date
37	Southbay Ventures	4139/4145 Duquesne Avenue	6 units on 2 lots	cc				Pre-application stage
	Triangle Site - Washington/National Transit Oriented Development	Corner of Washington and National Boulevards	New transit oriented development to include light rail station and mixed use development (preliminary concept includes up to 290 dwelling units; 149 room hotel; 70,000 sq. ft. office; 31,500 sq. ft. retail and 10,000 sq. ft. restaurant	CC	19,874	1,235	2,071	Pre-application stage
3039	Turning Point School (K through 8)	8794 National Boulevard	Addition/remodel of net $9,000 \mathrm{sq}$. ft.	cc	N/A	107	61	Building permit
3140	Union 76	10638 Culver Boulevard	Gas station and convenience store with new car wash; 2,500 sq. ft.	cc	N/A	N/A	N/A	Ao construction per field visit 817/08; no car washBuilding permit
3241	Uptown Lofts	9900 Culver Boulevard	5,500 5,457 sq. ft. of office and 18 condominium units	cc	248	26	94	Building permit; Anticipated completion 2009
42	Warner Parking Structure	8511 Warner Drive	51,520 sq. ft. retailrestaurant; 784 parking spaces on 5 levels	cc				Entitlement stage
43	Washington Boulevard Office Project	11957 Washington Boulevard	73,569 sq. ft., 4-story office building	cc				Pre-application stage
3344	Washington Place Office Condos	12402 Washington Place	42,000 sq. ft. 4-story office and retail building; 9,300 sq. ft. of retail; 30,400 sq. ft. of office	cC				Building permit; Aanticipated completion 2009
34	Washington/National Specific Plan and EIR Phase 1	Washington Boulevard/National Boulevard	638 dwelling units; 206,608 sq. ft. retail; 154,361 sq. ft. office; 485,996 sq, ft light industrial	cG	19,874	1,235	2,071	EIR in preparation
3545	Westield Fox Hills Mall Expansion	200 Fox Hills Mall	293,786 sq. ft. of retail and 427 parking spaces	cc	13,682	299	1,275	Anticipated Under construction; єCompletion 10/2009
3646	West Los Angeles Community College Master Plan	Overland Avenue at Freshman Drive	8,592 additional studentsApprox. 291,300 sq. ft. of new building and renovation. Anticipate future student population of approx. 18,904 students and 1,248 employees by Fall 2022. Project includes second access road, parking structures, landscaping and development of athletic facilities	CCl co	10,034	669	664	Parking lot and math/science bldg. under construction; Anticipated completion of the Master Plan is 2011
3747	Admiralty Apartments (Parcel 140)	4160 Admiralty Way	179 Apartments, with removal of 64 existing apartments	co	417	40	37	No construction per field visiti 85/08
3848	Best Western Jamaica Bay Inn (Parcel 27R)	4175 Admiralty Way	Renovation \& Expansion 42-room hotel by an additional 69 rooms.	co	564	38	24	No construction per field visit 8/5/08
3949	Boat Central (Parcels 52 and GG)	13501 Fji Way	Dry-stack boat storage of 345 parking spaces; boat trailer storage of 24 parking spaces; mast-up sail boat storage of 30 parking spaces	co	1,081	47	51	No construction per field visit 8/5/08
4050	Del Rey Shores Apartments (Parcels 100 and 101)	4247-4275 Via Marina	544 apartments (202 existing units to be removed)	co	800	120	111	No construction per field visit 8/5/08
51	Diner (Parcel 33)	4211 Admiralty Way	351 Apartments; 24,500 sq. ft. retail; 10,000 sq. ft restaurant (existing restaurant to be removed)	co	1,145	184	22	Existing Panifico's Restaurant per field visit 8/5/08
52	Esprit Phase 1 (Parcel 12)	13900 Marquesas Way	35 town homes; 2,000 sq. ft. of specialty retail; 2,000 sq. ft. of restaurant	co	548	40	56	Construction complete per field visit 8/5/08; also at 13924 Marquesas Way
4353	Fisherman's Village (Parcels 55, 56 \& W)	13715 Fiji Way	26,570 sq. ft. of specialty retail; 785 -seat restaurant; 132 -room hotel; 9 boat slips	co	2,375	98	209	No construction per field visit 8/5/08
4454	Gateway Marina Del Rey (Parcel 95)	404-514 Washington Boulevard	16,350 sq. ft. specialty retail center; 9,160 sq. ft. high turn-over, sit-down restaurant with 240 seats; 7,890 sq. ft. of general office building, 6,100 sq. ft. walk-in bank 72 Apartments; 337 Parking Spaces (removal of $7,500 \mathrm{sq}$. ft. drive-up bank)	co	199	-36	128	No construction per field visit 8/5/08; Existing Islands restaurant and Caldwell Bank
$\begin{aligned} & 4555 \\ & 4656 \end{aligned}$	Government Office Building Holiday Harbor Courts (Parcels 21 and OT)	Panay Way and Via Marina Admiralty Way and Palawan Way, NW Corner	26,000 sq. ft. Congregate Care Facility 114 Occupied DU's, 5,000 sq. ft. of specialty retail; parking lot with 94 parking spaces, 6,000 sq. ft. of general office/commercial; parking structure with 447 parking spaces; removal of	co co	286	40	57	No construction per field visit 8/5/08 Nearing end of construction per field visit 8/5/08
4757	Legacy Partners Neptune Marina Apartments / Woodfin Suites Hotel (Parcels 10R, FF \& 9U)	Marquesas Way and Via Marina	526 apartments (removal of 136 apartments); 288 -room hotel; 1.47-acre public park	co	3,104	253	228	No construction per field visit 8/5/08

Planned Development Projects

No.	Project Name	Address	Description	City ${ }^{1}$	Net Daily Trips	Net AM Trips ${ }^{2}$	Net PM Trips ${ }^{3}$	Comments
58	Lincoln Boulevard Mixed Use Project	4363 Lincoln Boulevard	158 high-rise residential condominium units; 3,178 sq. ft. of specialty retail; parking structure with 409 parking spaces. Beverly Hills Rent-a car facility (48,000 sf. ft.) to be removed.	co	386	47	71	Existing rent-a-car facility per field visit 8/5/08
4859	Lloyd Taber Marina del Rey Library (Parcel 40)	4533 Admiralty Way	Library	co				Existing Library. No construction per field visit 8/5/08
4960	Marina City Club Towers Marina del Rey	4333 Admiralty Way	600 units	co	3,516	264	196	No construction per field visit 8/5/08
5061	Marina del Rey Apartment Community (Parcels 12 \& 15)	Panay Way and Via Marina	940 apartments; 82 units senior apartments; 4,000 sq. ft. retail; 6,000 sq ft. commercial	co	1,785	171	152	No construction per field visit 8/5/08
5162	Marina Del Rey Center (Parcel 97)	514-586 Washington Boulevard	Replace two 1-story commercial structures with two larger 1-story structures (+486 sq. ft.)	co	18	1	2	No construction per field visit 8/5/08
5263	Marina del Rey Residential Project (Parcels 12, 15 and FF)	Panay Way and Via Marina	1201 residential units on 2 parcels on the west side of Marina Del Rey	co				No construction per field visit 8/5/08
53	Hatina del Rey Tower Project	4363 Lincoln Boulevard	158 high rise residential condominium units; 3,180 sq. ft. of specialty retail; parking structure with 409 parking spaces	60	386	47	71	Existing Beverly Hills Rent a Car per field visit $8 / 5 / 08$
5464	Marina Expressway Homes	Marina Expressway Eastbound \& Mindanao Way	28 Single family condominiums	co				No construction per field visit 8/5/08
5565	Marriott Residence Inn (Parcel IR)	Admiralty Way and Via Marina	149-room hotel	co	1,201	82	52	No construction per field visit 8/5/08
5666	Sea Glass Town Homes	6719 Pacific Avenue	36 condominiums	co				No construction per field visit 8/5/08
5767	Villa Venetia Residential (Parcel 64)	13900-13910 Fiji Way	478 mid-rise apartments (removal of 224 existing apartments); 34 boat slips; 5,000 sq. ft. restaurant	co	1,106	93	88	No construction per field visit 8/5/08
5868	Waterside Shopping Center (Parcels 50 and 83)	13555 Fiji Way	4,880 sq. ft. of specialty retail, with removal of 2,400 sq. ft.	co	208	6	21	Existing West Marine Boats appears to be a new facility.
5969	1950 Grand Avenue Office	1950 Grand Avenue	93,569 sq. ft. Office Building	ES				Construction complete per field visit 8/5/08; not fully occupied
6070	2151 East Grand Avenue Office	2151 East Grand Avenue	125,000 sq. ft. Office Building	ES				Construction complete per field visit 8/5/08; not fully occupied
6171	Commercial Buildings	126, 130, 134 \& 138 Lomita Street	4 new commercial buildings	ES				Nearing end of construction per field visit 8/5/08
6272	Condominiums	347 Concord Street	3 units	ES	20	3	3	Existing apartments per field visitit $8 / 5 / 08$
6373	Condominiums	505 W. Grand Avenue	4 units	ES	27	4	4	Construction complete per field visit 8/5/08
6474	Condominiums	425 \& 429 Indiana Street	8 units	ES	54	11	11	No construction per field visit 8/5/08
6575	Condominiuss	${ }^{1700}$ Mariposa Avenue	11 units 8 units	ES	74 54	11 8	11 8	Empty lot per field visit of 815/08 Construction complete per field visit
	Condominiums	$215-223$ Penn Street						Construction complete per field visit $8 / 5 / 08$; not fully occupied
6777	Condominiums	412 Richmond Street	4 units	ES	27	4	4	No construction per field visit 8/5/08
6878	Condominiums	712 Virginia Street	4 units	ES	27	4	4	Construction complete per field visit of 8/5/08
6979	Condominiums	203 Whiting Street	4 units	ES	27	4	4	Under construction as of 8/5/08
7080	Corporate Headquarters Office	455/475 Continental Boulevard	3330000 sq. ft. office; 22,500 sq. ft. Research and Development	Es		664	632	No construction per field visit of 8/5/08
7181	El Segundo Athletic Field	2201 E. Mariposa Avenue	Public Recreation Facility (Soccer Field)	ES				Construction complete per field visit 8/5/08; possibly incorrect address?
7282	El Segundo Corporate Campus	700-800 N Nash Street	$1,740,000 \mathrm{sq}$. ft. office; $75,000 \mathrm{sq}$. ft. retail; $7,000 \mathrm{sq}$. ft. child care; $7,000 \mathrm{sq}$. ft. medical office; 19,000 sq. ft. health club; $75,000 \mathrm{sq}$. ft. restaurant; 100 -room hotel; $25,000 \mathrm{sq}$. ft. light industrial, $75,000 \mathrm{sq}$. ft. research \& development; 65,000 sq. ft. technology/ telecommunications	ES	21,366	2,267	2,795	Construction appears to be complete on Phase I, but no construction on Phase II per field visit 8/5/08
7383	El Segundo Plaza	307-331 N. Sepulveda Boulevard	commercial	ES				Construction complete per field visit 8/5/08; not fully occupied
7484	Electronics Superstore	Aviation Boulevard and Utah Avenue/ 135th Street	152,504 sq. ft. Electronics Superstore in place of 90,243 sq. ft. R\&D, 51,209 sq. ft. Office, and 11,502 sq. ft. Warehouse	ES				Existing vacant office building per field visit 8/5/08
7585	Equinox	445 N . Douglas Street	314,000 sq. ft computer Data Center	ES				Construction complete per field visit 8/5/08
7686	Grand Park Plaza	Grand Ave between Arena and Eucalyptus		ES				Construction complete per field visit $8 / 5 / 08$ if this project is the strip mall on south side.
7787	High Bay Lab	901 N Nash Street	55,772 sq. ft.	ES		69	60	Existing Boeing facility per field visit 8/5/08
7888	LA Air Force Base - Area A	SE corner of El Segundo Boulevard and Aviation Boulevard	625 condominiums	ES		330	405	Under construction as of 8/5/08
7989	LA Air Force Base - Area B	NW corner of El Segundo Boulevard and Aviation Boulevard	63,000 sf warehouse; 560,000 sf office park; 93,750 sf base exchange; 43,125 sf health club; 34,463 sf medical office	ES	7,499	815	711	Existing surface parking lot per field visit of $8 / 5 / 08$

Table 4.1-11
Planned Development Projects

No.	Project Name	Address	Description	City ${ }^{1}$	Net Daily Trips	$\begin{gathered} \text { Net AM } \\ \text { Trips }^{2} \\ \hline \end{gathered}$	$\begin{gathered} \text { Net PM } \\ \text { Trips }^{3} \\ \hline \end{gathered}$	Comments
8890	Northrup-Grumman	SE corner of Mariposa Avenue and Douglas Street	190,000 sq ft. industrial uses	ES	1,324	175	186	Existing facility per field visit 8/5/08; no construction
8191	Office	888 N Sepulveda Boulevard	120,000 sq. ft.	ES		217	214	Existing retail per field visitit $8 / 5 / 08$
8292	Office	141 Main Street	commercial	ES				Existing closed restaurant per field visit 8/5/08
393	Plaza El Segundo, Phase 1B	NE Corner of Sepulveda Boulevard and Rosecrans Avenue	70,000 sq. ft. retail shopping center	ES	2,108	60	197	No construction per field visit 8/5/08
8494	Plaza El Segundo Phase 2A	NE Corner of Sepulveda Boulevard and Rosecrans Avenue	commercial	ES				No construction per field visit 8/5/08
8595	Self Storage Facility (Pacific Planning Group)	Southern California Edison Property at Hughes Way		ES				Could not locate
8696	The Aerospace Corp. (Office and Laboratory)	2350 E El Segundo Boulevard	150,000 sq. ft. office and 15,000 sq. ft lab	ES				Existing Aerospace Corp. facility per field visit 8/5/08; no construction
8797	Xerox Phase IV	1951-1961 El Segundo Boulevard	255,242 sq. ft office; 350 -room hotel	ES		629	614	Existing office building per field visit 8/5/08; no construction
8898	Condominiums	13429-31 Kornblum Avenue	6 units	HA				Existing single family home per field visit 8/6/08
8999	Condominiums	14629 Lemoli Avenue	3 units	HA				Under construction per field visitit 8/6/08
90100	Condominiums	11533 Freeman Avenue	5 unit conversion	HA				Existing apartment building per field visit 8/6/08
91101	Condominiums	11975 Manor Drive	3 units ${ }^{171}$ units and 32500 sa 1 of ffice space	HA				Vacant lot per field visitit 8/6/08
${ }_{93103}^{92102}$	Condominiums/Office Condominiums	13806 Hawthorne Boulevard 13632 Cerise Avenue	171 units and 32,500 sq. ft of office space 6 unit conversion	HA	80	213		Closed mortuary per field visit 8/6/08 Completed per field visit 8/6/08
94104	Condominiums	11418 Grevillea Avenue	7 units	HA				Existing lawn mower business per field visit $8 / 6 / 08$
95105	Hotel Extensions	4334 W. Imperial Highway	165 rooms	HA				Under review by City, per the City's website on $8 / 6 / 08$
96106	L.A. Air Force Base - Lawndale Annex	East of Aviation Boulevard and South of Rosecrans Avenue	285 condominium units	нА	122	142		Fusion Development at Aviation Boulevard and 149th Place is completed per field visit $8 / 6 / 08$. No other condominium projects seen.
97107	Prestige Villas	4500 116th Street	116 condominium units	HA	72	85		
98108	Recycling Center at Ralph's Grocery Store	11873 Hawthorne Boulevard	Recycling center	HA				Status listed as "continued" per City's website on $8 / 6 / 08$
99109	Single Family Homes	14000 Yukon Avenue	6 units	HA				Four existing single family homes per field visit 8/6/08
100110	Wiseburn School District	5403 W. 138th St and 5309 W. 135th St and 13500 Aviation Boulevard	School Renovation. Existing Peter Burnett School at 5403 W. 138th Street	HA				Juan Cabrillo Elementary School under construction at 5309 W .135 th Street per field visit 8/6/08
101111	Adult School and Day Care	106 East Manchester Boulevard	27,477 sq. ft:; office conversion	IN				Existing adult school under renovation per field visit of $8 / 6 / 08$
102112	Auto Sales and Retail	Prairie Avenue and Imperial Highway, NE Cor	49,000 sq. ft.	in				Under construction per field visit of 8/6/08
103113	Commercial Building Addition	234 W. Manchester Boulevard	12,029 sq. ft. 12 units	IN				Construction nearing completion per field visit of 8/6/08 Existing home per field visit of 8/6/08
105115	Condominiums	940 North Cedar Street	14 units	IN				Existing apartments per field visit 8/6/08
106116	Condominiums	448 North Edgewood Street	6 units	in				Existing home per field visit of 8/6/08
107117	Condominium	417-420 N. Market Street	12 units	IN				Existing home per field visit of 8/6/08
108118 109119	Condominiums Condominiums	450 N. Market Street 912 S. Myrtle Avenue	12 units	IN				Not started per field visit of 8/7/08 Existing apartments per field visit 8/6/08
110120	Condominium	546-568 W. Olive Street	12 units	IN				Completed, but not fully occupied per field visit of 8/6/08
111121	Condominiums	927 South Osage Avenue	7 units	in				Existing home per field visit of 8/6/08
112122	Condominium	222 W. Spruce Avenue	10 units	IN				Vacant lot per field visist of 8/6/08
113123	Condominium	311 W. Queen Street	8 units	in				Completed, but not fully occupied per field visit of 8/6/08
114124	Hollywood Park Mixed-Use	1050 South Prairie Avenue	2,995 dwelling units; 300 -room hotel; 620,000 sq. ft. retail; 75,000 sq. ft. office; 10,000 sq. ft. of civic use;	in				Final EIR scheduled for August 2008

Planned Development Projects

No.	Project Name	Address	Description	City ${ }^{1}$	Net Daily Trips	$\begin{gathered} \hline \hline \text { Net AM } \\ \text { Trips }^{2} \\ \hline \end{gathered}$	$\begin{gathered} \hline \hline \begin{array}{c} \text { Net PM } \\ \text { Trips } \end{array} \\ \hline \end{gathered}$	Comments
	Development	Florence Avenue and La Brea Avenue SE corner	120,000 sq ft. casino					
116126	Mixed retailrestaurant	Southwest corner of Century/Prairie (Haagen)	97,490 sq. ft.	in				Existing Taco Bell per field visit of 8/6/08
117127	Residential	704 N. Market Street	6 units	in				Vacant lot per field visit of 8/6/08
118128	Retail and Office	10318 S. Prairie Avenue	10,000 sq. ft.	in				Under construction per field visit of 8/6/08
119129	Senior Center and Housing	111 N. Locust Street	95,188 sq.ft.	in				Vacant lot per field visit of 8/6/08
120130	Shopping Center	11441 S. Crenshaw Boulevard	101,323 sq. ft.	in				Burlington Coat Factory store complete; further construction pending per field visit 8/6/08
121131	Shopping Center	433 North Centinela Avenue	7,384 sq. ft.	in				Vacant lot per field visit of 8/6/08
122132	Shopping Center	10922 South Prairie Avenue	8,416 sq. ft.	IN				Vacant paved lot per field visito of 8/6/08
123133	Single Family Homes	11901 S. Yukon Avenue	9 units	in				Existing housing per field visit of 8/6/08
124134	Transitional Housing	733 S. Hindry Avenue	232,966 sq. ft.	IN				Existing transitional housing per field visit of 8/6/08
125135	Transitional Housing	812 S. Osage Avenue	20 units	in				Vacant lot per field visit of 8/6/08
126136	Ambrose Hotel	901 Abbot Kinney Boulevard	57 -room hotel, 1,200 sq. ft. of retail and 4,300 sq. ft. restaurant	LA	723	30	54	No construction per field visit 8/7/08; existing business open
127137	Animo High School	841 California Avenue	402-student Charter School	LA	1,470	332	176	Unsure of status per field visit 8/7/08; fenced and screened lot
138	Bank of America	7215 W. Manchester Avenue	Walk-in bank	LA	607	16	65	Previous building has been demolished
139	Car Wash	9204 Airport Boulevard	15,251 sq. ft. of car rental facility to be removed	LA	536	20	74	
140	Central Region Elementary School	Teale Street E/O Lincoln Boulevard	650 students	LA		221		
141	Daycare Center	7900 S. Loyola Boulevard	16 student daycare center	LA	72	13	13	
128142	Grosvernor Court	5550 Grosvernor Boulevard	215208 condo units	LA	1,260 1,219	9592	112146	New surface lot for church per field check 8/7/08
129143	Lincoln Boulevard Mixed Use	4004 S. Lincoln Boulevard	98 unit condos \& 6020 sf retail	LA	1,550	108	101	Nearing end of construction per field visit 8/7/08
144	Lincoln Boulevard/ Manchester Avenue	7280-7298 W. Manchester Avenue	Apartments to replace specialty retail	LA	156	36	32	
145	Office Building	5901 Center Drive (at Howard Hughes Pkwy)	Approximately 250,000 sq. ft, 5 story office building	LA				Building permit application in review but no start date. Will be built to suit.
146	Private School	5401 Beethoven Street	420 students	LA	3,171	378	${ }^{256}$	
130147	Residential Mixed Use Project	8601 Lincoln Boulevard	527 apartments, 12 live/work units, 22,600 sq. ft. of ground retail uses and $8,000 \mathrm{sq}$, ft. of restaurant.	LA	899	2	105	Under construction Under construction with Spring 2009
131148	Villa Allegra	Sepulveda Boulevard, W/S, south of Howard Hughes	Townhomes	LA				Under construction with Spring 2009 opening
132149	The Village at Playa Vista (Playa Vista Phase II)	Jefferson Boulevard between McConnell Drive and Centinela Avenue	2,600 residential units; 175,000 sq. ft. office; 150,000 sq ft. retail; 40,000 sq. ft. community serving	LA	24,220	1,626	2,302	No construction per field visit 817108
150	Warehouse and Office	12700 Braddock Drive	134,557 sq. ft. warehouse; 1,357 sq. ft. office. 58,323 sq. ft. of University of CA laundry building to be removed	LA	459	20	172	
33151	Washington Square	300 Washington Boulevard (at Via Dolce)	123 unit condominiums; 6,000 sq. ft. office space. (Existing 176,671 sq. ft. office building to be removed)	LA	-1,194	-222	-250	Under construction per field visit of 8/5/08
${ }_{134}$	Hotel	1800 Sepulueda Bouldevard	52 room hatel	ma				Existing strip mall per field visit 815108
152	Westchester Lutheran School Expansion	7831 Sepulveda Boulevard	600 students	LA	774	252	168	
153	Bank and Retail	1129 N. Sepulveda Boulevard	4,000 sq. ff. bank and 2,000 sq. ft. retail; demolition of existing gas station	MB				New project
135154	Medical Office	10081000 Sepulveda Boulevard	$22,79023,000 \mathrm{sq}$. ft. medical office; 665700 sq ft. pharmacy; $1,7151,700 \mathrm{sq}$. ft coffee shop; (existing 5,400 sq. ft. restaurant to be removed)	MB				Construction complete per field visit 8/5/08
136155	Manhattan Village Shopping Center	3200 N. Sepulveda Boulevard	52,000 sq. ft. mall expansion	мв				Existing shopping center per field visit 8/5/08; no construction
137	Medical Office	2200 Sepulveda Boulevard	29,000 sq. ff. medical office (6,700 sq. ff. existing retail to be removed)	MB				Existing retail per field visiti 855108
138156	Mixed-Use Project (former Good Stuff restaurant)	1300 Highland Avenue	15,000 sq. ft. commercial/office/condominium	MB				Under construction as of 8/5/08
139	Mixed Use Development	2201 Highland Avenue	1,500 sq. ft. retailrestaurant; 2 condominiums	mb	N/A	25	34	Construction complete per field visit 8/5/08
140157	Medical Plaza	222 Sepulveda Boulevard (NE Corner of Sepulveda Boulevard and 2nd Street)	2112,000 sq. ft. medical office building and 1,000 sq. ft. retail. (Existing $4,7705,000$ sq. ft. auto repair shop to be removed.)	мв				Existing building closed. No construction per field visit 8/5/08.

Table 4.1-1

Planned Development Projects

No.	Project Name	Address	Description	Net Daily Trips	$\begin{gathered} \text { Net AM } \\ \text { Trips }^{2} \\ \hline \end{gathered}$	$\begin{gathered} \text { Net PM } \\ \text { Trips }^{3} \\ \hline \end{gathered}$	Comments
141	Office Building	330 S. Sepulveda Boullevard	56,000sq. th. office building				Gonstruction complete per field visit $8 / 5 / 08$
142158	Retail	1727 Artesia Boulevard	5,800 sq. ft. retail				In construction as of 8/5/08
	Retail		10,000 sq ft. retail (from warehouse)				
143160	Rite Aid Store	1100 Manhattan Beach Boulevard	13,000 sq. ft. retail (Existing 8,600 sq. ft. gas station to be removed.)				In construction as of 8/5/08
144161	Sketchers Office Building	330 S . Sepulveda Boulevard	56,000 sq. ft. office	N/A	117	142	Construction complete per field visit 8/7/08
145162	Walgreens	2400 Sepulveda Boulevard	15,000 sq. ft. retail (demolition of vacant Albertsons store)				Not started per field visit of 8/5/08
CC = Culver City; CO = County of Los Angeles; ES = EI Segundo; HA = Hawthorne; IN = Inglewood; LA = City of Los Angeles; MB = Manhattan Beach. Represents peak hour trips during the am commuter peak hour ($8: 00 \mathrm{am}$ to $9: 00 \mathrm{am}$). Represents peak hour trips during the pm commuter peak hour ($5: 00 \mathrm{pm}$ to $6: 00 \mathrm{pm}$). 							

Finally, for the air dispersion analysis, it was assumed that the total modeled NOx concentrations were equivalent to NO_{2} concentrations, implying 100 percent conversion of NOx to NO_{2} by the time the construction plumes reached the receptors. This is a very conservative estimate for the closest receptors in the analysis since NOx emitted from construction equipment is only 5 to 10 percent NO_{2}, typically.
40 U.S. Environmental Protection Agency, User's Guide for the AMS/EPA Regulatory Model AERMOD, EPA-454/B-03-001, September 2004.
41 Receptors represent locations in the vicinity of the airport where people could potentially be exposed to the CFTP construction-related air pollutants by breathing the air.
5. The first paragraph on page 4-64 of the Draft EIR is hereby revised as follows:

Baseline conditions discussed herein refer to calendar year 2006 2007, the last full calendar year for which existing air quality data was available from SCAQMD when the air quality analysis was prepared. The airport is located within the South Coast Air Basin of California, a 6,745 squaremile area encompassing all of Orange County and the non-desert portions of Los Angeles, Riverside, and San Bernardino counties.
6. Section 4.2.4 of the CFTP Draft EIR is hereby revised as follows:

The SCAQMD has developed operational and construction-related thresholds of significance for air quality impacts of projects proposed in the Basin. These thresholds, which are included in the SCAQMD CEQA Air Quality Handbook as updated on SCAQMD's website, are utilized for purposes of CEQA, and are summarized in Table 4.2-5. In accordance with the SCAQMD CEQA Air Quality Handbook, a significant air quality impact would occur if the estimated incremental increase in construction-related emissions attributable to the project would be greater than the daily or quarterly construction emission thresholds presented in Table 4.2-5. In addition, a significant impact would occur if the estimated construction-related concentrations would be greater than the concentration thresholds presented in Table 4.2-5.

Table 4.2-5

SCAQMD CEQA Thresholds of Significance for Air Pollutants in the South Coast Air Basin

Pollutant	Mass Emission Thresholds		
	Construction		Operation
	Ibs/day	tons/quarter	lbs/day
CO	550	24.75	550
NO_{x}	100	2.5	55
ROG^{1}	75	2.5	55
SO_{2}	150	6.75	150
PM10	150	6.75	150
PM2.5	55	N/A	55
Lead	3	N/A	3

Construction Ambient Air Quality Thresholds for Criteria Pollutants

	Averaging Period	Concentration	Project Only or Total ${ }^{2}$
CO	1-Hour	$20 \mathrm{ppm}{ }^{3}\left(23 \mathrm{mg} / \mathrm{m}^{3}\right)^{4}$	Total incl. Background
CO	8-Hour	$9.0 \mathrm{ppm}\left(10 \mathrm{mg} / \mathrm{m}^{3}\right)$	Total incl. Background
$\mathrm{NO}_{\mathrm{x}}\left(\right.$ as NO_{2})	1-Hour	$0.18 \mathrm{ppm}\left(339 \mathrm{ug} / \mathrm{m}^{3}\right)^{5}$	Total incl. Background
$\mathrm{NO}_{x}\left(\right.$ as NO_{2})	Annual	$0.030 \mathrm{ppm}\left(57 \mathrm{ug} / \mathrm{m}^{3}\right)$	Total incl. Background
PM10	24-Hour	$10.4 \mathrm{ug} / \mathrm{m}^{3}$	Project Only
PM2.5	24-Hour	$10.4 \mathrm{ug} / \mathrm{m}^{3}$	Project Only

[^0]Source: SCAQMD, 1993, 2008.
7. The following text and tables are added immediately following Table 4.2-8 in Section 4.2.6.1:

Uncontrolled peak CFTP construction concentrations at the fence-line are presented in Tables 4.2-8A and 4.2-8B. Neither the peak 1-hour and 8-hour average concentrations of CO nor the peak 1-hour and annual average concentrations of NO_{2} would cause the respective CAAQS or NAAQS to be exceeded, as shown in Table 4.2-8A. The peak 24-hour average concentrations of PM10 and PM2.5 would not exceed the SCAQMD CEQA significance threshold for construction impacts, as shown in Table 4.2-8B. Therefore, uncontrolled CFTP construction concentration impacts would not be significant.

Table 4.2-8A
Concentrations of CO and NO_{2} for CFTP Peak Construction

Pollutant	Averaging Period	CFTP Construction Contribution	Back-ground ${ }^{1}$	Total w/CFTP	CAAQS ${ }^{2}$	Significant? (Yes/No)
CO	1-Hour	$43 \mathrm{ug} / \mathrm{m}^{3}$	3,450 ug/m ${ }^{3}$	3,493 ug/m ${ }^{3}$	23,000 ug/m ${ }^{3}$	No
CO	8-Hour	$10 \mathrm{ug} / \mathrm{m}^{3}$	2,667 ug/m ${ }^{3}$	2,677 ug/m ${ }^{3}$	$10,000 \mathrm{ug} / \mathrm{m}^{3}$	No
NO_{2}	1-Hour	$91 \mathrm{ug} / \mathrm{m}^{3}$	$186 \mathrm{ug} / \mathrm{m}^{3}$	277 ug/m ${ }^{3}$	$339 \mathrm{ug} / \mathrm{m}^{3}$	No
NO_{2}	Annual	$1 \mathrm{ug} / \mathrm{m}^{3}$	$29 \mathrm{ug} / \mathrm{m}^{3}$	$30 \mathrm{ug} / \mathrm{m}^{3}$	$57 \mathrm{ug} / \mathrm{m}^{3}$	No

1 The background concentration for each pollutant is the highest measured value for the previous three years (2005-2007), presented in Table 4.2-4 and converted to $\mathrm{ug} / \mathrm{m}^{3}$ for purposes of this table.
2 The CAAQS for each pollutant and averaging period is at least as stringent as the NAAQS; therefore, the comparison is made to the CAAQS. CAAQS values in parts per million (ppm) are presented in Table 4.2-2.

Sources: CDM, 2008; SCAQMD 1993.

Table 4.2-8B
Concentrations of PM10 and PM2.5 for CFTP Peak Construction

Pollutant	Averaging Period	CFTP Construction Contribution	SCAQMD Significance Threshold	Significant? (Yes/No)
PM10	24-Hour	$2.2 \mathrm{ug} / \mathrm{m}^{3}$	$10.4 \mathrm{ug} / \mathrm{m}^{3}$	No
PM2.5	24-Hour	$0.7 \mathrm{ug} / \mathrm{m}^{3}$	$10.4 \mathrm{ug} / \mathrm{m}^{3}$	No

Sources: CDM, 2008; SCAQMD 1993.

Chapter 5, Other Environmental Resources

1. The second paragraph on page $5-54$ of the Draft EIR is hereby revised as follows:

As described above, under the LAX Master Plan, in the event of a pool fire at the LAXFUEL Fuel Farm, individuals may be injured on the access road near the operations center, and at adjacent buildings, including the new ARFF proposed at the northeast edge of the fuel farm. Under the CFTP, two optional sites are proposed for the new ARFF; at the northeast corner of World Way West and Coast Guard Road, which would also be within the hazard footprint for a risk of upset at the fuel farm and could be injured; and at the western edge of the proposed (relocated) RON, which would be outside the hazard footprint for a risk of upset at the fuel farm. As described above, due to the numerous safety features currently in place and compliance with all applicable setback and regulatory requirements, the risk of a pool fire at the LAXFUEL Fuel Farm would be low. Because the likelihood and consequences of a pool fire under the LAX Master Plan would be the same as or less than under baseline conditions, the risk of upset impact of this scenario would be less than significant.
2. The first full paragraph on page 5-60 (Section 5.13.5.1) of the CFTP Draft EIR is hereby revised as follows:

Construction of the CFTP would require the relocation of existing water transmission lines in the project area. Specifically, a water lines that crosses beneath World Way West may need to be relocated to allow for the realignment and depression of the road. In-addition, construction of the

3. Corrections and Additions to the Crossfield Taxiway Project Draft EIR

proposed Taxiway C13 and associated service road would interrupt an existing north south fire water loop north of World Way West. A new connection is proposed to maintain the fire water service loop north of World Way West. South of World Way West another fire water loop will be protected in place and existing hydrants would be replaced with flush mounted types to meet FAA clearance requirements These proposed facilities are water line relocation in World Way West is shown in Figure 2-14.
3. The third paragraph on page $5-60$ (Section 5.13 .5 .1) of the CFTP Draft EIR is hereby revised as follows:

Construction of the CFTP would may require minor relocations of sewer lines in the project area construction of a short sewer line segment that would connect a new oil/water separator to the existing sewer line in Coast Guard Road. The NORS crosses beneath the CFTP project site at depth of approximately 60 feet and would not be adversely affected by project construction. Implementation of Master Plan Commitment PU-1 in the LAX Master Plan MMRP would ensure that impact to wastewater collection facilities would be less than significant.

Chapter 7, List of Preparers, Parties to Whom NOP was Sent, References, NOP Comments, and List of Acronyms

1. The following recipients of the NOP are hereby added to Section 7.2 of the Draft EIR:

Alliance for a Regional Solution to Airport Congestion
Denny Schneider, President
7929 Breen Avenue
Los Angeles, CA 90045
Chatten-Brown \& Carstens
Jan Chatten-Brown
3250 Ocean Park Boulevard, Suite 300
Santa Monica, CA 90405
City of Culver City
Carol Schwab, City Attorney
9770 Culver Boulevard
Culver City, CA 90232
City of Inglewood
Cal Saunders, City Attorney
1 Manchester Boulevard, Suite 860
Inglewood, CA 90231
County of Los Angeles
Thomas Faughnan, Principal Deputy County Counsel
648 Kenneth Hahn Hall of Administration
500 West Temple Street
Los Angeles, CA 90012-2713
County of Los Angeles
Raymond Fortner Jr., County Counsel
648 Kenneth Hahn Hall of Administration
500 West Temple Street
Los Angeles, CA 90012-2713

County of Los Angeles
Richard Weiss, Assistant County Counsel
648 Kenneth Hahn Hall of Administration
500 West Temple Street
Los Angeles, CA 90012-2713

3.3 Corrections and Additions to Appendices to the Draft EIR

Appendix C - Air Quality Data

1. The following section is hereby added to Appendix C, page 1 :

1.3 Construction Concentrations (Air Dispersion Modeling)

The AERMOD output files generated for the criteria pollutant air concentration analysis for construction sources are presented in Attachment 2. Included in Attachment 2 are the model run outputs for:

- 1-hour NOx
- Annual NOx
- 1-hour and 8-hour CO
- 24-hour PM10
- 24-hour PM2.5

2. A new attachment, Attachment 2, is hereby added to Appendix C, following Attachment 1. The new attachment is provided on the following pages.

3. Corrections and Additions to the Crossfield Taxiway Project Draft EIR

This page intentionally left blank.

Attachment 2

CFTP Construction Concentrations

(Air Dispersion Modeling) AERMOD Output Files

```
*** AERMOD - VERSION 07026 *** *** LAX CFTP Construction
*** NOx 1-Hour Peak (Assumed 100% Conversion to NO2) 15:01:22
CONC
DFAULT ELEV FLGPOL
**Model Is Setup For Calculation of Average CONCentration Values.
-- DEPOSITION LOGIC
**Model Uses NO DRY DEPLETION. DDPLETE \(=F\)
**Model Uses NO WET DEPLETION. WDPLETE = F
**NO GAS DRY DEPOSITION Data Provided.
**Model Uses URBAN Dispersion Algorithm for the SBL for 196 Source(s), for Total of 1 Urban Area(s):
Urban Population \(=165468.0\); Urban Roughness Length \(=1.000 \mathrm{~m}\)
**Model Uses Regulatory DEFAULT Options:
1. Stack-tip Downwash.
2. Model Accounts for ELEVated Terrain Effects.
3. Use Calms Processing Routine.
4. Use Missing Data Processing Routine.
5. No Exponential Decay for URBAN/Non-SO2
**Model Accepts FLAGPOLE Receptor Heights.
**Model Calculates 1 Short Term Average(s) of: 1-HR
**This Run Includes: 196 Source(s); 4 Source Group(s); and 120 Receptor(s)
**The Model Assumes A Pollutant Type of: NOX
**Model Set To Continue RUNning After the Setup Testing.
**Output Options Selected:
Model Outputs Tables of Highest Short Term Values by Receptor (RECTABLE Keyword)
Model Outputs External File(s) of High Values for Plotting (PLOTFILE Keyword)
**NOTE: The Following Flags May Appear Following CONC Values: c for Calm Hours
m for Missing Hours
b for Both Calm and Missing Hours

**Approximate Storage Requirements of Model \(=1.5 \mathrm{MB}\) of RAM.
**File for Saving Result Arrays: N0x1Hr.sv1

DFAULT ELEV FLGPOL
*** VOLUME SOURCE DATA ***
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline SOURCE ID & NUMBER PART. CATS. & \begin{tabular}{l}
EMISSION RAT \\
(GRAMS/SEC)
\end{tabular} & \begin{tabular}{l}
x \\
(METERS)
\end{tabular} & \begin{tabular}{l}
Y \\
(METERS)
\end{tabular} & \[
\begin{aligned}
& \text { BASE } \\
& \text { ELEV. } \\
& \text { (METERS) }
\end{aligned}
\] & RELEASE HEIGHT (METERS) & \[
\begin{gathered}
\text { INIT. } \\
\text { SY } \\
\text { (METERS) }
\end{gathered}
\] & \[
\begin{gathered}
\text { INIT. } \\
\text { SZ } \\
\text { (METERS) }
\end{gathered}
\] & URBAN SOURCE & \[
\begin{gathered}
\text { EMISSION R } \\
\text { SCALAR VA } \\
\text { BY }
\end{gathered}
\] \\
\hline L0000001 & 0 & 0.19124E-02 & 368157.3 & 3755892.2 & 0.0 & 0.00 & 8.74 & 1.16 & YES & HROFDY \\
\hline L0000002 & 0 & 0.19124E-02 & 368175.7 & 3755896.0 & 0.0 & 0.00 & 8.74 & 1.16 & YES & HROFDY \\
\hline L0000003 & 0 & 0.19124E-02 & 368182.2 & 3755885.0 & 0.0 & 0.00 & 7.96 & 1.16 & YES & HROFDY \\
\hline L0000004 & 0 & 0.19124E-02 & 368184.6 & 3755868.0 & 0.0 & 0.00 & 7.96 & 1.16 & YES & HROFDY \\
\hline L0000005 & 0 & 0.19124E-02 & 368187.0 & 3755851.0 & 0.0 & 0.00 & 7.96 & 1.16 & YES & HROFDY \\
\hline L0000006 & 0 & 0.19124E-02 & 368189.3 & 3755834.0 & 0.0 & 0.00 & 7.96 & 1.16 & YES & HROFDY \\
\hline L0000007 & 0 & 0.19124E-02 & 368191.7 & 3755817.2 & 0.0 & 0.00 & 7.96 & 1.16 & YES & HROFDY \\
\hline L0000008 & 0 & 0.19124E-02 & 368194.0 & 3755800.2 & 0.0 & 0.00 & 7.96 & 1.16 & YES & HROFDY \\
\hline L0000009 & 0 & 0.19124E-02 & 368209.4 & 3755797.2 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline L0000010 & 0 & 0.19124E-02 & 368229.2 & 3755799.8 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline L0000011 & 0 & 0.19124E-02 & 368248.8 & 3755802.2 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline L0000012 & 0 & 0.19124E-02 & 368268.5 & 3755804.8 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline L0000013 & 0 & 0.19124E-02 & 368288.2 & 3755807.2 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline L0000014 & 0 & 0.19124E-02 & 368307.9 & 3755810.0 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline L0000015 & 0 & 0.19124E-02 & 368327.6 & 3755812.5 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline L0000016 & 0 & 0.19124E-02 & 368347.3 & 3755815.0 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline L0000017 & 0 & 0.19124E-02 & 368367.0 & 3755817.5 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline L0000018 & 0 & 0.19124E-02 & 368386.7 & 3755820.0 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline L0000019 & \(\bigcirc\) & 0.19124E-02 & 368406.4 & 3755822.8 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline L0000020 & 0 & 0.19124E-02 & 368426.1 & 3755825.2 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline L0000021 & 0 & 0.19124E-02 & 368445.8 & 3755827.8 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline L0000022 & 0 & 0.19124E-02 & 368465.5 & 3755830.2 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline L0000023 & 0 & 0.19124E-02 & 368485.2 & 3755832.8 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline L0000024 & 0 & 0.19124E-02 & 368504.8 & 3755835.5 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline L0000025 & 0 & 0.19124E-02 & 368524.5 & 3755838.0 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline L0000026 & 0 & 0.19124E-02 & 368544.2 & 3755840.5 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline L0000027 & 0 & 0.19124E-02 & 368563.9 & 3755843.0 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline L0000028 & 0 & 0.19124E-02 & 368583.6 & 3755845.5 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline L0000029 & 0 & 0.19124E-02 & 368603.3 & 3755848.2 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline L0000030 & 0 & 0.19124E-02 & 368623.0 & 3755850.8 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline L0000031 & 0 & 0.19124E-02 & 368642.7 & 3755853.2 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline L0000032 & 0 & 0.19124E-02 & 368662.4 & 3755855.8 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline L0000033 & 0 & 0.19124E-02 & 368682.1 & 3755858.2 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline L0000034 & \(\bigcirc\) & 0.19124E-02 & 368701.8 & 3755861.0 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline L0000035 & 0 & 0.19124E-02 & 368721.5 & 3755863.5 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline L0000036 & 0 & 0.19124E-02 & 368741.2 & 3755866.0 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline L0000037 & 0 & 0.19124E-02 & 368760.8 & 3755868.5 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline L0000038 & 0 & 0.19124E-02 & 368780.5 & 3755871.0 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline L0000039 & 0 & 0.19124E-02 & 368800.2 & 3755873.5 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline L0000040 & 0 & 0.19124E-02 & 368819.9 & 3755876.2 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline
\end{tabular}

DFAULT ELEV FLGPOL
*** VOLUME SOURCE DATA ***
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline SOURCE
ID & NUMBER PART. CATS. & EMISSION RAT (GRAMS/SEC) & (METERS) (METERS) & \[
\begin{aligned}
& \text { BASE } \\
& \text { ELEV. } \\
& \text { (METERS) }
\end{aligned}
\] & RELEASE HEIGHT (METERS) & \[
\begin{gathered}
\text { INIT. } \\
\text { SY } \\
\text { (METERS) }
\end{gathered}
\] & \[
\begin{gathered}
\text { INIT. } \\
\text { SZ } \\
\text { (METERS) }
\end{gathered}
\] & URBAN SOURCE & EMISSION R BY \\
\hline L0000041 & 0 & 0.19124E-02 & 368839.63755878 .8 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline L0000042 & 0 & 0.19124E-02 & 368859.33755881 .2 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline L0000043 & 0 & 0.19124E-02 & 368879.03755883 .8 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline L0000044 & 0 & 0.19124E-02 & 368898.73755886 .2 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline L0000045 & 0 & 0.19124E-02 & 368918.43755889 .0 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline L0000046 & \(\bigcirc\) & 0.19124E-02 & 368938.13755891 .5 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline L0000047 & 0 & 0.19124E-02 & 368957.83755894 .0 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline L0000048 & 0 & 0.19124E-02 & 368977.53755896 .5 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline L0000049 & 0 & 0.19124E-02 & 368997.23755899 .0 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline L0000050 & 0 & 0.19124E-02 & 369001.13755914 .8 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000051 & 0 & 0.19124E-02 & 368999.83755934 .5 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000052 & 0 & 0.19124E-02 & 368998.53755954 .5 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000053 & 0 & 0.19124E-02 & 368997.23755974 .5 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000054 & 0 & 0.19124E-02 & 368995.83755994 .5 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000055 & 0 & 0.19124E-02 & 368994.53756014 .2 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000056 & 0 & 0.19124E-02 & 368993.23756034 .2 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000057 & 0 & 0.19124E-02 & 368991.83756054 .2 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000058 & 0 & 0.19124E-02 & 368990.53756074 .2 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000059 & 0 & 0.19124E-02 & 368989.23756094 .0 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000060 & 0 & 0.19124E-02 & 368987.83756114 .0 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000061 & 0 & 0.19124E-02 & 368986.53756134 .0 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000062 & 0 & 0.19124E-02 & 368985.23756153 .8 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000063 & 0 & 0.19124E-02 & 368983.83756173 .8 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000064 & 0 & 0.19124E-02 & 368982.53756193 .8 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000065 & 0 & 0.19124E-02 & 368981.23756213 .8 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000066 & 0 & 0.19124E-02 & 368979.93756233 .5 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000067 & 0 & 0.19124E-02 & 368978.53756253 .5 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000068 & \(\bigcirc\) & 0.19124E-02 & 368977.23756273 .5 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000069 & 0 & 0.19124E-02 & 368975.93756293 .5 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000070 & 0 & 0.19124E-02 & 368974.63756313 .2 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000071 & 0 & 0.19124E-02 & 368973.23756333 .2 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000072 & 0 & 0.19124E-02 & 368971.93756353 .2 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000073 & 0 & 0.19124E-02 & 368970.63756373 .0 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000074 & \(\bigcirc\) & 0.19124E-02 & 368969.23756393 .0 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000075 & 0 & 0.19124E-02 & 368967.93756413 .0 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000076 & 0 & 0.19124E-02 & 368966.63756433 .0 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000077 & 0 & 0.19124E-02 & 368965.23756452 .8 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000078 & 0 & 0.19124E-02 & 368963.93756472 .8 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000079 & 0 & 0.19124E-02 & 368962.63756492 .8 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000080 & 0 & 0.19124E-02 & 368961.33756512 .8 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline
\end{tabular}

\section*{DFAULT ELEV FLGPOL}
*** VOLUME SOURCE DATA ***
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & NUMBER & EMISSION RATE & & & BASE & RELEASE & INIT. & INIT. & URBAN & EMISSION RATE \\
\hline SOURCE & PART. & (GRAMS/SEC) & X & Y & ELEV. & HEIGHT & SY & SZ & SOURCE & SCALAR VARY \\
\hline ID & CATS. & & (METERS) & (METERS) & (METERS) & (METERS) & (METERS) & (METERS) & & BY \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline L0000081 & 0 & 0.19124E-02 & 368959.9 & 3756532.5 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000082 & 0 & 0.19124E-02 & 368958.6 & 3756552.5 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000083 & 0 & 0.19124E-02 & 368957.3 & 3756572.5 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000084 & 0 & 0.19124E-02 & 368956.0 & 3756592.2 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000085 & 0 & 0.19124E-02 & 368954.6 & 3756612.2 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000086 & 0 & 0.19124E-02 & 368953.3 & 3756632.2 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000087 & 0 & 0.19124E-02 & 368952.0 & 3756652.2 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000088 & 0 & 0.19124E-02 & 368950.7 & 3756672.0 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000089 & 0 & 0.19124E-02 & 368949.3 & 3756692.0 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000090 & 0 & 0.19124E-02 & 368948.0 & 3756712.0 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000091 & 0 & 0.19124E-02 & 368946.7 & 3756732.0 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000092 & 0 & 0.19124E-02 & 368945.3 & 3756751.8 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000093 & 0 & 0.19124E-02 & 368944.0 & 3756771.8 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000094 & 0 & 0.19124E-02 & 368942.7 & 3756791.8 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000095 & 0 & 0.19124E-02 & 368941.3 & 3756811.5 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000096 & 0 & 0.19124E-02 & 368940.0 & 3756831.5 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000097 & 0 & 0.19124E-02 & 368938.7 & 3756851.5 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000098 & 0 & 0.19124E-02 & 368937.4 & 3756871.5 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000099 & 0 & 0.19124E-02 & 368936.0 & 3756891.2 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000100 & 0 & 0.19124E-02 & 368934.7 & 3756911.2 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000101 & 0 & 0.19124E-02 & 368919.5 & 3756914.5 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000102 & 0 & 0.19124E-02 & 368899.7 & 3756912.2 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000103 & 0 & 0.19124E-02 & 368879.9 & 3756910.0 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000104 & 0 & 0.19124E-02 & 368860.0 & 3756907.8 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000105 & 0 & 0.19124E-02 & 368840.2 & 3756905.5 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000106 & 0 & 0.19124E-02 & 368820.4 & 3756903.2 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000107 & 0 & 0.19124E-02 & 368800.6 & 3756901.0 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000108 & 0 & 0.19124E-02 & 368780.8 & 3756898.8 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000109 & 0 & 0.19124E-02 & 368760.9 & 3756896.5 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000110 & 0 & 0.19124E-02 & 368741.1 & 3756894.2 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000111 & 0 & 0.19124E-02 & 368721.3 & 3756892.0 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000112 & 0 & 0.19124E-02 & 368701.4 & 3756889.8 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000113 & 0 & 0.19124E-02 & 368681.6 & 3756887.5 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000114 & 0 & 0.19124E-02 & 368661.8 & 3756885.2 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000115 & 0 & 0.19124E-02 & 368642.0 & 3756883.0 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000116 & 0 & 0.19124E-02 & 368622.2 & 3756880.8 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000117 & 0 & 0.19124E-02 & 368602.3 & 3756878.5 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000118 & 0 & 0.19124E-02 & 368582.5 & 3756876.0 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000119 & 0 & 0.19124E-02 & 368562.7 & 3756873.8 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000120 & 0 & 0.19124E-02 & 368542.8 & 3756871.5 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline
\end{tabular}

DFAULT ELEV FLGPOL
*** VOLUME SOURCE DATA ***
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline SOURCE ID & NUMBER PART. CATS. & EMISSION RAT (GRAMS/SEC) & X (METERS) & \begin{tabular}{l}
Y \\
(METERS)
\end{tabular} & \[
\begin{aligned}
& \text { BASE } \\
& \text { ELEV. } \\
& \text { (METERS) }
\end{aligned}
\] & RELEASE HEIGHT (METERS) & INIT.
SY
(METERS) & INIT.
SZ
(METERS) & URBAN SOURCE & \[
\begin{gathered}
\text { EMISSION R } \\
\text { SCALAR VA } \\
B Y
\end{gathered}
\] \\
\hline L0000121 & 0 & 0.19124E-02 & 368523.0 & 3756869.2 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000122 & 0 & 0.19124E-02 & 368503.2 & 3756867.0 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000123 & 0 & 0.19124E-02 & 368483.4 & 3756864.8 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000124 & 0 & 0.19124E-02 & 368463.5 & 3756862.5 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000125 & 0 & 0.19124E-02 & 368443.7 & 3756860.2 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000126 & 0 & 0.19124E-02 & 368423.9 & 3756858.0 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000127 & 0 & 0.19124E-02 & 368404.1 & 3756855.8 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000128 & 0 & 0.19124E-02 & 368384.2 & 3756853.5 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000129 & 0 & 0.19124E-02 & 368364.4 & 3756851.2 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000130 & 0 & 0.19124E-02 & 368344.6 & 3756849.0 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000131 & 0 & 0.19124E-02 & 368324.8 & 3756846.8 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000132 & 0 & 0.19124E-02 & 368304.9 & 3756844.5 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000133 & 0 & 0.19124E-02 & 368285.1 & 3756842.2 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000134 & 0 & 0.19124E-02 & 368265.3 & 3756840.0 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000135 & \(\bigcirc\) & 0.19124E-02 & 368245.5 & 3756837.8 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000136 & 0 & 0.19124E-02 & 368225.7 & 3756835.5 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000137 & 0 & 0.19124E-02 & 368205.8 & 3756833.2 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000138 & 0 & 0.19124E-02 & 368186.0 & 3756831.0 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000139 & 0 & 0.19124E-02 & 368166.2 & 3756828.8 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000140 & 0 & 0.19124E-02 & 368146.3 & 3756826.2 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000141 & 0 & 0.19124E-02 & 368126.5 & 3756824.0 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000142 & 0 & 0.19124E-02 & 368106.7 & 3756821.8 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000143 & 0 & 0.19124E-02 & 368086.9 & 3756819.5 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000144 & 0 & 0.19124E-02 & 368067.0 & 3756817.2 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000145 & 0 & 0.19124E-02 & 368047.2 & 3756815.0 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000146 & 0 & 0.19124E-02 & 368044.1 & 3756800.0 & 0.0 & 0.00 & 9.07 & 1.16 & YES & HROFDY \\
\hline L0000147 & 0 & 0.19124E-02 & 368046.5 & 3756780.8 & 0.0 & 0.00 & 9.07 & 1.16 & YES & HROFDY \\
\hline L0000148 & 0 & 0.19124E-02 & 368048.9 & 3756761.5 & 0.0 & 0.00 & 9.07 & 1.16 & YES & HROFDY \\
\hline L0000149 & 0 & 0.19124E-02 & 368051.3 & 3756742.0 & 0.0 & 0.00 & 9.07 & 1.16 & YES & HROFDY \\
\hline L0000150 & 0 & 0.19124E-02 & 368053.8 & 3756722.8 & 0.0 & 0.00 & 9.07 & 1.16 & YES & HROFDY \\
\hline L0000151 & 0 & 0.19124E-02 & 368056.2 & 3756703.2 & 0.0 & 0.00 & 9.07 & 1.16 & YES & HROFDY \\
\hline L0000152 & 0 & 0.19124E-02 & 368058.6 & 3756684.0 & 0.0 & 0.00 & 9.07 & 1.16 & YES & HROFDY \\
\hline L0000153 & 0 & 0.19124E-02 & 368061.0 & 3756664.5 & 0.0 & 0.00 & 9.07 & 1.16 & YES & HROFDY \\
\hline L0000154 & 0 & 0.19124E-02 & 368063.4 & 3756645.2 & 0.0 & 0.00 & 9.07 & 1.16 & YES & HROFDY \\
\hline L0000155 & 0 & 0.19124E-02 & 368065.8 & 3756626.0 & 0.0 & 0.00 & 9.07 & 1.16 & YES & HROFDY \\
\hline L0000156 & 0 & 0.19124E-02 & 368068.2 & 3756606.5 & 0.0 & 0.00 & 9.07 & 1.16 & YES & HROFDY \\
\hline L0000157 & 0 & 0.19124E-02 & 368070.7 & 3756587.2 & 0.0 & 0.00 & 9.07 & 1.16 & YES & HROFDY \\
\hline L0000158 & 0 & 0.19124E-02 & 368073.1 & 3756567.8 & 0.0 & 0.00 & 9.07 & 1.16 & YES & HROFDY \\
\hline L0000159 & 0 & 0.19124E-02 & 368075.5 & 3756548.5 & 0.0 & 0.00 & 9.07 & 1.16 & YES & HROFDY \\
\hline L0000160 & 0 & 0.19124E-02 & 368077.9 & 3756529.0 & 0.0 & 0.00 & 9.07 & 1.16 & YES & HROFDY \\
\hline
\end{tabular}

\section*{DFAULT ELEV FLGPOL}
*** VOLUME SOURCE DATA ***
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & NUMBER & EMISSION RATE & & & BASE & RELEASE & INIT. & INIT. & URBAN & EMISSION RATE \\
\hline SOURCE & PART. & (GRAMS/SEC) & X & Y & ELEV. & HEIGHT & SY & SZ & SOURCE & SCALAR VARY \\
\hline ID & CATS. & & (METERS) & (METERS) & (METERS) & (METERS) & (METERS) & (METERS) & & BY \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline L0000161 & 0 & 0.19124E-02 & 368080.4 & 3756509.8 & 0.0 & 0.00 & 9.07 & 1.16 & YES & HROFDY \\
\hline L0000162 & 0 & 0.19124E-02 & 368082.8 & 3756490.5 & 0.0 & 0.00 & 9.07 & 1.16 & YES & HROFDY \\
\hline L0000163 & 0 & 0.19124E-02 & 368085.2 & 3756471.0 & 0.0 & 0.00 & 9.07 & 1.16 & YES & HROFDY \\
\hline L0000164 & 0 & 0.19124E-02 & 368087.6 & 3756451.8 & 0.0 & 0.00 & 9.07 & 1.16 & YES & HROFDY \\
\hline L0000165 & 0 & 0.19124E-02 & 368090.1 & 3756432.2 & 0.0 & 0.00 & 9.07 & 1.16 & YES & HROFDY \\
\hline L0000166 & 0 & 0.19124E-02 & 368092.5 & 3756413.0 & 0.0 & 0.00 & 9.07 & 1.16 & YES & HROFDY \\
\hline L0000167 & 0 & 0.19124E-02 & 368090.2 & 3756397.2 & 0.0 & 0.00 & 7.47 & 1.16 & YES & HROFDY \\
\hline L0000168 & 0 & 0.19124E-02 & 368085.9 & 3756381.8 & 0.0 & 0.00 & 7.47 & 1.16 & YES & HROFDY \\
\hline L0000169 & 0 & 0.19124E-02 & 368086.6 & 3756365.0 & 0.0 & 0.00 & 7.99 & 1.16 & YES & HROFDY \\
\hline L0000170 & 0 & 0.19124E-02 & 368089.4 & 3756348.0 & 0.0 & 0.00 & 7.99 & 1.16 & YES & HROFDY \\
\hline L0000171 & 0 & 0.19124E-02 & 368092.2 & 3756331.0 & 0.0 & 0.00 & 7.99 & 1.16 & YES & HROFDY \\
\hline L0000172 & 0 & 0.19124E-02 & 368095.1 & 3756314.2 & 0.0 & 0.00 & 7.99 & 1.16 & YES & HROFDY \\
\hline L0000173 & 0 & 0.19124E-02 & 368097.9 & 3756297.2 & 0.0 & 0.00 & 7.99 & 1.16 & YES & HROFDY \\
\hline L0000174 & 0 & 0.19124E-02 & 368107.4 & 3756283.5 & 0.0 & 0.00 & 8.05 & 1.16 & YES & HROFDY \\
\hline L0000175 & 0 & 0.19124E-02 & 368119.7 & 3756271.2 & 0.0 & 0.00 & 8.05 & 1.16 & YES & HROFDY \\
\hline L0000176 & 0 & 0.19124E-02 & 368131.9 & 3756259.0 & 0.0 & 0.00 & 8.05 & 1.16 & YES & HROFDY \\
\hline L0000177 & 0 & 0.19124E-02 & 368137.3 & 3756240.8 & 0.0 & 0.00 & 9.27 & 1.16 & YES & HROFDY \\
\hline L0000178 & 0 & 0.19124E-02 & 368139.8 & 3756221.0 & 0.0 & 0.00 & 9.27 & 1.16 & YES & HROFDY \\
\hline L0000179 & 0 & 0.19124E-02 & 368142.3 & 3756201.2 & 0.0 & 0.00 & 9.27 & 1.16 & YES & HROFDY \\
\hline L0000180 & 0 & 0.19124E-02 & 368144.8 & 3756181.5 & 0.0 & 0.00 & 9.27 & 1.16 & YES & HROFDY \\
\hline L0000181 & 0 & 0.19124E-02 & 368147.3 & 3756161.8 & 0.0 & 0.00 & 9.27 & 1.16 & YES & HROFDY \\
\hline L0000182 & 0 & 0.19124E-02 & 368149.8 & 3756142.0 & 0.0 & 0.00 & 9.27 & 1.16 & YES & HROFDY \\
\hline L0000183 & 0 & 0.19124E-02 & 368152.3 & 3756122.0 & 0.0 & 0.00 & 9.27 & 1.16 & YES & HROFDY \\
\hline L0000184 & 0 & 0.19124E-02 & 368154.9 & 3756102.2 & 0.0 & 0.00 & 9.27 & 1.16 & YES & HROFDY \\
\hline L0000185 & 0 & 0.19124E-02 & 368157.4 & 3756082.5 & 0.0 & 0.00 & 9.27 & 1.16 & YES & HROFDY \\
\hline L0000186 & 0 & 0.19124E-02 & 368159.9 & 3756062.8 & 0.0 & 0.00 & 9.27 & 1.16 & YES & HROFDY \\
\hline L0000187 & 0 & 0.19124E-02 & 368162.4 & 3756043.0 & 0.0 & 0.00 & 9.27 & 1.16 & YES & HROFDY \\
\hline L0000188 & 0 & 0.19124E-02 & 368164.9 & 3756023.2 & 0.0 & 0.00 & 9.27 & 1.16 & YES & HROFDY \\
\hline L0000189 & 0 & 0.19124E-02 & 368167.4 & 3756003.5 & 0.0 & 0.00 & 9.27 & 1.16 & YES & HROFDY \\
\hline L0000190 & 0 & 0.19124E-02 & 368169.9 & 3755983.8 & 0.0 & 0.00 & 9.27 & 1.16 & YES & HROFDY \\
\hline L0000191 & 0 & 0.19124E-02 & 368172.4 & 3755964.0 & 0.0 & 0.00 & 9.27 & 1.16 & YES & HROFDY \\
\hline L0000192 & 0 & 0.19124E-02 & 368174.9 & 3755944.2 & 0.0 & 0.00 & 9.27 & 1.16 & YES & HROFDY \\
\hline L0000193 & 0 & 0.19124E-02 & 368177.4 & 3755924.5 & 0.0 & 0.00 & 9.27 & 1.16 & YES & HROFDY \\
\hline L0000194 & 0 & 0.19124E-02 & 368180.0 & 3755904.8 & 0.0 & 0.00 & 9.27 & 1.16 & YES & HROFDY \\
\hline
\end{tabular}


\section*{*** AREAPOLY SOURCE DATA ***}



*** SOURCE IDs DEFINING SOURCE GROUPS ***

L0000011, L0000012, L0000013, L0000014, L0000015, L0000016, L0000017, L0000018, L0000019, L0000020, L0000021, L0000022, L0000023, L0000024, L0000025, L0000026, L0000027, L0000028, L0000029, L0000030, L0000031, L0000032, L0000033, L0000034, L0000035, L0000036, L0000037, L0000038, L0000039, L0000040, L0000041, L0000042, L0000043, L0000044, L0000045, L0000046, L0000047, L0000048, L0000049, L0000050, L0000051, L0000052, L0000053, L0000054, L0000055, L0000056, L0000057, L0000058, L0000059, L0000060, L0000061, L0000062, L0000063, L0000064, L0000065, L0000066, L0000067, L0000068, L0000069, L0000070, L0000071, L0000072, L0000073, L0000074, L0000075, L0000076, L0000077, L0000078, L0000079, L0000080, L0000081, L0000082, L0000083, L0000084, L0000085, L0000086, L0000087, L0000088, L0000089, L0000090, L0000091, L0000092, L0000093, L0000094, L0000095, L0000096, L0000097, L0000098, L0000099, L0000100, L0000101, L0000102, L0000103, L0000104, L0000105, L0000106, L0000107, L0000108, L0000109, L0000110, L0000111, L0000112, L0000113, L0000114, L0000115, L0000116, L0000117, L0000118, L0000119, L0000120, L0000121, L0000122, L0000123, L0000124, L0000125, L0000126, L0000127, L0000128, L0000129, L0000130, L0000131, L0000132, L0000133, L0000134, L0000135, L0000136, L0000137, L0000138, L0000139, L0000140, L0000141, L0000142, L0000143, L0000144, L0000145, L0000146, L0000147, L0000148, L0000149, L0000150, L0000151, L0000152, L0000153, L0000154, L0000155, L0000156, L0000157, L0000158, L0000159, L0000160, L0000161, L0000162, L0000163, L0000164, L0000165, L0000166, L0000167, L0000168, L0000169, L0000170, L0000171, L0000172, L0000173, L0000174, L0000175, L0000176, L0000177, L0000178, L0000179, L0000180, L0000181, L0000182, L0000183, L0000184, L0000185, L0000186, L0000187, L0000188, L0000189, L0000190, L0000191, L0000192, L0000193, L0000194,
* LAX CFTP Construction
**** 11/25/08 *MODELOPTs:
*** NOx 1-Hour Peak (Assumed 100\% Conversion to NO2)
DFAULT ELEV FLGPOL
* SOURCE EMISSION RATE SCALARS WHICH VARY FOR EACH HOUR OF THE DAY
HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR


The following 38 pages have been deleted from the original AERMOD output file. The source emission rate scalars are identical for Source IDs L0000001 through L0000194, so pages 11 through 48 have been deleted since the data above are simply repeated for these 194 sources.


DFAULT ELEV FLGPOL
* SOURCE EMISSION RATE SCALARS WHICH VARY FOR EACH HOUR OF THE DAY *


\section*{DFAULT ELEV}
*** DISCRETE CARTESIAN RECEPTORS ***
(X-COORD, Y-COORD, ZELEV, ZHILL, ZFLAG)
\begin{tabular}{|c|c|}
\hline 367483.7, & 3755199.0, \\
\hline 367114.3, & 3756056.2, \\
\hline 366852.9, & 3756663.0, \\
\hline 366875.5, & 3756760.0, \\
\hline 366677.2, & 3757024.5, \\
\hline 366437.3, & 3757530.8, \\
\hline 366623.9, & 3757468.0, \\
\hline 366777.1, & 3757519.8, \\
\hline 367174.2, & 3757739.5, \\
\hline 367412.7, & 3757694.8, \\
\hline 367517.8, & 3757796.2, \\
\hline 367609.1, & 3757676.8, \\
\hline 367774.8, & 3757718.5, \\
\hline 367807.1, & 3757935.5, \\
\hline 367798.1, & 3758011.0, \\
\hline 367904.5, & 3757930.2, \\
\hline 368232.8, & 3757790.2, \\
\hline 368603.4, & 3757765.0, \\
\hline 368769.7, & 3757798.5, \\
\hline 369080.3, & 3757864.0, \\
\hline 369408.7, & 3757730.0, \\
\hline 369265.0, & 3757996.5, \\
\hline 369460.0, & 3758394.2, \\
\hline 369850.4, & 3758078.0, \\
\hline 370297.5, & 3757962.8, \\
\hline 370510.1, & 3758027.2, \\
\hline 370886.4, & 3758089.0, \\
\hline 370907.3, & 3757701.5, \\
\hline 371045.8, & 3757667.5, \\
\hline 371121.7, & 3757583.5, \\
\hline 371254.0, & 3757762.2, \\
\hline 371372.3, & 3757782.2, \\
\hline 371798.3, & 3758080.2, \\
\hline 371964.2, & 3757921.8, \\
\hline 372023.3, & 3757843.2, \\
\hline 372002.4, & 3757140.2, \\
\hline 371034.6, & 3757132.5, \\
\hline 370764.2, & 3757087.0, \\
\hline 371031.5, & 3756807.2, \\
\hline 371483.1, & 3756770.2, \\
\hline 372274.4, & 3756752.8, \\
\hline 372702.6, & 3756552.5, \\
\hline 372814.4, & 3756455.0, \\
\hline 372704.8, & 3756371.5, \\
\hline & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 0.0, & 0.0, & 1.8); & ( 367300.9, & 3755623.2, \\
\hline 0.0, & 0.0, & 1.8); & ( 366984.5, & 3756357.5 \\
\hline 0.0, & 0.0, & 1.8); & ( 366902.3, & 3756692.0, \\
\hline 0.0, & 0.0, & 1.8); & ( 366812.7, & 3756738.5, \\
\hline 0.0, & 0.0, & 1.8); & ( 366536.2, & 3757322.0, \\
\hline 0.0, & 0.0, & 1.8); & ( 366486.9, & 3757537.2, \\
\hline 0.0, & 0.0, & 1.8); & ( 366644.4, & 3757530.8, \\
\hline 0.0, & 0.0, & 1.8); & ( 366998.6, & 3757642.2, \\
\hline 0.0, & 0.0, & 1.8); & ( 367290.7, & 3757694.2, \\
\hline 0.0, & 0.0, & 1.8); & ( 367409.8, & 3757735.8, \\
\hline 0.0, & 0.0, & 1.8); & ( 367539.2, & 3757802.0, \\
\hline 0.0, & 0.0, & 1.8); & ( 367769.1, & 3757644.2, \\
\hline 0.0, & 0.0, & 1.8); & ( 367809.5, & 3757834.5 \\
\hline 0.0, & 0.0, & 1.8); & ( 367774.9, & 3757958.5, \\
\hline 0.0, & 0.0, & 1.8); & ( 367914.4, & 3757961.5, \\
\hline 0.0, & 0.0, & 1.8); & ( 368108.7, & 3757840.2, \\
\hline 0.0, & 0.0, & 1.8); & ( 368308.9, & 3757761.5, \\
\hline 0.0, & 0.0, & 1.8); & ( 368603.8, & 3757718.5, \\
\hline 0.0, & 0.0, & 1.8); & ( 369017.2, & 3757954.2, \\
\hline 0.0, & 0.0, & 1.8); & ( 369224.0, & 3757952.2, \\
\hline 0.0, & 0.0, & 1.8); & ( 369454.2, & 3757776.0, \\
\hline 0.0, & 0.0, & 1.8); & ( 369451.6, & 3758128.0, \\
\hline 0.0, & 0.0, & 1.8); & ( 369853.1, & 3758394.2 \\
\hline 0.0, & 0.0, & 1.8); & ( 370298.6, & 3758078.2, \\
\hline 0.0, & 0.0, & 1.8); & ( 370382.3, & 3757966.0, \\
\hline 0.0, & 0.0, & 1.8); & ( 370505.6, & 3758087.8 , \\
\hline 0.0, & 0.0, & 1.8); & ( 370885.1, & 3757750.5, \\
\hline 0.0, & 0.0, & 1.8); & ( 370944.9, & 3757670.0, \\
\hline 0.0, & 0.0, & 1.8); & ( 371046.3, & 3757585.0, \\
\hline 0.0, & 0.0, & 1.8); & ( 371192.6, & 3757720.2, \\
\hline 0.0, & 0.0, & 1.8); & ( 371263.7, & 3757782.5, \\
\hline 0.0, & 0.0, & 1.8); & ( 371399.4, & 3757806.2, \\
\hline 0.0, & 0.0, & 1.8); & ( 371908.2, & 3757933.5, \\
\hline 0.0, & 0.0, & 1.8); & ( 371970.2, & 3757841.5, \\
\hline 0.0, & 0.0, & 1.8); & ( 372019.9, & 3757551.5, \\
\hline 0.0, & 0.0, & 1.8); & ( 371514.1, & 3757136.2, \\
\hline 0.0, & 0.0, & 1.8); & ( 371034.4, & 3757085.2, \\
\hline 0.0, & 0.0, & 1.8); & ( 370754.0, & 3756817.8 , \\
\hline 0.0, & 0.0, & 1.8); & ( 371033.1, & 3756780.2, \\
\hline 0.0, & 0.0, & 1.8); & ( 371817.2, & 3756763.0, \\
\hline 0.0, & 0.0, & 1.8); & ( 372713.4, & 3756743.0, \\
\hline 0.0, & 0.0, & 1.8); & ( 372818.8, & 3756548.8 \\
\hline 0.0, & 0.0, & 1.8); & ( 372796.8, & 3756367.5, \\
\hline 0.0, & 0.0, & 1.8); & ( 372706.3, & 3756326.8, \\
\hline 0.0, & 0.0, & 1.8); & ( 372926.2, & 3756245.0, \\
\hline
\end{tabular}
\begin{tabular}{lll}
0.0, & 0.0, & \(1.8) ;\) \\
0.0, & 0.0, & \(1.8) ;\) \\
0.0, & 0.0, & \(1.8) ;\) \\
0.0, & 0.0, & \(1.8) ;\) \\
0.0, & 0.0, & \(1.8) ;\) \\
0.0, & 0.0, & \(1.8) ;\) \\
0.0, & 0.0, & \(1.8) ;\) \\
0.0, & 0.0, & \(1.8) ;\) \\
0.0, & 0.0, & \(1.8) ;\) \\
0.0, & 0.0, & \(1.8) ;\) \\
0.0, & 0.0, & \(1.8) ;\) \\
0.0, & 0.0, & \(1.8) ;\) \\
0.0, & 0.0, & \(1.8) ;\) \\
0.0, & 0.0, & \(1.8) ;\) \\
0.0, & 0.0, & \(1.8) ;\) \\
0.0, & 0.0, & \(1.8) ;\) \\
0.0, & 0.0, & \(1.8) ;\) \\
0.0, & 0.0, & \(1.8) ;\) \\
0.0, & 0.0, & \(1.8) ;\) \\
0.0, & 0.0, & \(1.8) ;\) \\
0.0, & 0.0, & \(1.8) ;\) \\
0.0, & 0.0, & \(1.8) ;\) \\
0.0, & 0.0, & \(1.8) ;\) \\
0.0, & 0.0, & \(1.8) ;\) \\
0.0, & 0.0, & \(1.8) ;\) \\
0.0, & 0.0, & \(1.8) ;\) \\
0.0, & 0.0, & \(1.8) ;\) \\
0.0, & 0.0, & \(1.8) ;\) \\
0.0, & 0.0, & \(1.8) ;\) \\
0.0, & 0.0, & \(1.8) ;\) \\
0.0, & 0.0, & \(1.8) ;\) \\
0.0, & 0.0, & \(1.8) ;\) \\
0.0, & 0.0, & \(1.8) ;\) \\
0.0, & 0.0, & \(1.8) ;\) \\
0.0, & 0.0, & \(1.8) ;\) \\
0.0, & 0.0, & \(1.8) ;\) \\
0.0, & 0.0, & \(1.8) ;\) \\
0.0, & 0.0, & \(1.8) ;\) \\
0.0, & 0.0, & \(1.8) ;\) \\
0.0, & 0.0, & \(1.8) ;\) \\
0.0, & 0.0, & \(1.8) ;\) \\
0.0, & 0.0, & \(1.8) ;\) \\
0.0, & 0.0, & \(1.8) ;\) \\
0.0, & 0.0, & \(1.8) ;\) \\
0.0, & 0.0, & \(1.8) ;\) \\
\hline 0
\end{tabular}
*** AERMOD - VERSION 07026 **
*MODELOPTs
CONC
** LAX CFTP Construction
*** NOx 1-Hour Peak (Assumed 100\% Conversion to NO2)
*** 11/25/08
15:01:22
PAGE 51

\begin{tabular}{lll}
0.0, & 0.0, & \(1.8) ;\) \\
0.0, & 0.0, & \(1.8) ;\) \\
0.0, & 0.0, & \(1.8) ;\) \\
0.0, & 0.0, & \(1.8) ;\) \\
0.0, & 0.0, & \(1.8) ;\) \\
0.0, & 0.0, & \(1.8) ;\) \\
0.0, & 0.0, & \(1.8) ;\) \\
0.0, & 0.0, & \(1.8) ;\) \\
0.0, & 0.0, & \(1.8) ;\) \\
0.0, & 0.0, & \(1.8) ;\) \\
0.0, & 0.0, & \(1.8) ;\) \\
0.0, & 0.0, & \(1.8) ;\) \\
0.0, & 0.0, & \(1.8) ;\) \\
0.0, & 0.0, & \(1.8) ;\) \\
0.0, & 0.0, & \(1.8) ;\)
\end{tabular}
\begin{tabular}{lllll}
\((373448.0\), & 3755559.8, & 0.0, & 0.0, & \(1.8) ;\) \\
\((373219.3\), & 3755705.0, & 0.0, & 0.0, & \(1.8) ;\) \\
\((373131.2\), & 3755566.8, & 0.0, & 0.0, & \(1.8) ;\) \\
\((373046.2\), & 3755174.0, & 0.0, & 0.0, & \(1.8) ;\) \\
\((372624.1\), & 3755182.2, & 0.0, & 0.0, & \(1.8) ;\) \\
\((371843.0\), & 3755188.8, & 0.0, & 0.0, & \(1.8) ;\) \\
\((371049.0\), & 3755195.5, & 0.0, & 0.0, & \(1.8) ;\) \\
\((371043.4\), & 3755384.0, & 0.0, & 0.0, & \(1.8) ;\) \\
\((370995.8\), & 3755560.2, & 0.0, & 0.0, & \(1.8) ;\) \\
\((370801.4\), & 3755275.5, & 0.0, & 0.0, & \(1.8) ;\) \\
\((370380.3\), & 3755263.2, & 0.0, & 0.0, & \(1.8) ;\) \\
\((369786.9\), & 3755266.5, & 0.0, & 0.0, & \(1.8) ;\) \\
\((369193.6\), & 3755269.8, & 0.0, & 0.0, & \(1.8) ;\) \\
\((368569.3\), & 3755273.2, & 0.0, & 0.0, & \(1.8) ;\) \\
\((367936.4,3755213.2\), & 0.0, & 0.0, & \(1.8) ;\)
\end{tabular}
*** AERMOD - VERSION 07026 ***
*** LAX CFTP Construction
*** METEOROLOGICAL DAYS SELECTED FOR PROCESSING ***
(1=YES; 0=NO)

*** UPPER BOUND OF FIRST THROUGH FIFTH WIND SPEED CATEGORIES ***
(METERS/SEC)
1.54, \(3.09, \quad 5.14, \quad 8.23,10.80\),
*** UP TO THE FIRST 24 HOURS OF METEOROLOGICAL DATA ***
```

Surface file: C:\Lakes\Projects\OS_96.SFC Met Version: 07026
Profile file: C:\Lakes\Projects\OS 96.PFL
Surface format: (3(I2,1X),I3,1X,I2,1X,F6.1,1X,3(F6.3,1X),2(F5.0,1X),F8.1,1X,F6.3,1X,2(F6.2,1X),F7.2,1X,F5.0,3(1X,F6.1))
Profile format: (4(I2,1X),F6.1,1X,I1,1X,F5.0,1X,F7.2,1X,F7.2,1X,F6.1,1X,F7.2)
Surface station no.: 23174,1X,11,1X,F5.0,MX,Nor, Upper air station no.: 3190

Name: LOS_ANGELES/INT'L_ARPT	Name: UNKNOWN		
Year:	1996	Year:	1996

```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline YR MO DY & JDY HR & H0 & U* & W* & DT/DZ & ZICNV & ZIMCH & M-O LEN & Z0 & BOWEN & ALBEDO & REF WS & WD & HT & REF TA & HT \\
\hline - - - - & - - - - & - - - & - - - - & - - - & - - - & - - & - - - & - - - - & - - & - - - & - - - & - - - - & - - & & - - - & - \\
\hline 960101 & 101 & -64.0 & 0.658 & -9.000 & -9.000 & -999. & 1228. & 400.6 & 1.00 & 1.50 & 1.00 & 3.10 & 61 & 6.1 & 291.4 & 2.0 \\
\hline 960101 & 102 & -45.5 & 0.415 & -9.000 & -9.000 & -999. & 669. & 141.3 & 1.00 & 1.50 & 1.00 & 2.10 & 38. & 6.1 & 288.1 & 2.0 \\
\hline 960101 & 103 & -27.5 & 0.248 & -9.000 & -9.000 & -999. & 311. & 50.0 & 1.00 & 1.50 & 1.00 & 1.50 & 34. & 6.1 & 285.4 & 2.0 \\
\hline 960101 & 104 & -27.5 & 0.248 & -9.000 & -9.000 & -999. & 284. & 50.0 & 1.00 & 1.50 & 1.00 & 1.50 & 233. & 6.1 & 285.4 & 2.0 \\
\hline 960101 & 105 & -27.5 & 0.248 & -9.000 & -9.000 & -999. & 285. & 50.2 & 1.00 & 1.50 & 1.00 & 1.50 & 293. & 6.1 & 285.9 & 2.0 \\
\hline 960101 & 106 & -45.8 & 0.415 & -9.000 & -9.000 & -999. & 614. & 140.2 & 1.00 & 1.50 & 1.00 & 2.10 & 162. & 6.1 & 286.4 & 2.0 \\
\hline 960101 & 107 & -57.3 & 0.538 & -9.000 & -9.000 & -999. & 907. & 245.1 & 1.00 & 1.50 & 1.00 & 2.60 & 185 & 6.1 & 285.4 & 2.0 \\
\hline 960101 & 108 & -64.0 & 0.892 & -9.000 & -9.000 & -999. & 1936. & 1000.6 & 1.00 & 1.50 & 0.68 & 4.10 & 183. & 6.1 & 289.2 & 2.0 \\
\hline 960101 & 109 & 22.5 & 0.910 & 0.371 & 0.005 & 82. & 1995. & -998. 0 & 1.00 & 1.50 & 0.47 & 4.10 & 237. & 6.1 & 290.4 & 2.0 \\
\hline 960101 & 110 & 70.3 & 0.917 & 1.041 & 0.005 & 580. & 2019. & -990.8 & 1.00 & 1.50 & 0.40 & 4.10 & 181. & 6.1 & 293.8 & 2.0 \\
\hline 960101 & 111 & 101.2 & 0.814 & 1.300 & 0.005 & 785. & 1707. & -481.9 & 1.00 & 1.50 & 0.38 & 3.60 & 234. & 6.1 & 294.9 & 2.0 \\
\hline 960101 & 112 & 119.0 & 1.270 & 1.378 & 0.007 & 795. & 3284. & -998.0 & 1.00 & 1.50 & 0.37 & 5.70 & 236. & 6.1 & 294.9 & 2.0 \\
\hline 960101 & 113 & 117.5 & 1.270 & 1.378 & 0.007 & 804. & 3290. & -998.0 & 1.00 & 1.50 & 0.37 & 5.70 & 243. & 6.1 & 293.8 & 2.0 \\
\hline 960101 & 114 & 98.4 & 1.029 & 1.303 & 0.005 & 811. & 2494. & -998.1 & 1.00 & 1.50 & 0.38 & 4.60 & 249. & 6.1 & 293.8 & 2.0 \\
\hline 960101 & 115 & 64.2 & 0.916 & 1.132 & 0.005 & 816. & 2051. & -998.0 & 1.00 & 1.50 & 0.41 & 4.10 & 252. & 6.1 & 293.8 & 2.0 \\
\hline 960101 & 116 & 13.6 & 0.689 & 0.676 & 0.005 & 817. & 1381. & -998.0 & 1.00 & 1.50 & 0.49 & 3.10 & 254 & 6.1 & 293.1 & 2.0 \\
\hline 960101 & 117 & -25.2 & -9.000 & -9.000 & -9.000 & -999. & -999. & -99999.0 & 1.00 & 1.50 & 0.72 & 0.00 & 0. & 6.1 & 291.4 & 2.0 \\
\hline 960101 & 118 & -64.0 & 0.658 & -9.000 & -9.000 & -999. & 1228. & 401.4 & 1.00 & 1.50 & 1.00 & 3.10 & 237. & 6.1 & 290.4 & 2.0 \\
\hline 960101 & 119 & -27.4 & 0.250 & -9.000 & -9.000 & -999. & 505. & 51.2 & 1.00 & 1.50 & 1.00 & 1.50 & 4. & 6.1 & 288.8 & 2.0 \\
\hline 960101 & 120 & -27.3 & 0.250 & -9.000 & -9.000 & -999. & 294. & 51.6 & 1.00 & 1.50 & 1.00 & 1.50 & 67. & 6.1 & 289.9 & 2.0 \\
\hline 960101 & 121 & -27.4 & 0.250 & -9.000 & -9.000 & -999. & 287. & 51.2 & 1.00 & 1.50 & 1.00 & 1.50 & 30. & 6.1 & 288.8 & 2.0 \\
\hline 960101 & 122 & -27.2 & 0.251 & -9.000 & -9.000 & -999. & 290. & 52.8 & 1.00 & 1.50 & 1.00 & 1.50 & 52. & 6.1 & 288.8 & 2.0 \\
\hline 960101 & 123 & -999.0 & -9.000 & -9.000 & -9.000 & -999. & -999. & -99999.0 & 1.00 & 1.50 & 1.00 & 0.00 & 0. & 6.1 & 288.1 & 2.0 \\
\hline 960101 & 124 & -59.6 & 0.536 & -9.000 & -9.000 & -999. & 904. & 233.4 & 1.00 & 1.50 & 1.00 & 2.60 & 90. & 6.1 & 286.4 & 2.0 \\
\hline
\end{tabular}
First hour of profile data
YR MO DY HR HEIGHT F WDIR WSPD AMB_TMP sigmaA sigmaW sigmaV
\(\begin{array}{lllllllllll}96 & 01 & 01 & 6.1 & 1 & 61 . & 3.10 & 291.5 & 99.0 & -99.00 & -99.00\end{array}\)

F indicates top of profile (=1) or below (=0)
*** THE 1ST HIGHEST 1-HR AVERAGE CONCENTRATION VALUES FOR SOURCE GROUP: TAXIWAY *** INCLUDING SOURCE(S): PAREA01
*** DISCRETE CARTESIAN RECEPTOR POINTS ***
** CONC OF NOX IN MICROGRAMS/M**3

```

*** AERMOD - VERSION 07026 **** LAX CFTP Construction
** 11/25/08
** NOx 1-Hour Peak (Assumed 100% Conversion to NO2)
*** 15:01:22
*MODELOPTs

```
CONC
DFAULT ELEV FLGPOL
*** THE 1ST HIGHEST 1-HR AVERAGE CONCENTRATION VALUES FOR SOURCE GROUP: TAXIWAY ***
INCLUDING SOURCE (S): PAREA01,
*** DISCRETE CARTESIAN RECEPTOR POINTS ***
** CONC OF NOX IN MICROGRAMS/M**3

*** THE 1ST HIGHEST 1-HR AVERAGE CONCENTRATION VALUES FOR SOURCE GROUP: STAGING *** INCLUDING SOURCE(S): PAREA02
*** DISCRETE CARTESIAN RECEPTOR POINTS ***
** CONC OF NOX IN MICROGRAMS/M**3

```

*** AERMOD - VERSION 07026 **** LAX CFTP Construction
** 11/25/08
** NOx 1-Hour Peak (Assumed 100% Conversion to NO2)
*** 15:01:22
*MODELOPTs

```
CONC
DFAULT ELEV FLGPOL
*** THE 1ST HIGHEST 1-HR AVERAGE CONCENTRATION VALUES FOR SOURCE GROUP: STAGING ***
INCLUDING SOURCE(S): PAREA02,
*** DISCRETE CARTESIAN RECEPTOR POINTS ***
** CONC OF NOX IN MICROGRAMS/M**3

*** THE 1ST HIGHEST 1-HR AVERAGE CONCENTRATION VALUES FOR SOURCE GROUP: HAULING *** INCLUDING SOURCE(S): L0000001, L0000002, L0000003, L0000004, L0000005, L0000006, L0000007, L0000008, L0000009, L0000010, L0000011, L0000012, L0000013, L0000014, L0000015, L0000016, L0000017, L0000018, L0000019, L0000020, L0000021, L0000022, L0000023, L0000024, L0000025, L0000026, L0000027, L0000028, L0000029, L0000030, *** DISCRETE CARTESIAN RECEPTOR POINTS ***

```

*** AERMOD - VERSION 07026 **** LAX CFTP Construction
** 11/25/08
** NOx 1-Hour Peak (Assumed 100% Conversion to NO2)
** 15:01:22
*MODELOPTs

```
CONC

\section*{DFAULT ELEV FLGPOL}
*** THE 1ST HIGHEST 1-HR AVERAGE CONCENTRATION VALUES FOR SOURCE GROUP: HAULING ***
INCLUDING SOURCE(S): L0000001, L0000002, L0000003, L0000004, L0000005, L0000006, L0000007, L0000008, L0000009, L0000010, L0000011, L0000012, L0000013, L0000014, L0000015, L0000016, L0000017, L0000018, L0000019, L0000020, L0000021, L0000022, L0000023, L0000024, L0000025, L0000026, L0000027, L0000028, L0000029, L0000030, . . .
*** DISCRETE CARTESIAN RECEPTOR POINTS ***
** CONC OF NOX IN MICROGRAMS/M**3

*** THE 1ST HIGHEST 1-HR AVERAGE CONCENTRATION VALUES FOR SOURCE GROUP: ALL
INCLUDING SOURCE(S): PAREA01, PAREA02 , L0000001, L0000002, L0000003, L0000004, L0000005, L0000006, L0000007, L0000008, L0000009, L0000010, L0000011, L0000012, L0000013, L0000014, L0000015, L0000016, L0000017, L0000018, L0000019, L0000020, L0000021, L0000022, L0000023, L0000024, L0000025, L0000026, L0000027, L0000028, . . .

```

*** AERMOD - VERSION 07026 *** LAX CFTP Construction
** 11/25/0
*MODELOPTs

DFAULT ELEV FLGPOL

*** THE 1ST HIGHEST 1-HR AVERAGE CONCENTRATION VALUES FOR SOURCE GROUP: ALL
INCLUDING SOURCE(S): PAREA01, PAREA02 , L0000001, L0000002, L0000003, L0000004, L0000005, L0000006, L0000007, L0000008, L0000009, L0000010, L0000011, L0000012, L0000013, L0000014, L0000015, L0000016, L0000017, L0000018, L0000019, L0000020, L0000021, L0000022, L0000023, L0000024, L0000025, L0000026, L0000027, L0000028, . . .
*** DISCRETE CARTESIAN RECEPTOR POINTS ***
** CONC OF NOX IN MICROGRAMS/M**3


```
AERMOD - VERSION 07026 **** *** LAX CFTP Construction
*** NOx 1-Hour Peak (Assumed 100% Conversion to NO2)

\section*{DFAULT ELEV FLGPOL}
```

*** Message Summary : AERMOD Model Execution ***
--------- Summary of Total Messages --------
A Total of 0 Fatal Error Message(s)
A Total of
A Total of
0 Warning Message(s)
2275 Informational Message(s)
A Total of 920 Calm Hours Identified
A Total of 1355 Missing Hours Identified (15.43 Percent)
CAUTION!: Number of Missing Hours Exceeds 10 Percent of Total!
Data May Not Be Acceptable for Regulatory Applications
See Section 5.3.2 of "Meteorological Monitoring Guidance for Regulatory Modeling Applications" (EPA-454/R-99-005).
******** FATAL ERROR MESSAGES ********
*** NONE ***
******** WARNING MESSAGES ********
*** NONE ***

```
**
11/25/08
*** 15.01.22
15:01:22
PAGE 63
***********************************
** AERMOD Finishes Successfully \({ }^{* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *)}\)

```

CONC
DFAULT ELEV FLGPOL
** MODEL SETUP OPTIONS SUMMARY ***
**Model Is Setup For Calculation of Average CONCentration Values.
-- DEPOSITION LOGIC
**Model Uses NO DRY DEPLETION. DDPLETE $=F$
**Model Uses NO WET DEPLETION. WDPLETE = F
**NO GAS DRY DEPOSITION Data Provided.
**Model Uses URBAN Dispersion Algorithm for the SBL for 196 Source(s), for Total of 1 Urban Area(s):
Urban Population $=165468.0$; Urban Roughness Length $=1.000 \mathrm{~m}$
**Model Uses Regulatory DEFAULT Options:

1. Stack-tip Downwash.
2. Model Accounts for ELEVated Terrain Effects.
3. Use Calms Processing Routine.
4. Use Missing Data Processing Routine.
5. No Exponential Decay for URBAN/Non-SO2
**Model Accepts FLAGPOLE Receptor Heights.
**Model Calculates ANNUAL Averages Only
**This Run Includes: 196 Source(s); 4 Source Group(s); and 120 Receptor(s)
**The Model Assumes A Pollutant Type of: NOX
**Model Set To Continue RUNning After the Setup Testing.
**Output Options Selected:
Model Outputs Tables of ANNUAL Averages by Receptor Model Outputs External File(s) of High Values for Plotting (PLOTFILE Keyword)
**NOTE: The Following Flags May Appear Following CONC Values: c for Calm Hours
m for Missing Hours
b for Both Calm and Missing Hours
```

``` Emission Units = GRAMS/SEC Output Units = MICROGRAMS/M**3
**Approximate Storage Requirements of Model \(=1.5 \mathrm{MB}\) of RAM.
**File for Saving Result Arrays: NOxAnn.sv1
```

*** AERMOD - VERSION 07026 *** *** LAX CFTP Construction
*** NOx Annual (Assumed 100\% Conversion to NO2)

***	
***	$11 / 25 / 08$
	15:44:07

$\begin{array}{ll}\text { *** } & 11 / 25 / 08 \\ & 15: 44: 07\end{array}$ **MODELOPTs:
CONC
DFAULT ELEV FLGPOL
*** VOLUME SOURCE DATA ***

*** AERMOD - VERSION 07026 *** *** LAX CFTP Construction
*** NOx Annual (Assumed 100\% Conversion to NO2)

***	
***	$11 / 25 / 08$
	15:44:07

$\begin{array}{ll}* * * & 11 / 25 / 08 \\ & 15: 44: 07\end{array}$ **MODELOPTs:
CONC
DFAULT ELEV FLGPOL
*** VOLUME SOURCE DATA ***

*** AERMOD - VERSION 07026 *** *** LAX CFTP Construction
*** NOx Annual (Assumed 100\% Conversion to NO2)

***	
***	$11 / 25 / 08$
	15:44:07

$\begin{array}{ll}* * * & 11 / 25 / 08 \\ * & 15: 44: 07\end{array}$ **MODELOPTs:
CONC
DFAULT ELEV FLGPOL
*** VOLUME SOURCE DATA ***

*** AERMOD - VERSION 07026 *** *** LAX CFTP Construction
*** NOx Annual (Assumed 100\% Conversion to NO2)

***	$11 / 25 / 08$
***	$15: 44: 07$

*** 15:44:07
**MODELOPTs:

CONC
DFAULT ELEV FLGPOL
*** VOLUME SOURCE DATA ***

*** AERMOD - VERSION 07026 *** *** LAX CFTP Construction
*** NOx Annual (Assumed 100\% Conversion to NO2)

***	
***	$11 / 25 / 08$
	15:44:07

DFAULT ELEV FLGPOL
*** VOLUME SOURCE DATA ***



## *** AREAPOLY SOURCE DATA ***





## DFAULT ELEV FLGPOL

* SOURCE EMISSION RATE SCALARS WHICH VARY FOR EACH HOUR OF THE DAY *
HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR


The following 38 pages have been deleted from the original AERMOD output file. The source emission rate scalars are identical for Source IDs L0000001 through L0000194, so pages 11 through 48 have been deleted since the data above are simply repeated for these 194 sources.

AERMOD	*** LAX CFTP Construction	**	11/25/08
	*** NOx Annual (Assumed 100\% Conversion to NO2)	***	15:44:07
**MODELOPTs:			PAGE 49

DFAULT ELEV FLGPOL

* SOURCE EMISSION RATE SCALARS WHICH VARY FOR EACH HOUR OF THE DAY *



## DFAULT ELEV FLGPOL

*** DISCRETE CARTESIAN RECEPTORS *** (X-COORD, Y-COORD, ZELEV, ZHILL, ZFLAG)
(METERS)

( 367483.7,	3755199.0,	0.0,	0.0,	1.8);
( 367114.3,	3756056.2,	0.0,	0.0,	1.8);
( 366852.9,	3756663.0,	0.0,	0.0,	1.8);
( 366875.5,	3756760.0,	0.0,	0.0,	1.8);
( 366677.2,	3757024.5,	0.0,	0.0,	1.8);
( 366437.3,	3757530.8,	0.0,	0.0,	1.8);
( 366623.9,	3757468.0,	0.0,	0.0,	1.8);
( 366777.1,	3757519.8,	0.0,	0.0,	1.8);
( 367174.2,	3757739.5,	0.0,	0.0,	1.8);
( 367412.7,	3757694.8,	0.0,	0.0,	1.8);
( 367517.8,	3757796.2,	0.0,	0.0,	1.8);
( 367609.1,	3757676.8,	0.0,	0.0,	1.8);
( 367774.8,	3757718.5,	0.0,	0.0,	1.8);
( 367807.1,	3757935.5,	0.0,	0.0,	1.8);
( 367798.1,	3758011.0,	0.0,	0.0,	1.8);
( 367904.5,	3757930.2,	0.0,	0.0,	1.8);
( 368232.8,	3757790.2,	0.0,	0.0,	1.8);
( 368603.4,	3757765.0,	0.0,	0.0,	1.8);
( 368769.7,	3757798.5,	0.0,	0.0,	1.8);
( 369080.3,	3757864.0,	0.0,	0.0,	1.8);
( 369408.7,	3757730.0,	0.0,	0.0,	1.8);
( 369265.0,	3757996.5,	0.0,	0.0,	1.8);
( 369460.0,	3758394.2,	0.0,	0.0,	1.8);
( 369850.4,	3758078.0,	0.0,	0.0,	1.8);
( 370297.5,	3757962.8,	0.0,	0.0,	1.8);
( 370510.1,	3758027.2,	0.0,	0.0,	1.8);
( 370886.4,	3758089.0,	0.0,	0.0,	1.8);
( 370907.3,	3757701.5,	0.0,	0.0,	1.8);
( 371045.8,	3757667.5,	0.0,	0.0,	1.8);
( 371121.7,	3757583.5,	0.0,	0.0,	1.8);
( 371254.0,	3757762.2,	0.0,	0.0,	1.8);
( 371372.3,	3757782.2,	0.0,	0.0,	1.8);
( 371798.3,	3758080.2,	0.0,	0.0,	1.8);
( 371964.2,	3757921.8,	0.0,	0.0,	1.8);
( 372023.3,	3757843.2,	0.0,	0.0,	1.8);
( 372002.4,	3757140.2,	0.0,	0.0,	1.8);
( 371034.6,	3757132.5,	0.0,	0.0,	1.8);
( 370764.2,	3757087.0,	0.0,	0.0,	1.8);
( 371031.5,	3756807.2,	0.0,	0.0,	1.8);
( 371483.1,	3756770.2,	0.0,	0.0,	1.8);
( 372274.4,	3756752.8,	0.0,	0.0,	1.8);
( 372702.6,	3756552.5,	0.0,	0.0,	1.8);
( 372814.4,	3756455.0,	0.0,	0.0,	1.8);
( 372704.8,	3756371.5,	0.0,	0.0,	1.8);
( 372927.1,	3756319.2,	0.0,	0.0,	1.8);


$\begin{aligned} & 367300.9, \\ & 366984.5, \end{aligned}$	
36	37
366812.7	
366536.2,	3757
366486.9,	375753
366644	375753
366998.6,	375
367290.7	
367409.8,	37577
367539.2,	
367769.1,	375
367809.5,	37578
367774.9	
367914.4,	3757961
368108.7,	375
368308.9,	3757
368603.8,	3757
369017.2,	375
369224.0,	3757952
369454.2,	3757
369451.6,	375
369853.1,	375839
370298.6,	37580
370382.3,	37579
370505.6,	375808
370885.1,	
370944.9,	375
371046.3,	375
371192.6,	375772
371263.7,	3757
371399.4,	375780
371908.2,	375
371970.2,	37578
372019.9,	37575
371514.1,	375713
371034.4,	375708
370754.0,	3756817
371033.1,	375678
371817.2,	3756763.0,
372713.4,	375674
372818.8,	3756548.
372796.8,	3756367.
372706.3,	
372926.2,	3756245


0.0,	0.0,	$1.8) ;$
0.0,	0.0,	$1.8) ;$
0.0,	0.0,	$1.8) ;$
0.0,	0.0,	$1.8) ;$
0.0,	0.0,	$1.8) ;$
0.0,	0.0,	$1.8) ;$
0.0,	0.0,	$1.8) ;$
0.0,	0.0,	$1.8) ;$
0.0,	0.0,	$1.8) ;$
0.0,	0.0,	$1.8) ;$
0.0,	0.0,	$1.8) ;$
0.0,	0.0,	$1.8) ;$
0.0,	0.0,	$1.8) ;$
0.0,	0.0,	$1.8) ;$
0.0,	0.0,	$1.8) ;$
0.0,	0.0,	$1.8) ;$
0.0,	0.0,	$1.8) ;$
0.0,	0.0,	$1.8) ;$
0.0,	0.0,	$1.8) ;$
0.0,	0.0,	$1.8) ;$
0.0,	0.0,	$1.8) ;$
0.0,	0.0,	$1.8) ;$
0.0,	0.0,	$1.8) ;$
0.0,	0.0,	$1.8) ;$
0.0,	0.0,	$1.8) ;$
0.0,	0.0,	$1.8) ;$
0.0,	0.0,	$1.8) ;$
0.0,	0.0,	$1.8) ;$
0.0,	0.0,	$1.8) ;$
0.0,	0.0,	$1.8) ;$
0.0,	0.0,	$1.8) ;$
0.0,	0.0,	$1.8) ;$
0.0,	0.0,	$1.8) ;$
0.0,	0.0,	$1.8) ;$
0.0,	0.0,	$1.8) ;$
0.0,	0.0,	$1.8) ;$
0.0,	0.0,	$1.8) ;$
0.0,	0.0,	$1.8) ;$
0.0,	0.0,	$1.8) ;$
0.0,	0.0,	$1.8) ;$
0.0,	0.0,	$1.8) ;$
0.0,	0.0,	$1.8) ;$
0.0,	0.0,	$1.8) ;$
0.0,	0.0,	$1.8) ;$
0.0,	0.0,	$1.8) ;$
0		


*** AERMOD - VERSION 07026	*** LAX CFTP Construction*** NOx Annual (Assumed 100\% Conver						$\begin{gathered} * * * \\ * * * \end{gathered}$	$\begin{aligned} & 11 / 25 / 08 \\ & 15: 44: 07 \end{aligned}$
**MODELOPTs:								PAGE 51
CONC	DFAULT ELEV	FLGPOL						
	*** DISCRETE CARTESIAN RECEPTORS *** (X-COORD, Y-COORD, ZELEV, ZHILL, ZFLAG) (METERS)							
( 373456.8, 3756235.5,	0.0,	0.0,	1.8);	( 373448.0,	3755559.8 ,	0.0,	0.0,	1.8);
( 373222.5, 3755568.8,	0.0,	0.0,	1.8);	( 373219.3,	3755705.0,	0.0,	0.0,	1.8);
( 373134.7, 3755704.0,	0.0,	0.0,	1.8);	( 373131.2,	3755566.8,	0.0,	0.0,	1.8);
( 373054.1, 3755562.8,	0.0,	0.0,	1.8);	( 373046.2,	3755174.0,	0.0,	0.0,	1.8);
( 372725.5, 3755177.0,	0.0,	0.0,	1.8);	( 372624.1,	3755182.2,	0.0,	0.0,	1.8);
( 372237.7, 3755185.5,	0.0,	0.0,	1.8);	( 371843.0,	3755188.8,	0.0,	0.0,	1.8);
( 371462.8, 3755192.0,	0.0,	0.0,	1.8);	( 371049.0,	3755195.5,	0.0,	0.0,	1.8);
( 371056.3, 3755349.0,	0.0,	0.0,	1.8);	( 371043.4,	3755384.0 ,	0.0,	0.0,	1.8);
( 371042.4, 3755556.2,	0.0,	0.0,	1.8);	( 370995.8,	3755560.2,	0.0,	0.0,	1.8);
( 371001.0, 3755419.2,	0.0,	0.0,	1.8);	( 370801.4,	3755275.5 ,	0.0,	0.0,	1.8);
( 370666.7, 3755261.8,	0.0,	0.0,	1.8);	( 370380.3,	3755263.2 ,	0.0,	0.0,	1.8);
( 370075.9, 3755265.0,	0.0,	0.0,	1.8);	( 369786.9,	3755266.5 ,	0.0,	0.0,	1.8);
( 369498.0, 3755268.2,	0.0,	0.0,	1.8);	( 369193.6,	3755269.8,	0.0,	0.0,	1.8);
( 368889.2, 3755271.5,	0.0 ,	0.0 ,	1.8);	( 368569.3,	3755273.2,	0.0,	0.0,	$1.8)$;
( 368274.8, 3755274.8,	0.0,	0.0,	1.8);	( 367936.4,	3755213.2,	0.0,	0.0,	1.8);

## DFAULT ELEV FLGPOL

*** METEOROLOGICAL DAYS SELECTED FOR PROCESSING ***
(1=YES; 0=NO)

*** UPPER BOUND OF FIRST THROUGH FIFTH WIND SPEED CATEGORIES ***
(METERS/SEC)
1.54, $3.09, \quad 5.14, \quad 8.23,10.80$,

```
*** AERMOD - VERSION 07026 *** *** LAX CFTP Construction
```

*** NOX Annual (Assumed $100 \%$ Conversion to NO2)
$\begin{array}{ll}\text { *** } \\ \text { *** } 11 / 25 / 08 \\ & 15: 44: 07\end{array}$
**MODELOPTs:
DFAULT ELEV FLGPOI
*** UP TO THE FIRST 24 HOURS OF METEOROLOGICAL DATA **

```
surface file: C:\Lakes\Projects\OS_96.SFC Met Version: 07026
Profile file: c:\Lakes\Projects\OS 96.PFL
Surface format: (3(I2,1X),I3,1X,I2,1X,F6.1,1X,3(F6.3,1X),2(F5.0,1X),F8.1,1X,F6.3,1X,2(F6.2,1X),F7.2,1X,F5.0,3(1X,F6.1))
Profile format: (4(I2,1X),F6.1,1X,I1,1X,F5.0,1X,F7.2,1X,F7.2,1X,F6.1,1X,F7.2)
Surface station no.: 23174 Up,M,M,M,Or air station no.: 3190
 Name: LOS_ANGELES/INT'L_ARPT Upper air station no.: Name: UNKNOWN
 Year: 1996 Year: 1996
```

YR MO DY	JDY HR	H0	U*	W*	DT/DZ	ZICNV	ZIMCH	M-O LEN	Z0	BOWEN	ALBEDO	REF WS	WD	HT	REF TA	HT
- - -	- - - -															
960101	101	-64.0	0.658	-9.000	-9.000	-999.	1228.	400.6	1.00	1.50	1.00	3.10	61	6.1	291.4	2.0
0101	102	-45.5	0.415	-9.000	-9.000	-999.	669.	141.3	1.00	1.50	1.00	2.10	38.	6.1	288.1	2.0
960101	103	-27.5	0.248	-9.000	-9.000	-999.	311.	50.0	1.00	1.50	1.00	1.50	34.	6.1	285.4	2.0
960101	104	-27.5	0.248	-9.000	-9.000	-999.	284.	50.0	1.00	1.50	1.00	1.50	233.	6.1	285.4	2.0
0101	105	-27.5	0.248	-9.000	-9.000	-999.	285.	50.2	1.00	1.50	1.00	1.50	293.	6.1	285.9	2.0
0101	106	-45.8	0.415	-9.000	-9.000	-999.	614.	140.2	1.00	1.50	1.00	2.10	162.	6.1	286.4	2.0
0101	107	-57.3	0.538	-9.000	-9.000	-999.	907.	245.1	1.00	1.50	1.00	2.60	185	6.1	285.4	2.0
0101	108	-64.0	0.892	-9.000	-9.000	-999.	1936.	1000.6	1.00	1.50	0.68	4.10	183.	6.1	289.2	2.0
0101	109	22.5	0.910	0.371	0.005	82.	1995.	-998.0	1.00	1.50	0.47	4.10	237.	6.1	290.4	2.0
0101	110	70.3	0.917	1.041	0.005	580.	2019.	-990.8	1.00	1.50	0.40	4.10	181	6.1	293.8	2.0
0101	111	101.2	0.814	1.300	0.005	785.	1707.	-481.9	1.00	1.50	0.38	3.60	234.	6.1	294.9	2.0
0101	112	119.0	1.270	1.378	0.007	795.	3284.	-998.0	1.00	1.50	0.37	5.70	236.	6.1	294.9	2.0
0101	113	117.5	1.270	1.378	0.007	804.	3290.	-998.0	1.00	1.50	0.37	5.70	243.	6.1	293.8	2.0
0101	114	98.4	1.029	1.303	0.005	811.	2494.	-998.1	1.00	1.50	0.38	4.60	249.	6.1	293.8	2.0
0101	115	64.2	0.916	1.132	0.005	816.	2051.	-998.0	1.00	1.50	0.41	4.10	252.	6.1	293.8	2.0
0101	116	13.6	0.689	0.676	0.005	817.	1381.	-998.0	1.00	1.50	0.49	3.10	254.	6.1	293.1	2.0
0101	117	-25.2	-9.000	-9.000	-9.000	-999.	-999.	-99999. 0	1.00	1.50	0.72	0.00	0.	6.1	291.4	2.0
0101	118	-64.0	0.658	-9.000	-9.000	-999.	1228.	401.4	1.00	1.50	1.00	3.10	237.	6.1	290.4	2.0
0101	119	-27.4	0.250	-9.000	-9.000	-999.	505.	51.2	1.00	1.50	1.00	1.50	4.	6.1	288.8	2.0
0101	120	-27.3	0.250	-9.000	-9.000	-999.	294.	51.6	1.00	1.50	1.00	1.50	67.	6.1	289.9	2.0
0101	121	-27.4	0.250	-9.000	-9.000	-999.	287.	51.2	1.00	1.50	1.00	1.50	30.	6.1	288.8	2.0
0101	122	-27.2	0.251	-9.000	-9.000	-999.	290.	52.8	1.00	1.50	1.00	1.50	52.	6.1	288.8	2.0
0101	123	-999.0	-9.000	-9.000	-9.000	-999.	-999.	-99999.0	1.00	1.50	1.00	0.00	0.	6.1	288.1	2.0
-01 01	124	-59.6		-9.000		-999.	904	233.4	1.00	1.50	1.00	2.60	90.	6.1	286.4	

First hour of profile data
YR MO DY HR HEIGHT F WDIR WSPD AMB_TMP sigmaA sigmaW sigmaV
$\begin{array}{lllllllllll}96 & 01 & 01 & 6.1 & 61 . & 3.10 & 291.5 & 99.0 & -99.00 & -99.00\end{array}$

F indicates top of profile (=1) or below (=0)

```
*** AERMOD - VERSION 07026 *** LAX CFTP Construction
** NOx Annual (Assumed 100% Conversion to NO2)
*** 11/25/08
*MODELOPTs
```

CONC

DFAULT ELEV FLGPOL
*** THE ANNUAL AVERAGE CONCENTRATION VALUES AVERAGED OVER 1 YEARS FOR SOURCE GROUP: TAXIWAY *** INCLUDING SOURCE(S): PAREA01
*** DISCRETE CARTESIAN RECEPTOR POINTS ***
** CONC OF NOX IN MICROGRAMS/M**3


```
*** AERMOD - VERSION 07026 *** *** LAX CFTP Construction
*** NOx Annual (Assumed 100% Conversion to NO2)
*** 11/25/08
*MODELOPTs
```

CONC

## DFAULT ELEV FLGPOL

** THE ANNUAL AVERAGE CONCENTRATION VALUES AVERAGED OVER 1 YEARS FOR SOURCE GROUP: TAXIWAY *** INCLUDING SOURCE(S): PAREA01 ,
*** DISCRETE CARTESIAN RECEPTOR POINTS ***
** CONC OF NOX IN MICROGRAMS/M**3


```
** AERMOD - VERSION 07026 *** LAX CFTP Construction
** NOx Annual (Assumed 100% Conversion to NO2)
*** 11/25/08
*MODELOPTs
```

CONC

DFAULT ELEV FLGPOL
*** THE ANNUAL AVERAGE CONCENTRATION VALUES AVERAGED OVER 1 YEARS FOR SOURCE GROUP: STAGING *** INCLUDING SOURCE(S): PAREA02
*** DISCRETE CARTESIAN RECEPTOR POINTS ***
** CONC OF NOX IN MICROGRAMS/M**3
X-COORD (M)
CONC
CONC
367483.66

Y-COORD (M)
367114.28 366852.91 366875.53 366677.25 366677.25
366437.28 366437. 28 366623. 91 366777.06 367174.25 367412.66 367517.78 367609.12 367774.81 367807.06 367798. 12 367904.53 67904.53 368232. 75 368603.38 368769.72 369080.28 369408.72 369264.97 369459.97 369850.44 370297.53 370510.12 370886.41 370907. 31 371045.81 371121.66 371253.97 371372.34 1712.31 1198.31 71964.22 372023.31 372002.41 371034.56 370764.19 371031.47 371483.09
Y-COORD (M)
------
3755199.00
3756056.25
3756663.00
3756760.00
3757024.50
3757530.75
3757468.00
3757519.75
3757739.50
3757694.75
3757796.25
3757676.75
3757718.50
3757935.50
3758011.00
3757930.25
3757790.25
3757765.00
3757798.50
3757864.00
3757730.00
3757996.50
3758394.25
3758078.00
3757962.75
3758027.25
3758089.00
3757701.50
3757667.50
3757583.50
3757762.25
3757782.25
3758080.25
3757921.75
3757843.25
3757140.25
3757132.50
3757087.00
3756807.25
3756770.25

0.04320	367300.88	3755623.25	0.12494
0.18910	366984.53	3756357.50	0.11645
0.05806	366902.28	3756692.00	0.05700
0.04905	366812.69	3756738.50	0.04912
0.02833	366536.22	3757322.00	0.01777
0.01349	366486.94	3757537.25	0.01342
0.01470	366644.38	3757530.75	0.01354
0.01361	366998.56	3757642.25	0.01103
0.00926	367290.72	3757694.25	0.00954
0.00935	367409.81	3757735.75	0.00891
0.00828	367539.25	3757802.00	0.00823
0.00950	367769.06	3757644.25	0.01004
0.00923	367809.47	3757834.50	0.00819
0.00740	367774.94	3757958.50	0.00720
0.00688	367914.41	3757961.50	0.00734
0.00755	368108.69	3757840.25	0.00870
0.00970	368308.88	3757761.50	0.01050
0.01297	368603.84	3757718.50	0.01400
0.01415	369017.16	3757954.25	0.01348
0.01633	369224.00	3757952.25	0.01573
0.02489	369454.22	3757776.00	0.02366
0.01511	369451.62	3758128.00	0.01403
0.00986	369853.09	3758394.25	0.01224
0.01815	370298.62	3758078.25	0.02000
0.02245	370382.34	3757966.00	0.02241
0.02117	370505.62	3758087.75	0.02006
0.01966	370885.06	3757750.50	0.02425
0.02469	370944.91	3757670.00	0.02474
0.02391	371046.34	3757585.00	0.02461
0.02389	371192.59	3757720.25	0.02227
0.02149	371263.66	3757782.50	0.02127
0.02050	371399.44	3757806.25	0.02016
0.01636	371908.19	3757933.50	0.01645
0.01618	371970.19	3757841.50	0.01636
0.01604	372019.88	3757551.50	0.01624
0.01514	371514.12	3757136.25	0.01976
0.02613	371034.44	3757085.25	0.02598
0.03075	370754.00	3756817.75	0.02930
0.02390	371033.12	3756780.25	0.02357
0.01738	371817.25	3756763.00	0.01413

```
*** AERMOD - VERSION 07026 **** *** LAX CFTP Construction
*** NOx Annual (Assumed 100% Conversion to NO2)
*** 11/25/08
15:44:07
*MODELOPTs
```

CONC

## DFAULT ELEV FLGPOL

** THE ANNUAL AVERAGE CONCENTRATION VALUES AVERAGED OVER 1 YEARS FOR SOURCE GROUP: STAGING *** INCLUDING SOURCE(S): PAREA02 ,
*** DISCRETE CARTESIAN RECEPTOR POINTS ***
** CONC OF NOX IN MICROGRAMS/M**3


## DFAULT ELEV FLGPOL

*** THE ANNUAL AVERAGE CONCENTRATION VALUES AVERAGED OVER 1 YEARS FOR SOURCE GROUP: HAULING ***
INCLUDING SOURCE(S): L0000001, L0000002, L0000003, L0000004, L0000005, L0000006, L0000007, L0000008, L0000009, L0000010, L0000011, L0000012, L0000013, L0000014, L0000015, L0000016, L0000017, L0000018, L0000019, L0000020, L0000021, L0000022, L0000023, L0000024, L0000025, L0000026, L0000027, L0000028, L0000029, L0000030, . . .


```
*** AERMOD - VERSION 07026 *** LAX CFTP Construction
*** NOx Annual (Assumed 100% Conversion to NO2)
*** 11/25/08
**MODELOPTs
```

CONC

## DFAULT ELEV FLGPOL

*** THE ANNUAL AVERAGE CONCENTRATION VALUES AVERAGED OVER 1 YEARS FOR SOURCE GROUP: HAULING ***
INCLUDING SOURCE(S): L0000001, L0000002, L0000003, L0000004, L0000005, L0000006, L0000007, L0000008, L0000009, L0000010, L0000011, L0000012, L0000013, L0000014, L0000015, L0000016, L0000017, L0000018, L0000019, L0000020, L0000021, L0000022, L0000023, L0000024, L0000025, L0000026, L0000027, L0000028, L0000029, L0000030, . . . ,
*** DISCRETE CARTESIAN RECEPTOR POINTS ***
** CONC OF NOX IN MICROGRAMS/M**3
X-COORD (M) Y-COORD (M) X-COORD (M) Y-COORD (M) CONC

372274.41	3756752.75	0.00453	372713.41	3756743.00	0.00349
372702.62	3756552.50	0.00309	372818.81	3756548.75	0.00291
372814.44	3756455.00	0.00273	372796.75	3756367.50	0.00258
372704.81	3756371.50	0.00270	372706.31	3756326.75	0.00261
372927.09	3756319.25	0.00234	372926.22	3756245.00	0.00222
373456.81	3756235.50	0.00177	373448.00	3755559.75	0.00127
373222.47	3755568.75	0.00137	373219.34	3755705.00	0.00146
373134.66	3755704.00	0.00151	373131.22	3755566.75	0.00142
373054.09	3755562.75	0.00145	373046.22	3755174.00	0.00128
372725.47	3755177.00	0.00143	372624.12	3755182.25	0.00149
372237.69	3755185.50	0.00173	371843.00	3755188.75	0.00204
371462.81	3755192.00	0.00245	371049.03	3755195.50	0.00307
371056.31	3755349.00	0.00324	371043.41	3755384.00	0.00331
371042.38	3755556.25	0.00363	370995.81	3755560.25	0.00375
371001.00	3755419.25	0.00345	370801.41	3755275.50	0.00367
370666.66	3755261.75	0.00399	370380.28	3755263.25	0.00489
370075.88	3755265.00	0.00628	369786.91	3755266.50	0.00822
369498.00	3755268.25	0.01098	369193.59	3755269.75	0.01485
368889.16	3755271.50	0.01930	368569.28	3755273.25	0.02288
368274.84	3755274.75	0.02294	367936.44	3755213.25	0.01716

## DFAULT ELEV FLGPOL

** THE ANNUAL AVERAGE CONCENTRATION VALUES AVERAGED OVER 1 YEARS FOR SOURCE GROUP: ALL
INCLUDING SOURCE(S): PAREA01, PAREA02 , L0000001, L0000002, L0000003, L0000004, L0000005, L0000006, L0000007, L0000008, L0000009, L0000010, L0000011, L0000012, L0000013, L0000014, L0000015, L0000016, L0000017, L0000018, L0000019, L0000020, L0000021, L0000022, L0000023, L0000024, L0000025, L0000026, L0000027, L0000028, . . .


```
** AERMOD - VERSION 07026 *** LAX CFTP Construction
*** NOx Annual (Assumed 100% Conversion to NO2)
\begin{tabular}{ll}
*** & \(11 / 25 / 08\) \\
*** & \(15: 44: 07\)
\end{tabular}
*MODELOPTs:
```

CONC

## DFAULT ELEV FLGPOL

** THE ANNUAL AVERAGE CONCENTRATION VALUES AVERAGED OVER 1 YEARS FOR SOURCE GROUP: ALL ***
INCLUDING SOURCE(S): PAREA01, PAREA02 , L0000001, L0000002, L0000003, L0000004, L0000005, L0000006, L0000007, L0000008, L0000009, L0000010, L0000011, L0000012, L0000013, L0000014, L0000015, L0000016, L0000017, L0000018, L0000019, L0000020, L0000021, L0000022, L0000023, L0000024, L0000025, L0000026, L0000027, L0000028, . . .
*** DISCRETE CARTESIAN RECEPTOR POINTS ***
** CONC OF NOX IN MICROGRAMS/M**3


```
*** AERMOD - VERSION 07026 *** *** LAX CFTP Construction
** NOx Annual (Assumed 100% Conversion to NO2)
*** 11/25/08
*MODELOPTs
CONC
DFAULT ELEV FLGPOL
```

*** THE SUMMARY OF MAXIMUM ANNUAL ( 1 YRS) RESULTS ***

TAXIWAY	1ST	HIGHEST	VALUE
	2ND	HIGHEST	VALUE
	3RD	HIGHEST	VALUE
	4TH	HIGHEST	VALUE
	5 TH	HIGHEST	VALUE
	6TH	HIGHEST	VALUE
	7TH	HIGHEST	VALUE
	8TH	HIGHEST	VALUE
	9TH	HIGHEST	VALUE
	10TH	HIGHEST	VALUE

STAGING 1ST HIGHEST VALUE IS 2ND HIGHEST VALUE IS 3RD HIGHEST VALUE IS 4TH HIGHEST VALUE IS 5TH HIGHEST VALUE IS 6TH HIGHEST VALUE IS 7TH HIGHEST VALUE IS 8TH HIGHEST VALUE IS 9TH HIGHEST VALUE IS 10TH HIGHEST VALUE IS

HAULING 1ST HIGHEST VALUE IS 2ND HIGHEST VALUE IS 3RD HIGHEST VALUE IS 4TH HIGHEST VALUE IS 5TH HIGHEST VALUE IS 6TH HIGHEST VALUE IS 7TH HIGHEST VALUE IS 8TH HIGHEST VALUE IS 9TH HIGHEST VALUE IS 10TH HIGHEST VALUE IS


0.00,	0.00,	$1.80)$	DC
0.00,	0.00,	$1.80)$	DC
0.00,	0.00,	$1.80)$	DC
0.00,	0.00,	$1.80)$	DC
0.00,	0.00,	$1.80)$	DC
0.00,	0.00,	$1.80)$	DC
0.00,	0.00,	$1.80)$	DC
0.00,	0.00,	$1.80)$	DC
0.00,	0.00,	$1.80)$	DC
0.00,	0.00,	$1.80)$	DC
0.00,	0.00,	$1.80)$	DC
0.00,	0.00,	$1.80)$	DC
0.00,	0.00,	$1.80)$	DC
0.00,	0.00,	$1.80)$	DC
0.00,	0.00,	$1.80)$	DC
0.00,	0.00,	$1.80)$	DC
0.00,	0.00,	$1.80)$	DC
0.00,	0.00,	$1.80)$	DC
0.00,	0.00,	$1.80)$	DC
0.00,	0.00,	$1.80)$	DC
0.00,	0.00,	$1.80)$	DC
0.00,	0.00,	$1.80)$	DC
0.00,	0.00,	$1.80)$	DC
0.00,	0.00,	$1.80)$	DC
0.00,	0.00,	$1.80)$	DC
0.00,	0.00,	$1.80)$	DC
0.00,	0.00,	$1.80)$	DC
0.00,	0.00,	$1.80)$	DC
0.00,	0.00,	$1.80)$	DC
0.00,	0.00,	$1.80)$	DC



```
** AERMOD - VERSION 07026 *** *** LAX CFTP Construction
*** NOx Annual (Assumed 100% Conversion to NO2)
```

***
***
11/25/08
15:44:07
PAGE 64

## DFAULT ELEV FLGPOL

*** Message Summary : AERMOD Model Execution ***
--------- Summary of Total Messages --------
A Total of 0 Fatal Error Message(s)
A Total of
A Total of
0 Warning Message(s)
2275 Informational Message(s)
A Total of 920 Calm Hours Identified
A Total of 1355 Missing Hours Identified ( 15.43 Percent)
CAUTION!: Number of Missing Hours Exceeds 10 Percent of Total!
Data May Not Be Acceptable for Regulatory Applications
See Section 5.3.2 of "Meteorological Monitoring Guidance for Regulatory Modeling Applications" (EPA-454/R-99-005).
******** FATAL ERROR MESSAGES ********
*** NONE ***
******** WARNING MESSAGES ********
*** NONE ***
***********************************
** AERMOD Finishes Successfully ${ }^{* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *)}$

```
** AERMOD - VERSION 07026 *** *** LAX CFTP Construction
*** CO 1-Hour and 8-Hour Peaks
16:51:13
```


## DFAULT ELEV FLGPOL

```
*** MODEL SETUP OPTIONS SUMMARY

```

$\qquad$
**Model Is Setup For Calculation of Average CONCentration Values.
-- DEPOSITION LOGIC
**Model Uses NO DRY DEPLETION. DDPLETE $=F$
**Model Uses NO WET DEPLETION. WDPLETE = F
**NO GAS DRY DEPOSITION Data Provided.
**Model Uses URBAN Dispersion Algorithm for the SBL for 196 Source(s), for Total of 1 Urban Area(s):
Urban Population $=165468.0$; Urban Roughness Length $=1.000 \mathrm{~m}$
**Model Uses Regulatory DEFAULT Options:

1. Stack-tip Downwash
2. Model Accounts for ELEVated Terrain Effects.
3. Use Calms Processing Routine.
4. Use Missing Data Processing Routine.
5. No Exponential Decay for URBAN/Non-SO2
**Model Accepts FLAGPOLE Receptor Heights.
**Model Calculates 2 Short Term Average(s) of: 1-HR 8-HR
**This Run Includes: 196 Source(s); 4 Source Group(s); and 120 Receptor(s)
**The Model Assumes A Pollutant Type of: CO
**Model Set To Continue RUNning After the Setup Testing.
**Output Options Selected:
Model Outputs Tables of Highest Short Term Values by Receptor (RECTABLE Keyword)
Model Outputs External File(s) of High Values for Plotting (PLOTFILE Keyword)
**NOTE: The Following Flags May Appear Following CONC Values: c for Calm Hours
m for Missing Hours
b for Both Calm and Missing Hours

**Approximate Storage Requirements of Model $=1.5 \mathrm{MB}$ of RAM.
**File for Saving Result Arrays: C01Hr8Hr.sv1
```
*** AERMOD - VERSION 07026 *** *** LAX CFTP Construction
```

*** CO 1-Hour and 8-Hour Peaks

***	11/25/08
***	$16: 51: 13$

**MODELOPTs:

CONC
DFAULT ELEV FLGPOL
*** VOLUME SOURCE DATA ***

	NUMBER	EMISSION RATE			BASE	RELEASE	INIT.	INIT.	URBAN	EMISSION RATE
SOURCE	PART.	(GRAMS/SEC)	X	Y	ELEV.	HEIGHT	SY	SZ	SOURCE	SCALAR VARY
ID	CATS.		(METERS)	(METERS)	(METERS)	(METERS)	(METERS)	(METERS)		BY


L0000001	0	0.60309E-03	368157.3	3755892.2	0.0	0.00	8.74	1.16	YES	HROFDY
L0000002	0	0.60309E-03	368175.7	3755896.0	0.0	0.00	8.74	1.16	YES	HROFDY
L0000003	0	0.60309E-03	368182.2	3755885.0	0.0	0.00	7.96	1.16	YES	HROFDY
L0000004	0	0.60309E-03	368184.6	3755868.0	0.0	0.00	7.96	1.16	YES	HROFDY
L0000005	0	0.60309E-03	368187.0	3755851.0	0.0	0.00	7.96	1.16	YES	HROFDY
L0000006	0	0.60309E-03	368189.3	3755834.0	0.0	0.00	7.96	1.16	YES	HROFDY
L0000007	0	0.60309E-03	368191.7	3755817.2	0.0	0.00	7.96	1.16	YES	HROFDY
L0000008	0	0.60309E-03	368194.0	3755800.2	0.0	0.00	7.96	1.16	YES	HROFDY
L0000009	0	0.60309E-03	368209.4	3755797.2	0.0	0.00	9.24	1.16	YES	HROFDY
L0000010	0	0.60309E-03	368229.2	3755799.8	0.0	0.00	9.24	1.16	YES	HROFDY
L0000011	0	0.60309E-03	368248.8	3755802.2	0.0	0.00	9.24	1.16	YES	HROFDY
L0000012	0	0.60309E-03	368268.5	3755804.8	0.0	0.00	9.24	1.16	YES	HROFDY
L0000013	0	0.60309E-03	368288.2	3755807.2	0.0	0.00	9.24	1.16	YES	HROFDY
L0000014	0	0.60309E-03	368307.9	3755810.0	0.0	0.00	9.24	1.16	YES	HROFDY
L0000015	0	0.60309E-03	368327.6	3755812.5	0.0	0.00	9.24	1.16	YES	HROFDY
L0000016	0	0.60309E-03	368347.3	3755815.0	0.0	0.00	9.24	1.16	YES	HROFDY
L0000017	0	0.60309E-03	368367.0	3755817.5	0.0	0.00	9.24	1.16	YES	HROFDY
L0000018	0	0.60309E-03	368386.7	3755820.0	0.0	0.00	9.24	1.16	YES	HROFDY
L0000019	0	0.60309E-03	368406.4	3755822.8	0.0	0.00	9.24	1.16	YES	HROFDY
L0000020	0	0.60309E-03	368426.1	3755825.2	0.0	0.00	9.24	1.16	YES	HROFDY
L0000021	0	0.60309E-03	368445.8	3755827.8	0.0	0.00	9.24	1.16	YES	HROFDY
L0000022	0	0.60309E-03	368465.5	3755830.2	0.0	0.00	9.24	1.16	YES	HROFDY
L0000023	0	0.60309E-03	368485.2	3755832.8	0.0	0.00	9.24	1.16	YES	HROFDY
L0000024	0	0.60309E-03	368504.8	3755835.5	0.0	0.00	9.24	1.16	YES	HROFDY
L0000025	0	0.60309E-03	368524.5	3755838.0	0.0	0.00	9.24	1.16	YES	HROFDY
L0000026	0	0.60309E-03	368544.2	3755840.5	0.0	0.00	9.24	1.16	YES	HROFDY
L0000027	0	0.60309E-03	368563.9	3755843.0	0.0	0.00	9.24	1.16	YES	HROFDY
L0000028	0	0.60309E-03	368583.6	3755845.5	0.0	0.00	9.24	1.16	YES	HROFDY
L0000029	0	0.60309E-03	368603.3	3755848.2	0.0	0.00	9.24	1.16	YES	HROFDY
L0000030	0	0.60309E-03	368623.0	3755850.8	0.0	0.00	9.24	1.16	YES	HROFDY
L0000031	0	0.60309E-03	368642.7	3755853.2	0.0	0.00	9.24	1.16	YES	HROFDY
L0000032	0	0.60309E-03	368662.4	3755855.8	0.0	0.00	9.24	1.16	YES	HROFDY
L0000033	0	0.60309E-03	368682.1	3755858.2	0.0	0.00	9.24	1.16	YES	HROFDY
L0000034	0	0.60309E-03	368701.8	3755861.0	0.0	0.00	9.24	1.16	YES	HROFDY
L0000035	0	0.60309E-03	368721.5	3755863.5	0.0	0.00	9.24	1.16	YES	HROFDY
L0000036	0	0.60309E-03	368741.2	3755866.0	0.0	0.00	9.24	1.16	YES	HROFDY
L0000037	0	0.60309E-03	368760.8	3755868.5	0.0	0.00	9.24	1.16	YES	HROFDY
L0000038	0	0.60309E-03	368780.5	3755871.0	0.0	0.00	9.24	1.16	YES	HROFDY
L0000039	0	0.60309E-03	368800.2	3755873.5	0.0	0.00	9.24	1.16	YES	HROFDY
L0000040	0	0.60309E-03	368819.9	3755876.2	0.0	0.00	9.24	1.16	YES	HROFDY

```
*** AERMOD - VERSION 07026 *** *** LAX CFTP Construction
```

*** CO 1-Hour and 8-Hour Peaks

***	$11 / 25 / 08$
$* * *$	$16: 51: 13$
	PAGE 3

**MODELOPTs:

CONC
DFAULT ELEV FLGPOL
*** VOLUME SOURCE DATA ***

	NUMBER	EMISSION RATE			BASE	RELEASE	INIT.	INIT.	URBAN	EMISSION RATE
SOURCE	PART.	(GRAMS/SEC)	X	Y	ELEV.	HEIGHT	SY	SZ	SOURCE	SCALAR VARY
ID	CATS.		(METERS)	(METERS)	(METERS)	(METERS)	(METERS)	(METERS)		BY


L0000041	0	0.60309E-03	368839.6	3755878.8	0.0	0.00	9.24	1.16	YES	HROFDY
L0000042	0	0.60309E-03	368859.3	3755881.2	0.0	0.00	9.24	1.16	YES	HROFDY
L0000043	0	0.60309E-03	368879.0	3755883.8	0.0	0.00	9.24	1.16	YES	HROFDY
L0000044	0	0.60309E-03	368898.7	3755886.2	0.0	0.00	9.24	1.16	YES	HROFDY
L0000045	0	0.60309E-03	368918.4	3755889.0	0.0	0.00	9.24	1.16	YES	HROFDY
L0000046	0	0.60309E-03	368938.1	3755891.5	0.0	0.00	9.24	1.16	YES	HROFDY
L0000047	0	0.60309E-03	368957.8	3755894.0	0.0	0.00	9.24	1.16	YES	HROFDY
L0000048	0	0.60309E-03	368977.5	3755896.5	0.0	0.00	9.24	1.16	YES	HROFDY
L0000049	0	0.60309E-03	368997.2	3755899.0	0.0	0.00	9.24	1.16	YES	HROFDY
L0000050	0	0.60309E-03	369001.1	3755914.8	0.0	0.00	9.29	1.16	YES	HROFDY
L0000051	0	0.60309E-03	368999.8	3755934.5	0.0	0.00	9.29	1.16	YES	HROFDY
L0000052	0	0.60309E-03	368998.5	3755954.5	0.0	0.00	9.29	1.16	YES	HROFDY
L0000053	0	0.60309E-03	368997.2	3755974.5	0.0	0.00	9.29	1.16	YES	HROFDY
L0000054	0	0.60309E-03	368995.8	3755994.5	0.0	0.00	9.29	1.16	YES	HROFDY
L0000055	0	0.60309E-03	368994.5	3756014.2	0.0	0.00	9.29	1.16	YES	HROFDY
L0000056	0	0.60309E-03	368993.2	3756034.2	0.0	0.00	9.29	1.16	YES	HROFDY
L0000057	0	0.60309E-03	368991.8	3756054.2	0.0	0.00	9.29	1.16	YES	HROFDY
L0000058	0	0.60309E-03	368990.5	3756074.2	0.0	0.00	9.29	1.16	YES	HROFDY
L0000059	0	0.60309E-03	368989.2	3756094.0	0.0	0.00	9.29	1.16	YES	HROFDY
L0000060	0	0.60309E-03	368987.8	3756114.0	0.0	0.00	9.29	1.16	YES	HROFDY
L0000061	0	0.60309E-03	368986.5	3756134.0	0.0	0.00	9.29	1.16	YES	HROFDY
L0000062	0	0.60309E-03	368985.2	3756153.8	0.0	0.00	9.29	1.16	YES	HROFDY
L0000063	0	0.60309E-03	368983.8	3756173.8	0.0	0.00	9.29	1.16	YES	HROFDY
L0000064	0	0.60309E-03	368982.5	3756193.8	0.0	0.00	9.29	1.16	YES	HROFDY
L0000065	0	0.60309E-03	368981.2	3756213.8	0.0	0.00	9.29	1.16	YES	HROFDY
L0000066	0	0.60309E-03	368979.9	3756233.5	0.0	0.00	9.29	1.16	YES	HROFDY
L0000067	0	0.60309E-03	368978.5	3756253.5	0.0	0.00	9.29	1.16	YES	HROFDY
L0000068	0	0.60309E-03	368977.2	3756273.5	0.0	0.00	9.29	1.16	YES	HROFDY
L0000069	0	0.60309E-03	368975.9	3756293.5	0.0	0.00	9.29	1.16	YES	HROFDY
L0000070	0	0.60309E-03	368974.6	3756313.2	0.0	0.00	9.29	1.16	YES	HROFDY
L0000071	0	0.60309E-03	368973.2	3756333.2	0.0	0.00	9.29	1.16	YES	HROFDY
L0000072	0	0.60309E-03	368971.9	3756353.2	0.0	0.00	9.29	1.16	YES	HROFDY
L0000073	0	0.60309E-03	368970.6	3756373.0	0.0	0.00	9.29	1.16	YES	HROFDY
L0000074	0	0.60309E-03	368969.2	3756393.0	0.0	0.00	9.29	1.16	YES	HROFDY
L0000075	0	0.60309E-03	368967.9	3756413.0	0.0	0.00	9.29	1.16	YES	HROFDY
L0000076	0	0.60309E-03	368966.6	3756433.0	0.0	0.00	9.29	1.16	YES	HROFDY
L0000077	0	0.60309E-03	368965.2	3756452.8	0.0	0.00	9.29	1.16	YES	HROFDY
L0000078	0	0.60309E-03	368963.9	3756472.8	0.0	0.00	9.29	1.16	YES	HROFDY
L0000079	0	0.60309E-03	368962.6	3756492.8	0.0	0.00	9.29	1.16	YES	HROFDY
L0000080	0	0.60309E-03	368961.3	3756512.8	0.0	0.00	9.29	1.16	YES	HROFDY

```
*** AERMOD - VERSION 07026 *** *** LAX CFTP Construction
```

*** CO 1-Hour and 8-Hour Peaks

***	11/25/08
$* * *$	$16: 51: 13$
	PAGE 4

**MODELOPTS: DFAULT ELEV FLGPOL
*** VOLUME SOURCE DATA ***

	NUMBER	EMISSION RATE			BASE	RELEASE	INIT.	INIT.	URBAN	EMISSION RATE
SOURCE	PART.	(GRAMS/SEC)	X	Y	ELEV.	HEIGHT	SY	SZ	SOURCE	SCALAR VARY
ID	CATS.		(METERS)	(METERS)	(METERS)	(METERS)	(METERS)	(METERS)		BY


L0000081	0	0.60309E-03	368959.9	3756532.5	0.0	0.00	9.29	1.16	YES	HROFDY
L0000082	0	0.60309E-03	368958.6	3756552.5	0.0	0.00	9.29	1.16	YES	HROFDY
L0000083	0	0.60309E-03	368957.3	3756572.5	0.0	0.00	9.29	1.16	YES	HROFDY
L0000084	0	0.60309E-03	368956.0	3756592.2	0.0	0.00	9.29	1.16	YES	HROFDY
L0000085	0	0.60309E-03	368954.6	3756612.2	0.0	0.00	9.29	1.16	YES	HROFDY
L0000086	0	0.60309E-03	368953.3	3756632.2	0.0	0.00	9.29	1.16	YES	HROFDY
L0000087	0	0.60309E-03	368952.0	3756652.2	0.0	0.00	9.29	1.16	YES	HROFDY
L0000088	0	0.60309E-03	368950.7	3756672.0	0.0	0.00	9.29	1.16	YES	HROFDY
L0000089	0	0.60309E-03	368949.3	3756692.0	0.0	0.00	9.29	1.16	YES	HROFDY
L0000090	0	0.60309E-03	368948.0	3756712.0	0.0	0.00	9.29	1.16	YES	HROFDY
L0000091	0	0.60309E-03	368946.7	3756732.0	0.0	0.00	9.29	1.16	YES	HROFDY
L0000092	0	0.60309E-03	368945.3	3756751.8	0.0	0.00	9.29	1.16	YES	HROFDY
L0000093	0	0.60309E-03	368944.0	3756771.8	0.0	0.00	9.29	1.16	YES	HROFDY
L0000094	0	0.60309E-03	368942.7	3756791.8	0.0	0.00	9.29	1.16	YES	HROFDY
L0000095	0	0.60309E-03	368941.3	3756811.5	0.0	0.00	9.29	1.16	YES	HROFDY
L0000096	0	0.60309E-03	368940.0	3756831.5	0.0	0.00	9.29	1.16	YES	HROFDY
L0000097	0	0.60309E-03	368938.7	3756851.5	0.0	0.00	9.29	1.16	YES	HROFDY
L0000098	0	0.60309E-03	368937.4	3756871.5	0.0	0.00	9.29	1.16	YES	HROFDY
L0000099	0	0.60309E-03	368936.0	3756891.2	0.0	0.00	9.29	1.16	YES	HROFDY
L0000100	0	0.60309E-03	368934.7	3756911.2	0.0	0.00	9.29	1.16	YES	HROFDY
L0000101	0	0.60309E-03	368919.5	3756914.5	0.0	0.00	9.28	1.16	YES	HROFDY
L0000102	0	0.60309E-03	368899.7	3756912.2	0.0	0.00	9.28	1.16	YES	HROFDY
L0000103	0	0.60309E-03	368879.9	3756910.0	0.0	0.00	9.28	1.16	YES	HROFDY
L0000104	0	0.60309E-03	368860.0	3756907.8	0.0	0.00	9.28	1.16	YES	HROFDY
L0000105	0	0.60309E-03	368840.2	3756905.5	0.0	0.00	9.28	1.16	YES	HROFDY
L0000106	0	0.60309E-03	368820.4	3756903.2	0.0	0.00	9.28	1.16	YES	HROFDY
L0000107	0	0.60309E-03	368800.6	3756901.0	0.0	0.00	9.28	1.16	YES	HROFDY
L0000108	0	0.60309E-03	368780.8	3756898.8	0.0	0.00	9.28	1.16	YES	HROFDY
L0000109	0	0.60309E-03	368760.9	3756896.5	0.0	0.00	9.28	1.16	YES	HROFDY
L0000110	0	0.60309E-03	368741.1	3756894.2	0.0	0.00	9.28	1.16	YES	HROFDY
L0000111	0	0.60309E-03	368721.3	3756892.0	0.0	0.00	9.28	1.16	YES	HROFDY
L0000112	0	0.60309E-03	368701.4	3756889.8	0.0	0.00	9.28	1.16	YES	HROFDY
L0000113	0	0.60309E-03	368681.6	3756887.5	0.0	0.00	9.28	1.16	YES	HROFDY
L0000114	0	0.60309E-03	368661.8	3756885.2	0.0	0.00	9.28	1.16	YES	HROFDY
L0000115	0	0.60309E-03	368642.0	3756883.0	0.0	0.00	9.28	1.16	YES	HROFDY
L0000116	0	0.60309E-03	368622.2	3756880.8	0.0	0.00	9.28	1.16	YES	HROFDY
L0000117	0	0.60309E-03	368602.3	3756878.5	0.0	0.00	9.28	1.16	YES	HROFDY
L0000118	0	0.60309E-03	368582.5	3756876.0	0.0	0.00	9.28	1.16	YES	HROFDY
L0000119	0	0.60309E-03	368562.7	3756873.8	0.0	0.00	9.28	1.16	YES	HROFDY
L0000120	0	0.60309E-03	368542.8	3756871.5	0.0	0.00	9.28	1.16	YES	HROFDY

```
*** AERMOD - VERSION 07026 *** *** LAX CFTP Construction
```

*** CO 1-Hour and 8-Hour Peaks

***	$11 / 25 / 08$
$* * *$	$16: 51: 13$
	PAGE 5

**MODELOPTs:

CONC
DFAULT ELEV FLGPOL
*** VOLUME SOURCE DATA ***

	NUMBER	EMISSION RATE			BASE	RELEASE	INIT.	INIT.	URBAN	EMISSION RATE
SOURCE	PART.	(GRAMS/SEC)	X	Y	ELEV.	HEIGHT	SY	SZ	SOURCE	SCALAR VARY
ID	CATS.		(METERS)	(METERS)	(METERS)	(METERS)	(METERS)	(METERS)		BY


L0000121	0	0.60309E-03	368523.0	3756869.2	0.0	0.00	9.28	1.16	YES	HROFDY
L0000122	0	0.60309E-03	368503.2	3756867.0	0.0	0.00	9.28	1.16	YES	HROFDY
L0000123	0	0.60309E-03	368483.4	3756864.8	0.0	0.00	9.28	1.16	YES	HROFDY
L0000124	0	0.60309E-03	368463.5	3756862.5	0.0	0.00	9.28	1.16	YES	HROFDY
L0000125	0	0.60309E-03	368443.7	3756860.2	0.0	0.00	9.28	1.16	YES	HROFDY
L0000126	0	0.60309E-03	368423.9	3756858.0	0.0	0.00	9.28	1.16	YES	HROFDY
L0000127	0	0.60309E-03	368404.1	3756855.8	0.0	0.00	9.28	1.16	YES	HROFDY
L0000128	0	0.60309E-03	368384.2	3756853.5	0.0	0.00	9.28	1.16	YES	HROFDY
L0000129	0	0.60309E-03	368364.4	3756851.2	0.0	0.00	9.28	1.16	YES	HROFDY
L0000130	0	0.60309E-03	368344.6	3756849.0	0.0	0.00	9.28	1.16	YES	HROFDY
L0000131	0	0.60309E-03	368324.8	3756846.8	0.0	0.00	9.28	1.16	YES	HROFDY
L0000132	0	0.60309E-03	368304.9	3756844.5	0.0	0.00	9.28	1.16	YES	HROFDY
L0000133	0	0.60309E-03	368285.1	3756842.2	0.0	0.00	9.28	1.16	YES	HROFDY
L0000134	0	0.60309E-03	368265.3	3756840.0	0.0	0.00	9.28	1.16	YES	HROFDY
L0000135	0	0.60309E-03	368245.5	3756837.8	0.0	0.00	9.28	1.16	YES	HROFDY
L0000136	0	0.60309E-03	368225.7	3756835.5	0.0	0.00	9.28	1.16	YES	HROFDY
L0000137	0	0.60309E-03	368205.8	3756833.2	0.0	0.00	9.28	1.16	YES	HROFDY
L0000138	0	0.60309E-03	368186.0	3756831.0	0.0	0.00	9.28	1.16	YES	HROFDY
L0000139	0	0.60309E-03	368166.2	3756828.8	0.0	0.00	9.28	1.16	YES	HROFDY
L0000140	0	0.60309E-03	368146.3	3756826.2	0.0	0.00	9.28	1.16	YES	HROFDY
L0000141	0	0.60309E-03	368126.5	3756824.0	0.0	0.00	9.28	1.16	YES	HROFDY
L0000142	0	0.60309E-03	368106.7	3756821.8	0.0	0.00	9.28	1.16	YES	HROFDY
L0000143	0	0.60309E-03	368086.9	3756819.5	0.0	0.00	9.28	1.16	YES	HROFDY
L0000144	0	0.60309E-03	368067.0	3756817.2	0.0	0.00	9.28	1.16	YES	HROFDY
L0000145	0	0.60309E-03	368047.2	3756815.0	0.0	0.00	9.28	1.16	YES	HROFDY
L0000146	0	0.60309E-03	368044.1	3756800.0	0.0	0.00	9.07	1.16	YES	HROFDY
L0000147	0	0.60309E-03	368046.5	3756780.8	0.0	0.00	9.07	1.16	YES	HROFDY
L0000148	0	0.60309E-03	368048.9	3756761.5	0.0	0.00	9.07	1.16	YES	HROFDY
L0000149	0	0.60309E-03	368051.3	3756742.0	0.0	0.00	9.07	1.16	YES	HROFDY
L0000150	0	0.60309E-03	368053.8	3756722.8	0.0	0.00	9.07	1.16	YES	HROFDY
L0000151	0	0.60309E-03	368056.2	3756703.2	0.0	0.00	9.07	1.16	YES	HROFDY
L0000152	0	0.60309E-03	368058.6	3756684.0	0.0	0.00	9.07	1.16	YES	HROFDY
L0000153	0	0.60309E-03	368061.0	3756664.5	0.0	0.00	9.07	1.16	YES	HROFDY
L0000154	0	0.60309E-03	368063.4	3756645.2	0.0	0.00	9.07	1.16	YES	HROFDY
L0000155	0	0.60309E-03	368065.8	3756626.0	0.0	0.00	9.07	1.16	YES	HROFDY
L0000156	0	0.60309E-03	368068.2	3756606.5	0.0	0.00	9.07	1.16	YES	HROFDY
L0000157	0	0.60309E-03	368070.7	3756587.2	0.0	0.00	9.07	1.16	YES	HROFDY
L0000158	0	0.60309E-03	368073.1	3756567.8	0.0	0.00	9.07	1.16	YES	HROFDY
L0000159	0	0.60309E-03	368075.5	3756548.5	0.0	0.00	9.07	1.16	YES	HROFDY
L0000160	0	0.60309E-03	368077.9	3756529.0	0.0	0.00	9.07	1.16	YES	HROFDY

*** AERMOD - VERSION 07026 *** *** LAX CFTP Construction
*** CO 1-Hour and 8-Hour Peaks

***	$11 / 25 / 08$
***	$16: 51: 13$

16:51:13
PAGE 6

DFAULT ELEV FLGPOL
*** VOLUME SOURCE DATA ***

	NUMBER	EMISSION RATE			BASE	RELEASE	INIT.	INIT.	URBAN	EMISSION RATE
SOURCE	PART.	(GRAMS/SEC)	X	Y	ELEV.	HEIGHT	SY	SZ	SOURCE	SCALAR VARY
ID	CATS.		(METERS)	(METERS)	(METERS)	(METERS)	(METERS)	(METERS)		BY


L0000161	0	0.60309E-03	368080.4	3756509.8	0.0	0.00	9.07	1.16	YES	HROFDY
L0000162	0	0.60309E-03	368082.8	3756490.5	0.0	0.00	9.07	1.16	YES	HROFDY
L0000163	0	0.60309E-03	368085.2	3756471.0	0.0	0.00	9.07	1.16	YES	HROFDY
L0000164	0	0.60309E-03	368087.6	3756451.8	0.0	0.00	9.07	1.16	YES	HROFDY
L0000165	0	0.60309E-03	368090.1	3756432.2	0.0	0.00	9.07	1.16	YES	HROFDY
L0000166	0	0.60309E-03	368092.5	3756413.0	0.0	0.00	9.07	1.16	YES	HROFDY
L0000167	0	0.60309E-03	368090.2	3756397.2	0.0	0.00	7.47	1.16	YES	HROFDY
L0000168	0	0.60309E-03	368085.9	3756381.8	0.0	0.00	7.47	1.16	YES	HROFDY
L0000169	0	0.60309E-03	368086.6	3756365.0	0.0	0.00	7.99	1.16	YES	HROFDY
L0000170	0	0.60309E-03	368089.4	3756348.0	0.0	0.00	7.99	1.16	YES	HROFDY
L0000171	0	0.60309E-03	368092.2	3756331.0	0.0	0.00	7.99	1.16	YES	HROFDY
L0000172	0	0.60309E-03	368095.1	3756314.2	0.0	0.00	7.99	1.16	YES	HROFDY
L0000173	0	0.60309E-03	368097.9	3756297.2	0.0	0.00	7.99	1.16	YES	HROFDY
L0000174	0	0.60309E-03	368107.4	3756283.5	0.0	0.00	8.05	1.16	YES	HROFDY
L0000175	0	0.60309E-03	368119.7	3756271.2	0.0	0.00	8.05	1.16	YES	HROFDY
L0000176	0	0.60309E-03	368131.9	3756259.0	0.0	0.00	8.05	1.16	YES	HROFDY
L0000177	0	0.60309E-03	368137.3	3756240.8	0.0	0.00	9.27	1.16	YES	HROFDY
L0000178	0	0.60309E-03	368139.8	3756221.0	0.0	0.00	9.27	1.16	YES	HROFDY
L0000179	0	0.60309E-03	368142.3	3756201.2	0.0	0.00	9.27	1.16	YES	HROFDY
L0000180	0	0.60309E-03	368144.8	3756181.5	0.0	0.00	9.27	1.16	YES	HROFDY
L0000181	0	0.60309E-03	368147.3	3756161.8	0.0	0.00	9.27	1.16	YES	HROFDY
L0000182	0	0.60309E-03	368149.8	3756142.0	0.0	0.00	9.27	1.16	YES	HROFDY
L0000183	0	0.60309E-03	368152.3	3756122.0	0.0	0.00	9.27	1.16	YES	HROFDY
L0000184	0	0.60309E-03	368154.9	3756102.2	0.0	0.00	9.27	1.16	YES	HROFDY
L0000185	0	0.60309E-03	368157.4	3756082.5	0.0	0.00	9.27	1.16	YES	HROFDY
L0000186	0	0.60309E-03	368159.9	3756062.8	0.0	0.00	9.27	1.16	YES	HROFDY
L0000187	0	0.60309E-03	368162.4	3756043.0	0.0	0.00	9.27	1.16	YES	HROFDY
L0000188	0	0.60309E-03	368164.9	3756023.2	0.0	0.00	9.27	1.16	YES	HROFDY
L0000189	0	0.60309E-03	368167.4	3756003.5	0.0	0.00	9.27	1.16	YES	HROFDY
L0000190	0	0.60309E-03	368169.9	3755983.8	0.0	0.00	9.27	1.16	YES	HROFDY
L0000191	0	0.60309E-03	368172.4	3755964.0	0.0	0.00	9.27	1.16	YES	HROFDY
L0000192	0	0.60309E-03	368174.9	3755944.2	0.0	0.00	9.27	1.16	YES	HROFDY
L0000193	0	0.60309E-03	368177.4	3755924.5	0.0	0.00	9.27	1.16	YES	HROFDY
L0000194	0	0.60309E-03	368180.0	3755904.8	0.0	0.00	9.27	1.16	YES	HROFDY


*** AREAPOLY SOURCE DATA ***




DFAULT ELEV FLGPOL
*** SOURCE IDs DEFINING SOURCE GROUPS ***

L0000011, L0000012, L0000013, L0000014, L0000015, L0000016, L0000017, L0000018, L0000019, L0000020, L0000021, L0000022, L0000023, L0000024, L0000025, L0000026, L0000027, L0000028, L0000029, L0000030, L0000031, L0000032, L0000033, L0000034, L0000035, L0000036, L0000037, L0000038, L0000039, L0000040, L0000041, L0000042, L0000043, L0000044, L0000045, L0000046, L0000047, L0000048, L0000049, L0000050, L0000051, L0000052, L0000053, L0000054, L0000055, L0000056, L0000057, L0000058, L0000059, L0000060, L0000061, L0000062, L0000063, L0000064, L0000065, L0000066, L0000067, L0000068, L0000069, L0000070, L0000071, L0000072, L0000073, L0000074, L0000075, L0000076, L0000077, L0000078, L0000079, L0000080, L0000081, L0000082, L0000083, L0000084, L0000085, L0000086, L0000087, L0000088, L0000089, L0000090, L0000091, L0000092, L0000093, L0000094, L0000095, L0000096, L0000097, L0000098, L0000099, L0000100, L0000101, L0000102, L0000103, L0000104, L0000105, L0000106, L0000107, L0000108, L0000109, L0000110, L0000111, L0000112, L0000113, L0000114, L0000115, L0000116, L0000117, L0000118, L0000119, L0000120, L0000121, L0000122, L0000123, L0000124, L0000125, L0000126, L0000127, L0000128, L0000129, L0000130, L0000131, L0000132, L0000133, L0000134, L0000135, L0000136, L0000137, L0000138, L0000139, L0000140, L0000141, L0000142, L0000143, L0000144, L0000145, L0000146, L0000147, L0000148, L0000149, L0000150, L0000151, L0000152, L0000153, L0000154, L0000155, L0000156, L0000157, L0000158, L0000159, L0000160, L0000161, L0000162, L0000163, L0000164, L0000165, L0000166, L0000167, L0000168, L0000169, L0000170, L0000171, L0000172, L0000173, L0000174, L0000175, L0000176, L0000177, L0000178, L0000179, L0000180, L0000181, L0000182, L0000183, L0000184, L0000185, L0000186, L0000187, L0000188, L0000189, L0000190, L0000191, L0000192, L0000193, L0000194,

* LAX CFTP Construction
*** CO 1-Hour and 8-Hour Peaks
DFAULT ELEV FLGPOL
* SOURCE EMISSION RATE SCALARS WHICH VARY FOR EACH HOUR OF THE DAY
HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR


The following 38 pages have been deleted from the original AERMOD output file. The source emission rate scalars are identical for Source IDs L0000001 through L0000194, so pages 11 through 48 have been deleted since the data above are simply repeated for these 194 sources.

*** AERMOD -	*** LAX CFTP Construction	*	11/25/08
	*** CO 1-Hour and 8-Hour Peaks	***	16:51:13
**MODELOPTs:			PAGE 49

DFAULT ELEV FLGPOL

* SOURCE EMISSION RATE SCALARS WHICH VARY FOR EACH HOUR OF THE DAY *

*** CO 1-Hour and 8-Hour Peaks

***	$11 / 25 / 08$
$* * *$	$16: 51: 13$
	PAGE 50

**MODELOPTs
CONC
DFAULT ELEV FLGPOL
*** DISCRETE CARTESIAN RECEPTORS ***
(X-COORD, Y-COORD, ZELEV, ZHILL, ZFLAG)
(METERS)


*** LAX CFTP Construction*** CO 1-Hour and 8-Hour Pe						$\begin{aligned} & \text { *** } \\ & \text { *** } \end{aligned}$		$\begin{aligned} & 11 / 25 / 08 \\ & 16: 51: 13 \end{aligned}$
**MODELOPTs:								
CONC	DFAULT ELEV	FLGPOL						
		$\begin{gathered} * * * \\ (\mathrm{X}-\mathrm{COO} \end{gathered}$		CEPTORS HILL, ZFLA				
( 373456.8, 3756235.5,	0.0,	0.0,	1.8);	( 373448.0,	3755559.8,	0.0,	0.0,	1.8);
( 373222.5, 3755568.8,	0.0,	0.0,	1.8);	( 373219.3,	3755705.0,	0.0,	0.0,	1.8);
( 373134.7, 3755704.0,	0.0,	0.0,	1.8);	( 373131.2,	3755566.8,	0.0,	0.0,	1.8);
( 373054.1, 3755562.8,	0.0,	0.0,	1.8);	( 373046.2,	3755174.0,	0.0,	0.0,	1.8);
( 372725.5, 3755177.0,	0.0,	0.0,	1.8);	( 372624.1,	3755182.2,	0.0,	0.0,	1.8);
( 372237.7, 3755185.5,	0.0,	0.0,	1.8);	( 371843.0,	3755188.8,	0.0,	0.0,	1.8);
( 371462.8, 3755192.0,	0.0,	0.0,	1.8);	( 371049.0,	3755195.5	0.0,	0.0,	1.8);
( 371056.3, 3755349.0,	0.0,	0.0,	1.8);	( 371043.4,	3755384.0 ,	0.0,	0.0,	1.8);
( 371042.4, 3755556.2,	0.0,	0.0,	1.8);	( 370995.8,	3755560.2 ,	0.0,	0.0,	1.8);
( 371001.0, 3755419.2,	0.0,	0.0,	1.8);	( 370801.4,	3755275.5,	0.0,	0.0,	1.8);
( 370666.7, 3755261.8,	0.0,	0.0,	1.8);	( 370380.3,	3755263.2 ,	0.0,	0.0,	1.8);
( 370075.9, 3755265.0,	0.0,	0.0,	1.8);	( 369786.9,	3755266.5 ,	0.0,	0.0,	1.8);
( 369498.0, 3755268.2,	0.0,	0.0,	1.8);	( 369193.6,	3755269.8,	0.0,	0.0,	1.8);
( 368889.2, 3755271.5,	0.0,	0.0,	1.8);	( 368569.3,	3755273.2,	0.0,	0.0,	1.8);
( 368274.8, 3755274.8,	0.0,	0.0,	1.8);	( 367936.4,	3755213.2,	0.0,	0.0,	1.8);

*** AERMOD - VERSION 07026 ***
*** LAX CFTP Construction
*** 11/25/08 *** CO 1-Hour and 8-Hour Peaks

## DFAULT ELEV FLGPOL

*** METEOROLOGICAL DAYS SELECTED FOR PROCESSING ***
(1=YES; 0=NO)

*** UPPER BOUND OF FIRST THROUGH FIFTH WIND SPEED CATEGORIES ***
(METERS/SEC)
1.54, $3.09, \quad 5.14, \quad 8.23,10.80$,

```
*** AERMOD - VERSION 07026 **** LAX CFTP Construction
** CO 1-Hour and 8-Hour Peaks
*** 11/25/08
*MODELOPTs:
DFAULT ELEV FLGPOL
```

CONC
*** UP TO THE FIRST 24 HOURS OF METEOROLOGICAL DATA ***

```
Surface file: C:\Lakes\Projects\OS_96.SFC Mer Version: 07026
Profile file: c:\Lakes\Projects\OS 96.PFL
Surface format: (3(I2,1X),I3,1X,I2,1X,F6.1,1X,3(F6.3,1X),2(F5.0,1X),F8.1,1X,F6.3,1X,2(F6.2,1X),F7.2,1X,F5.0,3(1X,F6.1))
Profile format: (4(I2,1X),F6.1,1X,I1,1X,F5.0,1X,F7.2,1X,F7.2,1X,F6.1,1X,F7.2)
```



```
Name: LOS_ANGELES/INT'L_ARPT Name: UNKNOWN
```

Year: 1996 Year: 1996

YR MO DY	JDY HR	H0	U*	W*	DT/DZ	ZICNV	ZIMCH	M-O LEN	Z0	BOWEN	ALBEDO	REF WS	WD	HT	REF TA	HT
- - - -	- - - -	- - - -	- - -	- - -	- - -	- - -	- - -	- - - -	- -	- - -	- - - -	- - -	- - -	- -	- - -	
960101	101	-64.0	0.658	-9.000	-9.000	-999.	1228.	400.6	1.00	1.50	1.00	3.10	61.	6.1	291.4	2.0
960101	102	-45.5	0.415	-9.000	-9.000	-999.	669.	141.3	1.00	1.50	1.00	2.10	38.	6.1	288.1	2.0
960101	103	-27.5	0.248	-9.000	-9.000	-999.	311.	50.0	1.00	1.50	1.00	1.50	34.	6.1	285.4	2.0
960101	104	-27.5	0.248	-9.000	-9.000	-999.	284.	50.0	1.00	1.50	1.00	1.50	233.	6.1	285.4	2.0
960101	105	-27.5	0.248	-9.000	-9.000	-999.	285.	50.2	1.00	1.50	1.00	1.50	293.	6.1	285.9	2.0
960101	106	-45.8	0.415	-9.000	-9.000	-999.	614.	140.2	1.00	1.50	1.00	2.10	162.	6.1	286.4	2.0
960101	107	-57.3	0.538	-9.000	-9.000	-999.	907.	245.1	1.00	1.50	1.00	2.60	185.	6.1	285.4	2.0
960101	108	-64.0	0.892	-9.000	-9.000	-999.	1936.	1000.6	1.00	1.50	0.68	4.10	183.	6.1	289.2	2.0
960101	109	22.5	0.910	0.371	0.005	82.	1995.	-998.0	1.00	1.50	0.47	4.10	237.	6.1	290.4	2.0
960101	110	70.3	0.917	1.041	0.005	580.	2019.	-990.8	1.00	1.50	0.40	4.10	181.	6.1	293.8	2.0
960101	111	101.2	0.814	1.300	0.005	785.	1707.	-481.9	1.00	1.50	0.38	3.60	234.	6.1	294.9	2.0
960101	112	119.0	1.270	1.378	0.007	795.	3284.	-998.0	1.00	1.50	0.37	5.70	236.	6.1	294.9	2.0
960101	113	117.5	1.270	1.378	0.007	804.	3290.	-998.0	1.00	1.50	0.37	5.70	243.	6.1	293.8	2.0
960101	114	98.4	1.029	1.303	0.005	811	2494.	-998.1	1.00	1.50	0.38	4.60	249.	6.1	293.8	2.0
960101	115	64.2	0.916	1.132	0.005	816.	2051.	-998.0	1.00	1.50	0.41	4.10	252.	6.1	293.8	2.0
960101	116	13.6	0.689	0.676	0.005	817.	1381.	-998.0	1.00	1.50	0.49	3.10	254.	6.1	293.1	2.0
960101	117	-25.2	-9.000	-9.000	-9.000	-999.	-999.	-99999.0	1.00	1.50	0.72	0.00	0.	6.1	291.4	2.0
960101	118	-64.0	0.658	-9.000	-9.000	-999.	1228.	401.4	1.00	1.50	1.00	3.10	237.	6.1	290.4	2.0
960101	119	-27.4	0.250	-9.000	-9.000	-999.	505.	51.2	1.00	1.50	1.00	1.50	4.	6.1	288.8	2.0
960101	120	-27.3	0.250	-9.000	-9.000	-999.	294.	51.6	1.00	1.50	1.00	1.50	67.	6.1	289.9	2.0
960101	121	-27.4	0.250	-9.000	-9.000	-999.	287.	51.2	1.00	1.50	1.00	1.50	30.	6.1	288.8	2.0
960101	122	-27.2	0.251	-9.000	-9.000	-999.	290.	52.8	1.00	1.50	1.00	1.50	52.	6.1	288.8	2.0
960101	123	-999.0	-9.000	-9.000	-9.000	-999.	-999.	-99999.0	1.00	1.50	1.00	0.00	0.	6.1	288.1	2.0
960101	124	-59.6	0.536	-9.000	-9.000	-999.	904.	233.4	1.00	1.50	1.00	2.60	90.	6.1	286.4	2.0

First hour of profile data
YR MO DY HR HEIGHT F WDIR WSPD AMB_TMP sigmaA sigmaW sigmaV
960101016.1161.

## $\begin{array}{lllll}3.10 & 291.5 & 99.0 & -99.00 & -99.00\end{array}$

F indicates top of profile (=1) or below (=0)
*** AERMOD - VERSION 07026 *** *** LAX CFTP Construction
$\begin{array}{ll}\text { *** } & 11 / 25 / 08 \\ \text { *** } & 16: 51: 13\end{array}$
**MODELOPTs:
CONC
DFAULT ELEV FLGPOL
*** THE 1ST HIGHEST 1-HR AVERAGE CONCENTRATION VALUES FOR SOURCE GROUP: TAXIWAY *** INCLUDING SOURCE(S): PAREA01,
*** DISCRETE CARTESIAN RECEPTOR POINTS ***
** CONC OF CO IN MICROGRAMS/M**3


```
*** AERMOD - VERSION 07026 *** *** LAX CFTP Construction
** CO 1-Hour and 8-Hour Peaks
*** 11/25/08
*MODELOPTs
```

CONC

## DFAULT ELEV FLGPOL

*** THE 1ST HIGHEST 1-HR AVERAGE CONCENTRATION VALUES FOR SOURCE GROUP: TAXIWAY *** INCLUDING SOURCE(S): PAREA01
*** DISCRETE CARTESIAN RECEPTOR POINTS ***
** CONC OF CO IN MICROGRAMS/M**3

*** AERMOD - VERSION 07026 *** *** LAX CFTP Construction
$\begin{array}{ll}\text { *** } & 11 / 25 / 08 \\ \text { *** } & 16: 51: 13\end{array}$ **MODELOPTs:
CONC
DFAULT ELEV FLGPOL
*** THE 1ST HIGHEST 1-HR AVERAGE CONCENTRATION VALUES FOR SOURCE GROUP: STAGING *** INCLUDING SOURCE(S): PAREA02
*** DISCRETE CARTESIAN RECEPTOR POINTS ***
** CONC OF CO IN MICROGRAMS/M**3


AERMOD	*** LAX CFTP Construction	**	11/25/08
	*** CO 1-Hour and 8-Hour Peaks	***	16:51:13
**MODELOPTs:			PAGE 57

*MODELOPTs:
DFAULT ELEV FLGPOL
*** THE 1ST HIGHEST 1-HR AVERAGE CONCENTRATION VALUES FOR SOURCE GROUP: STAGING *** INCLUDING SOURCE(S): PAREA02
*** DISCRETE CARTESIAN RECEPTOR POINTS ***
** CONC OF CO IN MICROGRAMS/M**3

*** THE 1ST HIGHEST 1-HR AVERAGE CONCENTRATION VALUES FOR SOURCE GROUP: HAULING *** INCLUDING SOURCE(S): L0000001, L0000002, L0000003, L0000004, L0000005, L0000006, L0000007, L0000008, L0000009, L0000010, L0000011, L0000012, L0000013, L0000014, L0000015, L0000016, L0000017, L0000018, L0000019, L0000020, L0000021, L0000022, L0000023, L0000024, L0000025, L0000026, L0000027, L0000028, L0000029, L0000030, . . .


```
*** AERMOD - VERSION 07026 *** *** LAX CFTP Construction
** CO 1-Hour and 8-Hour Peaks
*** 11/25/0
*MODELOPTs
```

CONC

## DFAULT ELEV FLGPOL

*** THE 1ST HIGHEST 1-HR AVERAGE CONCENTRATION VALUES FOR SOURCE GROUP: HAULING *** INCLUDING SOURCE(S): L0000001, L0000002, L0000003, L0000004, L0000005, L0000006, L0000007, L0000008, L0000009, L0000010, L0000011, L0000012, L0000013, L0000014, L0000015, L0000016, L0000017, L0000018, L0000019, L0000020, L0000021, L0000022, L0000023, L0000024, L0000025, L0000026, L0000027, L0000028, L0000029, L0000030, . . .
*** DISCRETE CARTESIAN RECEPTOR POINTS ***
** CONC OF CO IN MICROGRAMS/M**3

** CO 1-Hour and 8-Hour Peaks

***	$11 / 25 / 08$
$* * *$	$16: 51: 13$
	PAGE 60

**MODELOPTs:
CONC
DFAULT ELEV FLGPOL
*** THE 1ST HIGHEST 1-HR AVERAGE CONCENTRATION VALUES FOR SOURCE GROUP: ALL
INCLUDING SOURCE (S): PAREA01 , PAREA02 , L0000001, L0000002, L0000003, L0000004, L0000005, L0000006, L0000007, L0000008, L0000009, L0000010, L0000011, L0000012, L0000013, L0000014, L0000015, L0000016, L0000017, L0000018, L0000019, L0000020, L0000021, L0000022, L0000023, L0000024, L0000025, L0000026, L0000027, L0000028, . . .



## DFAULT ELEV FLGPOL

*** THE 1ST HIGHEST 1-HR AVERAGE CONCENTRATION VALUES FOR SOURCE GROUP: ALL
INCLUDING SOURCE(S): PAREA01, PAREA02 , L0000001, L0000002, L0000003, L0000004, L0000005, L0000006, L0000007, L0000008, L0000009, L0000010, L0000011, L0000012, L0000013, L0000014, L0000015, L0000016, L0000017, L0000018, L0000019, L0000020, L0000021, L0000022, L0000023, L0000024, L0000025, L0000026, L0000027, L0000028, . . .
*** DISCRETE CARTESIAN RECEPTOR POINTS ***
** CONC OF CO IN MICROGRAMS/M**3

*** THE 1ST HIGHEST 8-HR AVERAGE CONCENTRATION VALUES FOR SOURCE GROUP: TAXIWAY *** INCLUDING SOURCE(S): PAREA01
*** DISCRETE CARTESIAN RECEPTOR POINTS ***
** CONC OF CO IN MICROGRAMS/M**3


*MODELOPTs:
CONC

## DFAULT ELEV FLGPOL <br> DFAULT ELEV FLGPOL

*** THE 1ST HIGHEST 8-HR AVERAGE CONCENTRATION VALUES FOR SOURCE GROUP: TAXIWAY *** INCLUDING SOURCE(S): PAREA01
*** DISCRETE CARTESIAN RECEPTOR POINTS ***
** CONC OF CO IN MICROGRAMS/M**3

*** THE 1ST HIGHEST 8-HR AVERAGE CONCENTRATION VALUES FOR SOURCE GROUP: STAGING *** INCLUDING SOURCE(S): PAREA02
*** DISCRETE CARTESIAN RECEPTOR POINTS ***
** CONC OF CO IN MICROGRAMS/M**3


```
*** AERMOD - VERSION 07026 *** LAX CFTP Construction
** CO 1-Hour and 8-Hour Peaks
*** 11/25/08
*MODELOPTs
```

CONC

## DFAULT ELEV FLGPOL

*** THE 1ST HIGHEST 8-HR AVERAGE CONCENTRATION VALUES FOR SOURCE GROUP: STAGING *** INCLUDING SOURCE(S): PAREA02
*** DISCRETE CARTESIAN RECEPTOR POINTS ***
** CONC OF CO IN MICROGRAMS/M**3

** CO 1-Hour and 8-Hour Peaks

$* * *$	$11 / 25 / 08$
$* * *$	$16: 51: 13$
	PAGE 66

**MODELOPTs:
CONC
DFAULT ELEV FLGPOL
*** THE 1ST HIGHEST 8-HR AVERAGE CONCENTRATION VALUES FOR SOURCE GROUP: HAULING *** INCLUDING SOURCE(S): L0000001, L0000002, L0000003, L0000004, L0000005, L0000006, L0000007, L0000008, L0000009, L0000010, L0000011, L0000012, L0000013, L0000014, L0000015, L0000016, L0000017, L0000018, L0000019, L0000020, L0000021, L0000022, L0000023, L0000024, L0000025, L0000026, L0000027, L0000028, L0000029, L0000030, . . .


```
*** AERMOD - VERSION 07026 *** LAX CFTP Construction
** CO 1-Hour and 8-Hour Peaks
*** 11/25/08
*MODELOPTs
```

CONC

## DFAULT ELEV FLGPOL

*** THE 1ST HIGHEST 8-HR AVERAGE CONCENTRATION VALUES FOR SOURCE GROUP: HAULING *** INCLUDING SOURCE(S): L0000001, L0000002, L0000003, L0000004, L0000005, L0000006, L0000007, L0000008, L0000009, L0000010, L0000011, L0000012, L0000013, L0000014, L0000015, L0000016, L0000017, L0000018, L0000019, L0000020, L0000021, L0000022, L0000023, L0000024, L0000025, L0000026, L0000027, L0000028, L0000029, L0000030, . . .
*** DISCRETE CARTESIAN RECEPTOR POINTS ***
** CONC OF CO IN MICROGRAMS/M**3

** LAX 1-Hour and 8-Hour Peaks

$* * *$	$11 / 25 / 08$
$* * *$	$16: 51: 13$
	PAGE 68

**MODELOPTs:
CONC
DFAULT ELEV FLGPOL
*** THE 1ST HIGHEST 8-HR AVERAGE CONCENTRATION VALUES FOR SOURCE GROUP: ALL
INCLUDING SOURCE(S): PAREA01, PAREA02, L0000001, L0000002, L0000003, L0000004, L0000005, L0000006, L0000007, L0000008, L0000009, L0000010, L0000011, L0000012, L0000013, L0000014, L0000015, L0000016, L0000017, L0000018, L0000019, L0000020, L0000021, L0000022, L0000023, L0000024, L0000025, L0000026, L0000027, L0000028, . . .


```
*** AERMOD - VERSION 07026 *** LAX CFTP Construction
** CO 1-Hour and 8-Hour Peaks
*** 11/25/08
*MODELOPTs
```

CONC

## DFAULT ELEV FLGPOL

*** THE 1ST HIGHEST 8-HR AVERAGE CONCENTRATION VALUES FOR SOURCE GROUP: ALL
INCLUDING SOURCE(S): PAREA01, PAREA02 , L0000001, L0000002, L0000003, L0000004, L0000005,
L0000006, L0000007, L0000008, L0000009, L0000010, L0000011, L0000012, L0000013, L0000014, L0000015, L0000016, L0000017, L0000018, L0000019, L0000020, L0000021, L0000022, L0000023, L0000024, L0000025, L0000026, L0000027, L0000028, . . .
*** DISCRETE CARTESIAN RECEPTOR POINTS ***
** CONC OF CO IN MICROGRAMS/M**3




```
AERMOD - VERSION 07026 **** *** LAX CFTP Construction
*** CO 1-Hour and 8-Hour Peaks
*** Message Summary : AERMOD Model Execution ***
--------- Summary of Total Messages --------
A Total of 0 Fatal Error Message(s)
Total of
A Total of
A Total of
0 Fatal Error Message(s)
0 Warning Message(s)
2275 Informational Message(s)
A Total of 920 Calm Hours Identified
A Total of 1355 Missing Hours Identified (15.43 Percent)
CAUTION!: Number of Missing Hours Exceeds 10 Percent of Total!
Data May Not Be Acceptable for Regulatory Applications.
See Section 5.3.2 of "Meteorological Monitoring Guidance for Regulatory Modeling Applications" (EPA-454/R-99-005)
******** FATAL ERROR MESSAGES ********
*** NONE ***
WARNING MESSAGES
*** NONE ***
```

***
***
11/25/08
16:51:13
PAGE 72
***********************************
*** AERMOD Finishes Successfully ***
************************************

```
*** AERMOD - VERSION 07026 *** *** LAX CFTP CONSTRUCTION
*** PM10 24-HOUR UNMITIGATED
*** 11/18/08
*MODELOPTs:
 18:52:44
```

CONC
DFAULT ELEV FLGPOL
***
MODEL SETUP OPTIONS SUMMARY
***
**Model Is Setup For Calculation of Average CONCentration Values.
-- DEPOSITION LOGIC
**Model Uses NO DRY DEPLETION. DDPLETE $=F$
**Model Uses NO WET DEPLETION. WDPLETE = F
**NO GAS DRY DEPOSITION Data Provided.
**Model Uses URBAN Dispersion Algorithm for the SBL for 396 Source(s), for Total of 1 Urban Area(s):
Urban Population $=165468.0$; Urban Roughness Length $=1.000 \mathrm{~m}$
**Model Uses Regulatory DEFAULT Options:

1. Stack-tip Downwash.
2. Model Accounts for ELEVated Terrain Effects.
3. Use Calms Processing Routine.
4. Use Missing Data Processing Routine.
5. No Exponential Decay for URBAN/Non-SO2
**Model Accepts FLAGPOLE Receptor Heights.
**Model Calculates 1 Short Term Average(s) of: 24-HR
**This Run Includes: 396 Source(s); 6 Source Group(s); and 120 Receptor(s)
**The Model Assumes A Pollutant Type of: DAILYPM1
**Model Set To Continue RUNning After the Setup Testing.
**Output Options Selected:
Model Outputs Tables of Highest Short Term Values by Receptor (RECTABLE Keyword)
Model Outputs External File(s) of High Values for Plotting (PLOTFILE Keyword)
**NOTE: The Following Flags May Appear Following CONC Values: c for Calm Hours
m for Missing Hours
b for Both Calm and Missing Hours

**Approximate Storage Requirements of Model $=\quad 2.0$ MB of RAM.
**File for Saving Result Arrays: C:\LAKES\LAXTAXC\PM10DAYU.SV1

*** POINT SOURCE DATA ***

$\begin{aligned} & \text { SOURCE } \\ & \text { ID } \end{aligned}$	NUMBER PART. CATS.	EMISSION RATE (GRAMS/SEC)	X   (METERS)	Y   (METERS)	$\begin{aligned} & \text { BASE } \\ & \text { ELEV. } \\ & \text { (METERS) } \end{aligned}$	STACK HEIGHT (METERS)	STACK TEMP. (DEG.K)	$\begin{gathered} \text { STACK } \\ \text { EXIT VEL. } \\ (\mathrm{M} / \mathrm{SEC}) \end{gathered}$	STACK   DIAMETER   (METERS)	$\begin{aligned} & \text { BLDG } \\ & \text { EXISTS } \end{aligned}$	URBAN SOURCE	$\begin{aligned} & \text { CAP/ } \\ & \text { HOR } \end{aligned}$	EMIS RATE SCALAR   VARY BY
STCK01	0	$0.12270 \mathrm{E}+00$	368061.3	3756043.2	0.0	10.00	293.00	10.00	2.00	NO	YES	NO	HROFDY
STCK02	$\bigcirc$	0.15400E-01	367935.2	3756111.5	0.0	10.00	293.00	10.00	2.00	NO	YES	NO	HROFDY

*** AERMOD - VERSION 07026 *** *** LAX CFTP CONSTRUCTION
*** PM10 24-HOUR UNMITIGATED
$\begin{array}{lr}\text { *** } & 11 / 18 / 08 \\ \text { *** } & 18.52 .44\end{array}$
*** 18:52:44
**MODELOPTs:
CONC

DFAULT ELEV FLGPOL
*** VOLUME SOURCE DATA ***

	NUMBER	EMISSION RATE			BASE	RELEASE	INIT.	INIT.	URBAN	EMISSION RATE
SOURCE	PART.	(GRAMS/SEC)	X	Y	ELEV.	HEIGHT	SY	SZ	SOURCE	SCALAR VARY
ID	CATS.		(METERS)	(METERS)	(METERS)	(METERS)	(METERS)	(METERS)		BY


L0000001	0	0.89175E-04	368157.3	3755892.2	0.0	0.00	8.74	1.16	YES	HROFDY
L0000002	0	0.89175E-04	368175.7	3755896.0	0.0	0.00	8.74	1.16	YES	HROFDY
L0000003	0	0.89175E-04	368182.2	3755885.0	0.0	0.00	7.96	1.16	YES	HROFDY
L0000004	0	0.89175E-04	368184.6	3755868.0	0.0	0.00	7.96	1.16	YES	HROFDY
L0000005	0	0.89175E-04	368187.0	3755851.0	0.0	0.00	7.96	1.16	YES	HROFDY
L0000006	0	0.89175E-04	368189.3	3755834.0	0.0	0.00	7.96	1.16	YES	HROFDY
L0000007	0	0.89175E-04	368191.7	3755817.2	0.0	0.00	7.96	1.16	YES	HROFDY
L0000008	0	0.89175E-04	368194.0	3755800.2	0.0	0.00	7.96	1.16	YES	HROFDY
L0000009	0	0.89175E-04	368209.4	3755797.2	0.0	0.00	9.24	1.16	YES	HROFDY
L0000010	0	0.89175E-04	368229.2	3755799.8	0.0	0.00	9.24	1.16	YES	HROFDY
L0000011	0	0.89175E-04	368248.8	3755802.2	0.0	0.00	9.24	1.16	YES	HROFDY
L0000012	0	0.89175E-04	368268.5	3755804.8	0.0	0.00	9.24	1.16	YES	HROFDY
L0000013	0	0.89175E-04	368288.2	3755807.2	0.0	0.00	9.24	1.16	YES	HROFDY
L0000014	0	0.89175E-04	368307.9	3755810.0	0.0	0.00	9.24	1.16	YES	HROFDY
L0000015	0	0.89175E-04	368327.6	3755812.5	0.0	0.00	9.24	1.16	YES	HROFDY
L0000016	0	0.89175E-04	368347.3	3755815.0	0.0	0.00	9.24	1.16	YES	HROFDY
L0000017	0	0.89175E-04	368367.0	3755817.5	0.0	0.00	9.24	1.16	YES	HROFDY
L0000018	0	0.89175E-04	368386.7	3755820.0	0.0	0.00	9.24	1.16	YES	HROFDY
L0000019	0	0.89175E-04	368406.4	3755822.8	0.0	0.00	9.24	1.16	YES	HROFDY
L0000020	0	0.89175E-04	368426.1	3755825.2	0.0	0.00	9.24	1.16	YES	HROFDY
L0000021	0	0.89175E-04	368445.8	3755827.8	0.0	0.00	9.24	1.16	YES	HROFDY
L0000022	0	0.89175E-04	368465.5	3755830.2	0.0	0.00	9.24	1.16	YES	HROFDY
L0000023	0	0.89175E-04	368485.2	3755832.8	0.0	0.00	9.24	1.16	YES	HROFDY
L0000024	0	0.89175E-04	368504.8	3755835.5	0.0	0.00	9.24	1.16	YES	HROFDY
L0000025	0	0.89175E-04	368524.5	3755838.0	0.0	0.00	9.24	1.16	YES	HROFDY
L0000026	0	0.89175E-04	368544.2	3755840.5	0.0	0.00	9.24	1.16	YES	HROFDY
L0000027	0	0.89175E-04	368563.9	3755843.0	0.0	0.00	9.24	1.16	YES	HROFDY
L0000028	0	0.89175E-04	368583.6	3755845.5	0.0	0.00	9.24	1.16	YES	HROFDY
L0000029	0	0.89175E-04	368603.3	3755848.2	0.0	0.00	9.24	1.16	YES	HROFDY
L0000030	0	0.89175E-04	368623.0	3755850.8	0.0	0.00	9.24	1.16	YES	HROFDY
L0000031	0	0.89175E-04	368642.7	3755853.2	0.0	0.00	9.24	1.16	YES	HROFDY
L0000032	0	0.89175E-04	368662.4	3755855.8	0.0	0.00	9.24	1.16	YES	HROFDY
L0000033	0	0.89175E-04	368682.1	3755858.2	0.0	0.00	9.24	1.16	YES	HROFDY
L0000034	0	0.89175E-04	368701.8	3755861.0	0.0	0.00	9.24	1.16	YES	HROFDY
L0000035	0	0.89175E-04	368721.5	3755863.5	0.0	0.00	9.24	1.16	YES	HROFDY
L0000036	0	0.89175E-04	368741.2	3755866.0	0.0	0.00	9.24	1.16	YES	HROFDY
L0000037	0	0.89175E-04	368760.8	3755868.5	0.0	0.00	9.24	1.16	YES	HROFDY
L0000038	0	0.89175E-04	368780.5	3755871.0	0.0	0.00	9.24	1.16	YES	HROFDY
L0000039	0	0.89175E-04	368800.2	3755873.5	0.0	0.00	9.24	1.16	YES	HROFDY
L0000040	0	0.89175E-04	368819.9	3755876.2	0.0	0.00	9.24	1.16	YES	HROFDY

*** AERMOD - VERSION 07026 *** *** LAX CFTP CONSTRUCTION
*** PM10 24-HOUR UNMITIGATED
DFAULT ELEV FLGPOL
**MODELOPTs:
CONC
*** 11/18/08
*** 18:52:4
*** VOLUME SOURCE DATA ***

	NUMBER	EMISSION RATE			BASE	RELEASE	INIT.	INIT.	URBAN	EMISSION RATE
SOURCE	PART.	(GRAMS/SEC)	X	Y	ELEV.	HEIGHT	SY	SZ	SOURCE	SCALAR VARY
ID	CATS.		(METERS)	(METERS)	(METERS)	(METERS)	(METERS)	(METERS)		BY


L0000041	0	0.89175E-04	368839.6	3755878.8	0.0	0.00	9.24	1.16	YES	HROFDY
L0000042	0	0.89175E-04	368859.3	3755881.2	0.0	0.00	9.24	1.16	YES	HROFDY
L0000043	0	0.89175E-04	368879.0	3755883.8	0.0	0.00	9.24	1.16	YES	HROFDY
L0000044	0	0.89175E-04	368898.7	3755886.2	0.0	0.00	9.24	1.16	YES	HROFDY
L0000045	0	0.89175E-04	368918.4	3755889.0	0.0	0.00	9.24	1.16	YES	HROFDY
L0000046	0	0.89175E-04	368938.1	3755891.5	0.0	0.00	9.24	1.16	YES	HROFDY
L0000047	0	0.89175E-04	368957.8	3755894.0	0.0	0.00	9.24	1.16	YES	HROFDY
L0000048	0	0.89175E-04	368977.5	3755896.5	0.0	0.00	9.24	1.16	YES	HROFDY
L0000049	0	0.89175E-04	368997.2	3755899.0	0.0	0.00	9.24	1.16	YES	HROFDY
L0000050	0	0.89175E-04	369001.1	3755914.8	0.0	0.00	9.29	1.16	YES	HROFDY
L0000051	0	0.89175E-04	368999.8	3755934.5	0.0	0.00	9.29	1.16	YES	HROFDY
L0000052	0	0.89175E-04	368998.5	3755954.5	0.0	0.00	9.29	1.16	YES	HROFDY
L0000053	0	0.89175E-04	368997.2	3755974.5	0.0	0.00	9.29	1.16	YES	HROFDY
L0000054	0	0.89175E-04	368995.8	3755994.5	0.0	0.00	9.29	1.16	YES	HROFDY
L0000055	0	0.89175E-04	368994.5	3756014.2	0.0	0.00	9.29	1.16	YES	HROFDY
L0000056	0	0.89175E-04	368993.2	3756034.2	0.0	0.00	9.29	1.16	YES	HROFDY
L0000057	0	0.89175E-04	368991.8	3756054.2	0.0	0.00	9.29	1.16	YES	HROFDY
L0000058	0	0.89175E-04	368990.5	3756074.2	0.0	0.00	9.29	1.16	YES	HROFDY
L0000059	0	0.89175E-04	368989.2	3756094.0	0.0	0.00	9.29	1.16	YES	HROFDY
L0000060	0	0.89175E-04	368987.8	3756114.0	0.0	0.00	9.29	1.16	YES	HROFDY
L0000061	0	0.89175E-04	368986.5	3756134.0	0.0	0.00	9.29	1.16	YES	HROFDY
L0000062	0	0.89175E-04	368985.2	3756153.8	0.0	0.00	9.29	1.16	YES	HROFDY
L0000063	0	0.89175E-04	368983.8	3756173.8	0.0	0.00	9.29	1.16	YES	HROFDY
L0000064	0	0.89175E-04	368982.5	3756193.8	0.0	0.00	9.29	1.16	YES	HROFDY
L0000065	0	0.89175E-04	368981.2	3756213.8	0.0	0.00	9.29	1.16	YES	HROFDY
L0000066	0	0.89175E-04	368979.9	3756233.5	0.0	0.00	9.29	1.16	YES	HROFDY
L0000067	0	0.89175E-04	368978.5	3756253.5	0.0	0.00	9.29	1.16	YES	HROFDY
L0000068	0	0.89175E-04	368977.2	3756273.5	0.0	0.00	9.29	1.16	YES	HROFDY
L0000069	0	0.89175E-04	368975.9	3756293.5	0.0	0.00	9.29	1.16	YES	HROFDY
L0000070	0	0.89175E-04	368974.6	3756313.2	0.0	0.00	9.29	1.16	YES	HROFDY
L0000071	0	0.89175E-04	368973.2	3756333.2	0.0	0.00	9.29	1.16	YES	HROFDY
L0000072	0	0.89175E-04	368971.9	3756353.2	0.0	0.00	9.29	1.16	YES	HROFDY
L0000073	0	0.89175E-04	368970.6	3756373.0	0.0	0.00	9.29	1.16	YES	HROFDY
L0000074	0	0.89175E-04	368969.2	3756393.0	0.0	0.00	9.29	1.16	YES	HROFDY
L0000075	0	0.89175E-04	368967.9	3756413.0	0.0	0.00	9.29	1.16	YES	HROFDY
L0000076	0	0.89175E-04	368966.6	3756433.0	0.0	0.00	9.29	1.16	YES	HROFDY
L0000077	0	0.89175E-04	368965.2	3756452.8	0.0	0.00	9.29	1.16	YES	HROFDY
L0000078	0	0.89175E-04	368963.9	3756472.8	0.0	0.00	9.29	1.16	YES	HROFDY
L0000079	0	0.89175E-04	368962.6	3756492.8	0.0	0.00	9.29	1.16	YES	HROFDY
L0000080	0	0.89175E-04	368961.3	3756512.8	0.0	0.00	9.29	1.16	YES	HROFDY

*** AERMOD - VERSION 07026 *** *** LAX CFTP CONSTRUCTION
*** PM10 24-HOUR UNMITIGATED
*** 11/18/08
18:52:44
PAGE 5
**MODELOPTs:
CONC

DFAULT ELEV FLGPOL
*** VOLUME SOURCE DATA ***

	NUMBER	EMISSION RATE			BASE	RELEASE	INIT.	INIT.	URBAN	EMISSION RATE
SOURCE	PART.	(GRAMS/SEC)	X	Y	ELEV.	HEIGHT	SY	SZ	SOURCE	SCALAR VARY
ID	CATS.		(METERS)	(METERS)	(METERS)	(METERS)	(METERS)	(METERS)		BY


L0000081	0	0.89175E-04	368959.9	3756532.5	0.0	0.00	9.29	1.16	YES	HROFDY
L0000082	0	0.89175E-04	368958.6	3756552.5	0.0	0.00	9.29	1.16	YES	HROFDY
L0000083	0	0.89175E-04	368957.3	3756572.5	0.0	0.00	9.29	1.16	YES	HROFDY
L0000084	0	0.89175E-04	368956.0	3756592.2	0.0	0.00	9.29	1.16	YES	HROFDY
L0000085	0	0.89175E-04	368954.6	3756612.2	0.0	0.00	9.29	1.16	YES	HROFDY
L0000086	0	0.89175E-04	368953.3	3756632.2	0.0	0.00	9.29	1.16	YES	HROFDY
L0000087	0	0.89175E-04	368952.0	3756652.2	0.0	0.00	9.29	1.16	YES	HROFDY
L0000088	0	0.89175E-04	368950.7	3756672.0	0.0	0.00	9.29	1.16	YES	HROFDY
L0000089	0	0.89175E-04	368949.3	3756692.0	0.0	0.00	9.29	1.16	YES	HROFDY
L0000090	0	0.89175E-04	368948.0	3756712.0	0.0	0.00	9.29	1.16	YES	HROFDY
L0000091	0	0.89175E-04	368946.7	3756732.0	0.0	0.00	9.29	1.16	YES	HROFDY
L0000092	0	0.89175E-04	368945.3	3756751.8	0.0	0.00	9.29	1.16	YES	HROFDY
L0000093	0	0.89175E-04	368944.0	3756771.8	0.0	0.00	9.29	1.16	YES	HROFDY
L0000094	0	0.89175E-04	368942.7	3756791.8	0.0	0.00	9.29	1.16	YES	HROFDY
L0000095	0	0.89175E-04	368941.3	3756811.5	0.0	0.00	9.29	1.16	YES	HROFDY
L0000096	0	0.89175E-04	368940.0	3756831.5	0.0	0.00	9.29	1.16	YES	HROFDY
L0000097	0	0.89175E-04	368938.7	3756851.5	0.0	0.00	9.29	1.16	YES	HROFDY
L0000098	0	0.89175E-04	368937.4	3756871.5	0.0	0.00	9.29	1.16	YES	HROFDY
L0000099	0	0.89175E-04	368936.0	3756891.2	0.0	0.00	9.29	1.16	YES	HROFDY
L0000100	0	0.89175E-04	368934.7	3756911.2	0.0	0.00	9.29	1.16	YES	HROFDY
L0000101	0	0.89175E-04	368919.5	3756914.5	0.0	0.00	9.28	1.16	YES	HROFDY
L0000102	0	0.89175E-04	368899.7	3756912.2	0.0	0.00	9.28	1.16	YES	HROFDY
L0000103	0	0.89175E-04	368879.9	3756910.0	0.0	0.00	9.28	1.16	YES	HROFDY
L0000104	0	0.89175E-04	368860.0	3756907.8	0.0	0.00	9.28	1.16	YES	HROFDY
L0000105	0	0.89175E-04	368840.2	3756905.5	0.0	0.00	9.28	1.16	YES	HROFDY
L0000106	0	0.89175E-04	368820.4	3756903.2	0.0	0.00	9.28	1.16	YES	HROFDY
L0000107	0	0.89175E-04	368800.6	3756901.0	0.0	0.00	9.28	1.16	YES	HROFDY
L0000108	0	0.89175E-04	368780.8	3756898.8	0.0	0.00	9.28	1.16	YES	HROFDY
L0000109	0	0.89175E-04	368760.9	3756896.5	0.0	0.00	9.28	1.16	YES	HROFDY
L0000110	0	0.89175E-04	368741.1	3756894.2	0.0	0.00	9.28	1.16	YES	HROFDY
L0000111	0	0.89175E-04	368721.3	3756892.0	0.0	0.00	9.28	1.16	YES	HROFDY
L0000112	0	0.89175E-04	368701.4	3756889.8	0.0	0.00	9.28	1.16	YES	HROFDY
L0000113	0	0.89175E-04	368681.6	3756887.5	0.0	0.00	9.28	1.16	YES	HROFDY
L0000114	0	0.89175E-04	368661.8	3756885.2	0.0	0.00	9.28	1.16	YES	HROFDY
L0000115	0	0.89175E-04	368642.0	3756883.0	0.0	0.00	9.28	1.16	YES	HROFDY
L0000116	0	0.89175E-04	368622.2	3756880.8	0.0	0.00	9.28	1.16	YES	HROFDY
L0000117	0	0.89175E-04	368602.3	3756878.5	0.0	0.00	9.28	1.16	YES	HROFDY
L0000118	0	0.89175E-04	368582.5	3756876.0	0.0	0.00	9.28	1.16	YES	HROFDY
L0000119	0	0.89175E-04	368562.7	3756873.8	0.0	0.00	9.28	1.16	YES	HROFDY
L0000120	0	0.89175E-04	368542.8	3756871.5	0.0	0.00	9.28	1.16	YES	HROFDY

*** AERMOD - VERSION 07026 *** *** LAX CFTP CONSTRUCTION
*** PM10 24-HOUR UNMITIGATED
*** 11/18/08
*** 18:52:44
**MODELOPTs:
CONC

DFAULT ELEV FLGPOL
*** VOLUME SOURCE DATA ***

	NUMBER	EMISSION RATE			BASE	RELEASE	INIT.	INIT.	URBAN	EMISSION RATE
SOURCE	PART.	(GRAMS/SEC)	X	Y	ELEV.	HEIGHT	SY	SZ	SOURCE	SCALAR VARY
ID	CATS.		(METERS)	(METERS)	(METERS)	(METERS)	(METERS)	(METERS)		BY


L0000121	0	0.89175E-04	368523.0	3756869.2	0.0	0.00	9.28	1.16	YES	HROFDY
L0000122	0	0.89175E-04	368503.2	3756867.0	0.0	0.00	9.28	1.16	YES	HROFDY
L0000123	0	0.89175E-04	368483.4	3756864.8	0.0	0.00	9.28	1.16	YES	HROFDY
L0000124	0	0.89175E-04	368463.5	3756862.5	0.0	0.00	9.28	1.16	YES	HROFDY
L0000125	0	0.89175E-04	368443.7	3756860.2	0.0	0.00	9.28	1.16	YES	HROFDY
L0000126	0	0.89175E-04	368423.9	3756858.0	0.0	0.00	9.28	1.16	YES	HROFDY
L0000127	0	0.89175E-04	368404.1	3756855.8	0.0	0.00	9.28	1.16	YES	HROFDY
L0000128	0	0.89175E-04	368384.2	3756853.5	0.0	0.00	9.28	1.16	YES	HROFDY
L0000129	0	0.89175E-04	368364.4	3756851.2	0.0	0.00	9.28	1.16	YES	HROFDY
L0000130	0	0.89175E-04	368344.6	3756849.0	0.0	0.00	9.28	1.16	YES	HROFDY
L0000131	0	0.89175E-04	368324.8	3756846.8	0.0	0.00	9.28	1.16	YES	HROFDY
L0000132	0	0.89175E-04	368304.9	3756844.5	0.0	0.00	9.28	1.16	YES	HROFDY
L0000133	0	0.89175E-04	368285.1	3756842.2	0.0	0.00	9.28	1.16	YES	HROFDY
L0000134	0	0.89175E-04	368265.3	3756840.0	0.0	0.00	9.28	1.16	YES	HROFDY
L0000135	0	0.89175E-04	368245.5	3756837.8	0.0	0.00	9.28	1.16	YES	HROFDY
L0000136	0	0.89175E-04	368225.7	3756835.5	0.0	0.00	9.28	1.16	YES	HROFDY
L0000137	0	0.89175E-04	368205.8	3756833.2	0.0	0.00	9.28	1.16	YES	HROFDY
L0000138	0	0.89175E-04	368186.0	3756831.0	0.0	0.00	9.28	1.16	YES	HROFDY
L0000139	0	0.89175E-04	368166.2	3756828.8	0.0	0.00	9.28	1.16	YES	HROFDY
L0000140	0	0.89175E-04	368146.3	3756826.2	0.0	0.00	9.28	1.16	YES	HROFDY
L0000141	0	0.89175E-04	368126.5	3756824.0	0.0	0.00	9.28	1.16	YES	HROFDY
L0000142	0	0.89175E-04	368106.7	3756821.8	0.0	0.00	9.28	1.16	YES	HROFDY
L0000143	0	0.89175E-04	368086.9	3756819.5	0.0	0.00	9.28	1.16	YES	HROFDY
L0000144	0	0.89175E-04	368067.0	3756817.2	0.0	0.00	9.28	1.16	YES	HROFDY
L0000145	0	0.89175E-04	368047.2	3756815.0	0.0	0.00	9.28	1.16	YES	HROFDY
L0000146	0	0.89175E-04	368044.1	3756800.0	0.0	0.00	9.07	1.16	YES	HROFDY
L0000147	0	0.89175E-04	368046.5	3756780.8	0.0	0.00	9.07	1.16	YES	HROFDY
L0000148	0	0.89175E-04	368048.9	3756761.5	0.0	0.00	9.07	1.16	YES	HROFDY
L0000149	0	0.89175E-04	368051.3	3756742.0	0.0	0.00	9.07	1.16	YES	HROFDY
L0000150	0	0.89175E-04	368053.7	3756722.8	0.0	0.00	9.07	1.16	YES	HROFDY
L0000151	0	0.89175E-04	368056.2	3756703.2	0.0	0.00	9.07	1.16	YES	HROFDY
L0000152	0	0.89175E-04	368058.6	3756684.0	0.0	0.00	9.07	1.16	YES	HROFDY
L0000153	0	0.89175E-04	368061.0	3756664.5	0.0	0.00	9.07	1.16	YES	HROFDY
L0000154	0	0.89175E-04	368063.4	3756645.2	0.0	0.00	9.07	1.16	YES	HROFDY
L0000155	0	0.89175E-04	368065.8	3756626.0	0.0	0.00	9.07	1.16	YES	HROFDY
L0000156	0	0.89175E-04	368068.2	3756606.5	0.0	0.00	9.07	1.16	YES	HROFDY
L0000157	0	0.89175E-04	368070.7	3756587.2	0.0	0.00	9.07	1.16	YES	HROFDY
L0000158	0	0.89175E-04	368073.1	3756567.8	0.0	0.00	9.07	1.16	YES	HROFDY
L0000159	0	0.89175E-04	368075.5	3756548.5	0.0	0.00	9.07	1.16	YES	HROFDY
L0000160	0	0.89175E-04	368077.9	3756529.0	0.0	0.00	9.07	1.16	YES	HROFDY

*** AERMOD - VERSION 07026 *** *** LAX CFTP CONSTRUCTION
*** PM10 24-HOUR UNMITIGATED
$\begin{array}{lr}\text { *** } & 11 / 18 / 08 \\ \text { *** } & 18: 52: 44\end{array}$
*** 18:52:44
**MODELOPTs:
CONC

DFAULT ELEV FLGPOL
*** VOLUME SOURCE DATA ***

	NUMBER	EMISSION RATE			BASE	RELEASE	INIT.	INIT.	URBAN	EMISSION RATE
SOURCE	PART.	(GRAMS/SEC)	X	Y	ELEV.	HEIGHT	SY	SZ	SOURCE	SCALAR VARY
ID	CATS.		(METERS)	(METERS)	(METERS)	(METERS)	(METERS)	(METERS)		BY


L0000161	0	0.89175E-04	368080.3	3756509.8	0.0	0.00	9.07	1.16	YES	HROFDY
L0000162	0	0.89175E-04	368082.8	3756490.5	0.0	0.00	9.07	1.16	YES	HROFDY
L0000163	0	0.89175E-04	368085.2	3756471.0	0.0	0.00	9.07	1.16	YES	HROFDY
L0000164	0	0.89175E-04	368087.6	3756451.8	0.0	0.00	9.07	1.16	YES	HROFDY
L0000165	0	0.89175E-04	368090.0	3756432.2	0.0	0.00	9.07	1.16	YES	HROFDY
L0000166	0	0.89175E-04	368092.4	3756413.0	0.0	0.00	9.07	1.16	YES	HROFDY
L0000167	0	0.89175E-04	368090.2	3756397.2	0.0	0.00	7.47	1.16	YES	HROFDY
L0000168	0	0.89175E-04	368085.9	3756381.8	0.0	0.00	7.47	1.16	YES	HROFDY
L0000169	0	0.89175E-04	368086.6	3756365.0	0.0	0.00	7.99	1.16	YES	HROFDY
L0000170	0	0.89175E-04	368089.4	3756348.0	0.0	0.00	7.99	1.16	YES	HROFDY
L0000171	0	0.89175E-04	368092.2	3756331.0	0.0	0.00	7.99	1.16	YES	HROFDY
L0000172	0	0.89175E-04	368095.1	3756314.2	0.0	0.00	7.99	1.16	YES	HROFDY
L0000173	0	0.89175E-04	368097.9	3756297.2	0.0	0.00	7.99	1.16	YES	HROFDY
L0000174	0	0.89175E-04	368107.4	3756283.5	0.0	0.00	8.05	1.16	YES	HROFDY
L0000175	0	0.89175E-04	368119.7	3756271.2	0.0	0.00	8.05	1.16	YES	HROFDY
L0000176	0	0.89175E-04	368131.9	3756259.0	0.0	0.00	8.05	1.16	YES	HROFDY
L0000177	0	0.89175E-04	368137.3	3756240.8	0.0	0.00	9.27	1.16	YES	HROFDY
L0000178	0	0.89175E-04	368139.8	3756221.0	0.0	0.00	9.27	1.16	YES	HROFDY
L0000179	0	0.89175E-04	368142.3	3756201.2	0.0	0.00	9.27	1.16	YES	HROFDY
L0000180	0	0.89175E-04	368144.8	3756181.5	0.0	0.00	9.27	1.16	YES	HROFDY
L0000181	0	0.89175E-04	368147.3	3756161.8	0.0	0.00	9.27	1.16	YES	HROFDY
L0000182	0	0.89175E-04	368149.9	3756142.0	0.0	0.00	9.27	1.16	YES	HROFDY
L0000183	0	0.89175E-04	368152.4	3756122.0	0.0	0.00	9.27	1.16	YES	HROFDY
L0000184	0	0.89175E-04	368154.9	3756102.2	0.0	0.00	9.27	1.16	YES	HROFDY
L0000185	0	0.89175E-04	368157.4	3756082.5	0.0	0.00	9.27	1.16	YES	HROFDY
L0000186	0	0.89175E-04	368159.9	3756062.8	0.0	0.00	9.27	1.16	YES	HROFDY
L0000187	0	0.89175E-04	368162.4	3756043.0	0.0	0.00	9.27	1.16	YES	HROFDY
L0000188	0	0.89175E-04	368164.9	3756023.2	0.0	0.00	9.27	1.16	YES	HROFDY
L0000189	0	0.89175E-04	368167.4	3756003.5	0.0	0.00	9.27	1.16	YES	HROFDY
L0000190	0	0.89175E-04	368169.9	3755983.8	0.0	0.00	9.27	1.16	YES	HROFDY
L0000191	0	0.89175E-04	368172.4	3755964.0	0.0	0.00	9.27	1.16	YES	HROFDY
L0000192	0	0.89175E-04	368174.9	3755944.2	0.0	0.00	9.27	1.16	YES	HROFDY
L0000193	0	0.89175E-04	368177.5	3755924.5	0.0	0.00	9.27	1.16	YES	HROFDY
L0000194	0	0.89175E-04	368180.0	3755904.8	0.0	0.00	9.27	1.16	YES	HROFDY
L0010058	0	0.36598E-04	368157.3	3755892.2	0.0	0.00	8.74	2.33	YES	HROFDY
L0010059	0	0.36598E-04	368175.7	3755896.0	0.0	0.00	8.74	2.33	YES	HROFDY
L0010060	0	0.36598E-04	368182.2	3755885.0	0.0	0.00	7.96	2.33	YES	HROFDY
L0010061	0	0.36598E-04	368184.6	3755868.0	0.0	0.00	7.96	2.33	YES	HROFDY
L0010062	0	0.36598E-04	368187.0	3755851.0	0.0	0.00	7.96	2.33	YES	HROFDY
L0010063	0	0.36598E-04	368189.3	3755834.0	0.0	0.00	7.96	2.33	YES	HROFDY

*** AERMOD - VERSION 07026 *** *** LAX CFTP CONSTRUCTION
*** PM10 24-HOUR UNMITIGATED
*** 11/18/08
*** 18:52:4

				NUMBER
SOURCE	EMSSION RATE			
ID	PART.	(GRAMS/SEC)	X	Y
(METERS)	(METERS)			

BASE
ELEV.
(METERS)

RELEASE	INIT.	INIT.
HEIGHT	SY	SZ
(METERS $)$	(METERS $)$	$($ METERS $)$

```
URBAN EMISSION RATE
SOURCE SCALAR VARY
```

L0010064	0	0.36598E-04	368191.7	3755817
L0010065	0	0.36598E-04	368194.0	3755800.2
L0010066	0	0.36598E-04	368209.4	3755797.2
L0010067	0	0.36598E-04	368229.2	3755799.8
L0010068	0	0.36598E-04	368248.8	3755802.2
L0010069	0	0.36598E-04	368268.5	3755804.8
L0010070	0	0.36598E-04	368288.2	3755807.2
L0010071	0	0.36598E-04	368307.9	3755810.0
L0010072	0	0.36598E-04	368327.6	3755812.5
L0010073	0	0.36598E-04	368347.3	3755815.0
L0010074	0	0.36598E-04	368367.0	3755817.5
L0010075	0	0.36598E-04	368386.7	3755820.0
L0010076	0	0.36598E-04	368406.4	3755822.8
L0010077	0	0.36598E-04	368426.1	3755825.2
L0010078	0	0.36598E-04	368445.8	3755827.8
L0010079	0	0.36598E-04	368465.5	3755830.2
L0010080	0	0.36598E-04	368485.2	3755832.8
L0010081	0	0.36598E-04	368504.8	3755835.5
L0010082	0	0.36598E-04	368524.5	3755838.0
L0010083	0	0.36598E-04	368544.2	3755840.5
L0010084	0	0.36598E-04	368563.9	3755843.0
L0010085	0	0.36598E-04	368583.6	3755845.5
L0010086	0	0.36598E-04	368603.3	3755848.2
L0010087	0	0.36598E-04	368623.0	3755850.8
L0010088	0	0.36598E-04	368642.7	3755853.2
L0010089	0	0.36598E-04	368662.4	3755855.8
L0010090	0	0.36598E-04	368682.1	3755858.2
L0010091	0	0.36598E-04	368701.8	3755861.0
L0010092	0	0.36598E-04	368721.5	3755863.5
L0010093	0	0.36598E-04	368741.2	3755866.0
L0010094	0	0.36598E-04	368760.8	3755868.5
L0010095	0	0.36598E-04	368780.5	3755871.0
L0010096	0	0.36598E-04	368800.2	3755873.5
L0010097	0	0.36598E-04	368819.9	3755876.2
L0010098	0	0.36598E-04	368839.6	3755878.8
L0010099	0	0.36598E-04	368859.3	3755881.2
L0010100	0	0.36598E-04	368879.0	3755883.8
L0010101	0	0.36598E-04	368898.7	3755886.2
L0010102	0	0.36598E-04	368918.4	3755889.0
L0010103	0	0.36598E-04	368938	589

*** AERMOD - VERSION 07026 *** *** LAX CFTP CONSTRUCTION
*** PM10 24-HOUR UNMITIGATED
*** 11/18/08
18:52:44

	NUMBER	EMISSION RATE			BASE	RELEASE	INIT.	INIT.	URBAN	EMISSION RATE
SOURCE	PART.	(GRAMS/SEC)	X	Y	ELEV.	HEIGHT	SY	SZ	SOURCE	SCALAR VARY
ID	CATS.		(METERS)	(METERS)	(METERS)	(METERS)	(METERS)	(METERS)		BY


L0010104	0	0.36598E-04	368957.8	3755894.0	0.0	0.00	9.24	2.33	YES	HROFDY
L0010105	0	0.36598E-04	368977.5	3755896.5	0.0	0.00	9.24	2.33	YES	HROFDY
L0010106	0	0.36598E-04	368997.2	3755899.0	0.0	0.00	9.24	2.33	YES	HROFDY
L0010107	0	0.36598E-04	369001.1	3755914.8	0.0	0.00	9.29	2.33	YES	HROFDY
L0010108	0	0.36598E-04	368999.8	3755934.5	0.0	0.00	9.29	2.33	YES	HROFDY
L0010109	0	0.36598E-04	368998.5	3755954.5	0.0	0.00	9.29	2.33	YES	HROFDY
L0010110	0	0.36598E-04	368997.2	3755974.5	0.0	0.00	9.29	2.33	YES	HROFDY
L0010111	0	0.36598E-04	368995.8	3755994.5	0.0	0.00	9.29	2.33	YES	HROFDY
L0010112	0	0.36598E-04	368994.5	3756014.2	0.0	0.00	9.29	2.33	YES	HROFDY
L0010113	0	0.36598E-04	368993.2	3756034.2	0.0	0.00	9.29	2.33	YES	HROFDY
L0010114	0	0.36598E-04	368991.8	3756054.2	0.0	0.00	9.29	2.33	YES	HROFDY
L0010115	0	0.36598E-04	368990.5	3756074.2	0.0	0.00	9.29	2.33	YES	HROFDY
L0010116	0	0.36598E-04	368989.2	3756094.0	0.0	0.00	9.29	2.33	YES	HROFDY
L0010117	0	0.36598E-04	368987.8	3756114.0	0.0	0.00	9.29	2.33	YES	HROFDY
L0010118	0	0.36598E-04	368986.5	3756134.0	0.0	0.00	9.29	2.33	YES	HROFDY
L0010119	0	0.36598E-04	368985.2	3756153.8	0.0	0.00	9.29	2.33	YES	HROFDY
L0010120	0	0.36598E-04	368983.8	3756173.8	0.0	0.00	9.29	2.33	YES	HROFDY
L0010121	0	0.36598E-04	368982.5	3756193.8	0.0	0.00	9.29	2.33	YES	HROFDY
L0010122	0	0.36598E-04	368981.2	3756213.8	0.0	0.00	9.29	2.33	YES	HROFDY
L0010123	0	0.36598E-04	368979.9	3756233.5	0.0	0.00	9.29	2.33	YES	HROFDY
L0010124	0	0.36598E-04	368978.5	3756253.5	0.0	0.00	9.29	2.33	YES	HROFDY
L0010125	0	0.36598E-04	368977.2	3756273.5	0.0	0.00	9.29	2.33	YES	HROFDY
L0010126	0	0.36598E-04	368975.9	3756293.5	0.0	0.00	9.29	2.33	YES	HROFDY
L0010127	0	0.36598E-04	368974.6	3756313.2	0.0	0.00	9.29	2.33	YES	HROFDY
L0010128	0	0.36598E-04	368973.2	3756333.2	0.0	0.00	9.29	2.33	YES	HROFDY
L0010129	0	0.36598E-04	368971.9	3756353.2	0.0	0.00	9.29	2.33	YES	HROFDY
L0010130	0	0.36598E-04	368970.6	3756373.0	0.0	0.00	9.29	2.33	YES	HROFDY
L0010131	0	0.36598E-04	368969.2	3756393.0	0.0	0.00	9.29	2.33	YES	HROFDY
L0010132	0	0.36598E-04	368967.9	3756413.0	0.0	0.00	9.29	2.33	YES	HROFDY
L0010133	0	0.36598E-04	368966.6	3756433.0	0.0	0.00	9.29	2.33	YES	HROFDY
L0010134	0	0.36598E-04	368965.2	3756452.8	0.0	0.00	9.29	2.33	YES	HROFDY
L0010135	0	0.36598E-04	368963.9	3756472.8	0.0	0.00	9.29	2.33	YES	HROFDY
L0010136	0	0.36598E-04	368962.6	3756492.8	0.0	0.00	9.29	2.33	YES	HROFDY
L0010137	0	0.36598E-04	368961.3	3756512.8	0.0	0.00	9.29	2.33	YES	HROFDY
L0010138	0	0.36598E-04	368959.9	3756532.5	0.0	0.00	9.29	2.33	YES	HROFDY
L0010139	0	0.36598E-04	368958.6	3756552.5	0.0	0.00	9.29	2.33	YES	HROFDY
L0010140	0	0.36598E-04	368957.3	3756572.5	0.0	0.00	9.29	2.33	YES	HROFDY
L0010141	0	0.36598E-04	368956.0	3756592.2	0.0	0.00	9.29	2.33	YES	HROFDY
L0010142	0	0.36598E-04	368954.6	3756612.2	0.0	0.00	9.29	2.33	YES	HROFDY
L0010143	0	0.36598E-04	368953.3	3756632.2	0.0	0.00	9.29	2.33	YES	HROFDY

*** AERMOD - VERSION 07026 *** *** LAX CFTP CONSTRUCTION
*** PM10 24-HOUR UNMITIGATED
***
*** 11/18/08
*** 18:52:44

	NUMBER	EMISSION RATE			BASE	RELEASE	INIT.	INIT.	URBAN	EMISSION RATE
SOURCE	PART.	(GRAMS/SEC)	X	Y	ELEV.	HEIGHT	SY	SZ	SOURCE	SCALAR VARY
ID	CATS.		(METERS)	(METERS)	(METERS)	(METERS)	(METERS)	(METERS)		BY


L0010144	0	0.36598E-04	368952.0	3756652.2	0.0	0.00	9.29	2.33	YES	HROFDY
L0010145	0	0.36598E-04	368950.7	3756672.0	0.0	0.00	9.29	2.33	YES	HROFDY
L0010146	0	0.36598E-04	368949.3	3756692.0	0.0	0.00	9.29	2.33	YES	HROFDY
L0010147	0	0.36598E-04	368948.0	3756712.0	0.0	0.00	9.29	2.33	YES	HROFDY
L0010148	0	0.36598E-04	368946.7	3756732.0	0.0	0.00	9.29	2.33	YES	HROFDY
L0010149	0	0.36598E-04	368945.3	3756751.8	0.0	0.00	9.29	2.33	YES	HROFDY
L0010150	0	0.36598E-04	368944.0	3756771.8	0.0	0.00	9.29	2.33	YES	HROFDY
L0010151	0	0.36598E-04	368942.7	3756791.8	0.0	0.00	9.29	2.33	YES	HROFDY
L0010152	0	0.36598E-04	368941.3	3756811.5	0.0	0.00	9.29	2.33	YES	HROFDY
L0010153	0	0.36598E-04	368940.0	3756831.5	0.0	0.00	9.29	2.33	YES	HROFDY
L0010154	0	0.36598E-04	368938.7	3756851.5	0.0	0.00	9.29	2.33	YES	HROFDY
L0010155	0	0.36598E-04	368937.4	3756871.5	0.0	0.00	9.29	2.33	YES	HROFDY
L0010156	0	0.36598E-04	368936.0	3756891.2	0.0	0.00	9.29	2.33	YES	HROFDY
L0010157	0	0.36598E-04	368934.7	3756911.2	0.0	0.00	9.29	2.33	YES	HROFDY
L0010158	0	0.36598E-04	368919.5	3756914.5	0.0	0.00	9.28	2.33	YES	HROFDY
L0010159	0	0.36598E-04	368899.7	3756912.2	0.0	0.00	9.28	2.33	YES	HROFDY
L0010160	0	0.36598E-04	368879.9	3756910.0	0.0	0.00	9.28	2.33	YES	HROFDY
L0010161	0	0.36598E-04	368860.0	3756907.8	0.0	0.00	9.28	2.33	YES	HROFDY
L0010162	0	0.36598E-04	368840.2	3756905.5	0.0	0.00	9.28	2.33	YES	HROFDY
L0010163	0	0.36598E-04	368820.4	3756903.2	0.0	0.00	9.28	2.33	YES	HROFDY
L0010164	0	0.36598E-04	368800.6	3756901.0	0.0	0.00	9.28	2.33	YES	HROFDY
L0010165	0	0.36598E-04	368780.8	3756898.8	0.0	0.00	9.28	2.33	YES	HROFDY
L0010166	0	0.36598E-04	368760.9	3756896.5	0.0	0.00	9.28	2.33	YES	HROFDY
L0010167	0	0.36598E-04	368741.1	3756894.2	0.0	0.00	9.28	2.33	YES	HROFDY
L0010168	0	0.36598E-04	368721.3	3756892.0	0.0	0.00	9.28	2.33	YES	HROFDY
L0010169	0	0.36598E-04	368701.4	3756889.8	0.0	0.00	9.28	2.33	YES	HROFDY
L0010170	0	0.36598E-04	368681.6	3756887.5	0.0	0.00	9.28	2.33	YES	HROFDY
L0010171	0	0.36598E-04	368661.8	3756885.2	0.0	0.00	9.28	2.33	YES	HROFDY
L0010172	0	0.36598E-04	368642.0	3756883.0	0.0	0.00	9.28	2.33	YES	HROFDY
L0010173	0	0.36598E-04	368622.2	3756880.8	0.0	0.00	9.28	2.33	YES	HROFDY
L0010174	0	0.36598E-04	368602.3	3756878.5	0.0	0.00	9.28	2.33	YES	HROFDY
L0010175	0	0.36598E-04	368582.5	3756876.0	0.0	0.00	9.28	2.33	YES	HROFDY
L0010176	0	0.36598E-04	368562.7	3756873.8	0.0	0.00	9.28	2.33	YES	HROFDY
L0010177	0	0.36598E-04	368542.8	3756871.5	0.0	0.00	9.28	2.33	YES	HROFDY
L0010178	0	0.36598E-04	368523.0	3756869.2	0.0	0.00	9.28	2.33	YES	HROFDY
L0010179	0	0.36598E-04	368503.2	3756867.0	0.0	0.00	9.28	2.33	YES	HROFDY
L0010180	0	0.36598E-04	368483.4	3756864.8	0.0	0.00	9.28	2.33	YES	HROFDY
L0010181	0	0.36598E-04	368463.5	3756862.5	0.0	0.00	9.28	2.33	YES	HROFDY
L0010182	0	0.36598E-04	368443.7	3756860.2	0.0	0.00	9.28	2.33	YES	HROFDY
L0010183	0	0.36598E-04	368423.9	3756858.0	0.0	0.00	9.28	2.33	YES	HROFDY

*** AERMOD - VERSION 07026 *** *** LAX CFTP CONSTRUCTION
*** PM10 24-HOUR UNMITIGATED
*** 11/18/08
*** 18:52:4

DFAULT ELEV FLGPOL
*** VOLUME SOURCE DATA ***

	NUMBER	EMISSION RATE			BASE	RELEASE	INIT.	INIT.	URBAN	EMISSION RATE
SOURCE	PART.	(GRAMS/SEC)	X	Y	ELEV.	HEIGHT	SY	SZ	SOURCE	SCALAR VARY
ID	CATS.		(METERS)	(METERS)	(METERS)	(METERS)	(METERS)	(METERS)		BY


L0010184	0	0.36598E-04	368404.1	3756855.8	0.0	0.00	9.28	2.33	YES	HROFDY
L0010185	0	0.36598E-04	368384.2	3756853.5	0.0	0.00	9.28	2.33	YES	HROFDY
L0010186	0	0.36598E-04	368364.4	3756851.2	0.0	0.00	9.28	2.33	YES	HROFDY
L0010187	0	0.36598E-04	368344.6	3756849.0	0.0	0.00	9.28	2.33	YES	HROFDY
L0010188	0	0.36598E-04	368324.8	3756846.8	0.0	0.00	9.28	2.33	YES	HROFDY
L0010189	0	0.36598E-04	368304.9	3756844.5	0.0	0.00	9.28	2.33	YES	HROFDY
L0010190	0	0.36598E-04	368285.1	3756842.2	0.0	0.00	9.28	2.33	YES	HROFDY
L0010191	0	0.36598E-04	368265.3	3756840.0	0.0	0.00	9.28	2.33	YES	HROFDY
L0010192	0	0.36598E-04	368245.5	3756837.8	0.0	0.00	9.28	2.33	YES	HROFDY
L0010193	0	0.36598E-04	368225.7	3756835.5	0.0	0.00	9.28	2.33	YES	HROFDY
L0010194	0	0.36598E-04	368205.8	3756833.2	0.0	0.00	9.28	2.33	YES	HROFDY
L0010195	0	0.36598E-04	368186.0	3756831.0	0.0	0.00	9.28	2.33	YES	HROFDY
L0010196	0	0.36598E-04	368166.2	3756828.8	0.0	0.00	9.28	2.33	YES	HROFDY
L0010197	0	0.36598E-04	368146.3	3756826.2	0.0	0.00	9.28	2.33	YES	HROFDY
L0010198	0	0.36598E-04	368126.5	3756824.0	0.0	0.00	9.28	2.33	YES	HROFDY
L0010199	0	0.36598E-04	368106.7	3756821.8	0.0	0.00	9.28	2.33	YES	HROFDY
L0010200	0	0.36598E-04	368086.9	3756819.5	0.0	0.00	9.28	2.33	YES	HROFDY
L0010201	0	0.36598E-04	368067.0	3756817.2	0.0	0.00	9.28	2.33	YES	HROFDY
L0010202	0	0.36598E-04	368047.2	3756815.0	0.0	0.00	9.28	2.33	YES	HROFDY
L0010203	0	0.36598E-04	368044.1	3756800.0	0.0	0.00	9.07	2.33	YES	HROFDY
L0010204	0	0.36598E-04	368046.5	3756780.8	0.0	0.00	9.07	2.33	YES	HROFDY
L0010205	0	0.36598E-04	368048.9	3756761.5	0.0	0.00	9.07	2.33	YES	HROFDY
L0010206	0	0.36598E-04	368051.3	3756742.0	0.0	0.00	9.07	2.33	YES	HROFDY
L0010207	0	0.36598E-04	368053.7	3756722.8	0.0	0.00	9.07	2.33	YES	HROFDY
L0010208	0	0.36598E-04	368056.2	3756703.2	0.0	0.00	9.07	2.33	YES	HROFDY
L0010209	0	0.36598E-04	368058.6	3756684.0	0.0	0.00	9.07	2.33	YES	HROFDY
L0010210	0	0.36598E-04	368061.0	3756664.5	0.0	0.00	9.07	2.33	YES	HROFDY
L0010211	0	0.36598E-04	368063.4	3756645.2	0.0	0.00	9.07	2.33	YES	HROFDY
L0010212	0	0.36598E-04	368065.8	3756626.0	0.0	0.00	9.07	2.33	YES	HROFDY
L0010213	0	0.36598E-04	368068.2	3756606.5	0.0	0.00	9.07	2.33	YES	HROFDY
L0010214	0	0.36598E-04	368070.7	3756587.2	0.0	0.00	9.07	2.33	YES	HROFDY
L0010215	0	0.36598E-04	368073.1	3756567.8	0.0	0.00	9.07	2.33	YES	HROFDY
L0010216	0	0.36598E-04	368075.5	3756548.5	0.0	0.00	9.07	2.33	YES	HROFDY
L0010217	0	0.36598E-04	368077.9	3756529.0	0.0	0.00	9.07	2.33	YES	HROFDY
L0010218	0	0.36598E-04	368080.3	3756509.8	0.0	0.00	9.07	2.33	YES	HROFDY
L0010219	0	0.36598E-04	368082.8	3756490.5	0.0	0.00	9.07	2.33	YES	HROFDY
L0010220	0	0.36598E-04	368085.2	3756471.0	0.0	0.00	9.07	2.33	YES	HROFDY
L0010221	0	0.36598E-04	368087.6	3756451.8	0.0	0.00	9.07	2.33	YES	HROFDY
L0010222	0	0.36598E-04	368090.0	3756432.2	0.0	0.00	9.07	2.33	YES	HROFDY
L0010223	0	0.36598E-04	368092.4	3756413.0	0.0	0.00	9.07	2.33	YES	HROFDY

*** AERMOD - VERSION 07026 *** *** LAX CFTP CONSTRUCTION
*** PM10 24-HOUR UNMITIGATED
DFAULT ELEV FLGPOL
*** 11/18/08
*** 18:52:44
*** VOLUME SOURCE DATA ***

	NUMBER	EMISSION RATE			BASE	RELEASE	INIT.	INIT.	URBAN	EMISSION RATE
SOURCE	PART.	(GRAMS/SEC)	X	Y	ELEV.	HEIGHT	SY	SZ	SOURCE	SCALAR VARY
ID	CATS.		(METERS)	(METERS)	(METERS)	(METERS)	(METERS)	(METERS)		BY


L0010224	0	$0.36598 E-04$	368090.2	3756397.2	0.0	0.00	7.47	2.33	YES	HROFDY
L0010225	0	$0.36598 E-04$	368085.9	3756381.8	0.0	0.00	7.47	2.33	YES	HROFDY
L0010226	0	$0.36598 E-04$	368086.6	3756365.0	0.0	0.00	7.99	2.33	YES	HROFDY
L0010227	0	$0.36598 E-04$	368089.4	3756348.0	0.0	0.00	7.99	2.33	YES	HROFDY
L0010228	0	$0.36598 E-04$	368092.2	3756331.0	0.0	0.00	7.99	2.33	YES	HROFDY
L0010229	0	$0.36598 E-04$	368095.1	3756314.2	0.0	0.00	7.99	2.33	YES	HROFDY
L0010230	0	$0.36598 E-04$	368097.93756297 .2	0.0	0.00	7.99	2.33	YES	HROFDY	
L0010231	0	$0.36598 E-04$	368107.4	3756283.5	0.0	0.00	8.05	2.33	YES	HROFDY
L0010232	0	$0.36598 E-04$	368119.7	3756271.2	0.0	0.00	8.05	2.33	YES	HROFDY
L0010233	0	$0.36598 E-04$	368131.9	3756259.0	0.0	0.00	8.05	2.33	YES	HROFDY
L0010234	0	$0.36598 E-04$	368137.3	3756240.8	0.0	0.00	9.27	2.33	YES	HROFDY
L0010235	0	$0.36598 E-04$	368139.8	3756221.0	0.0	0.00	9.27	2.33	YES	HROFDY
L0010236	0	$0.36598 E-04$	368142.3	3756201.2	0.0	0.00	9.27	2.33	YES	HROFDY
L0010237	0	$0.36598 E-04$	368144.83756181 .5	0.0	0.00	9.27	2.33	YES	HROFDY	
L0010238	0	$0.36598 E-04$	368147.3	3756161.8	0.0	0.00	9.27	2.33	YES	HROFDY
L0010239	0	$0.36598 E-04$	368149.9	3756142.0	0.0	0.00	9.27	2.33	YES	HROFDY
L0010240	0	$0.36598 E-04$	368152.43756122 .0	0.0	0.00	9.27	2.33	YES	HROFDY	
L0010241	0	$0.36598 E-04$	368154.9	3756102.2	0.0	0.00	9.27	2.33	YES	HROFDY
L0010242	0	$0.36598 E-04$	368157.4	3756082.5	0.0	0.00	9.27	2.33	YES	HROFDY
L0010243	0	$0.36598 E-04$	368159.9	3756062.8	0.0	0.00	9.27	2.33	YES	HROFDY
L0010244	0	$0.36598 E-04$	368162.4	3756043.0	0.0	0.00	9.27	2.33	YES	HROFDY
L0010245	0	$0.36598 E-04$	368164.9	3756023.2	0.0	0.00	9.27	2.33	YES	HROFDY
L0010246	0	$0.36598 E-04$	368167.4	3756003.5	0.0	0.00	9.27	2.33	YES	HROFDY
L0010247	0	$0.36598 E-04$	368169.9	3755983.8	0.0	0.00	9.27	2.33	YES	HROFDY
L0010248	0	$0.36598 E-04$	368172.4	3755964.0	0.0	0.00	9.27	2.33	YES	HROFDY
L0010249	0	$0.36598 E-04$	368174.9	3755944.2	0.0	0.00	9.27	2.33	YES	HROFDY
L0010250	0	$0.36598 E-04$	368177.5	3755924.5	0.0	0.00	9.27	2.33	YES	HROFDY
L0010251	0	$0.36598 E-04$	368180.0	3755904.8	0.0	0.00	9.27	2.33	YES	HROFDY

```
*** AERMOD - VERSION 07026 ******* LAX CFTP CONSTRUCTION
*** PM10 24-HOUR UNMITIGATED
*******)
*MODELOPTs:
CONC
DFAULT ELEV FLGPOI
```

*** AREAPOLY SOURCE DATA ***


*** AERMOD	*** LAX CFTP CONSTRUCTION	***	11/18/08
	*** PM10 24-HOUR UNMITIGATED	**	18:52:44
**MODELOPTs:			PAGE 14

*** SOURCE IDs DEFINING SOURCE GROUPS ***

DIESEL PAREA01, PAREA02 , L0000001, L0000002, L0000003, L0000004, L0000005, L0000006, L0000007, L0000008, L0000009, L0000010, L0000011, L0000012, L0000013, L0000014, L0000015, L0000016, L0000017, L0000018, L0000019, L0000020, L0000021, L0000022, L0000023, L0000024, L0000025, L0000026, L0000027, L0000028, L0000029, L0000030, L0000031, L0000032, L0000033, L0000034, L0000035, L0000036, L0000037, L0000038, L0000039, L0000040, L0000041, L0000042, L0000043, L0000044, L0000045, L0000046, L0000047, L0000048, L0000049, L0000050, L0000051, L0000052, L0000053, L0000054, L0000055, L0000056, L0000057, L0000058, L0000059, L0000060, L0000061, L0000062, L0000063, L0000064, L0000065, L0000066, L0000067, L0000068, L0000069, L0000070, L0000071, L0000072, L0000073, L0000074, L0000075, L0000076, L0000077, L0000078, L0000079, L0000080, L0000081, L0000082, L0000083, L0000084, L0000085, L0000086, L0000087, L0000088, L0000089, L0000090, L0000091, L0000092, L0000093, L0000094, L0000095, L0000096, L0000097, L0000098, L0000099, L0000100, L0000101, L0000102, L0000103, L0000104, L0000105, L0000106, L0000107, L0000108, L0000109, L0000110, L0000111, L0000112, L0000113, L0000114, L0000115, L0000116, L0000117, L0000118, L0000119, L0000120, L0000121, L0000122, L0000123, L0000124, L0000125, L0000126, L0000127, L0000128, L0000129, L0000130, L0000131, L0000132, L0000133, L0000134, L0000135, L0000136, L0000137, L0000138, L0000139, L0000140, L0000141, L0000142, L0000143, L0000144, L0000145, L0000146, L0000147, L0000148, L0000149, L0000150, L0000151, L0000152, L0000153, L0000154, L0000155, L0000156, L0000157, L0000158, L0000159, L0000160, L0000161, L0000162, L0000163, L0000164, L0000165, L0000166, L0000167, L0000168, L0000169, L0000170, L0000171, L0000172, L0000173, L0000174, L0000175, L0000176, L0000177, L0000178, L0000179, L0000180, L0000181, L0000182, L0000183, L0000184, L0000185, L0000186, L0000187, L0000188, L0000189, L0000190, L0000191, L0000192, L0000193, L0000194,

GASOLINE PAREA03 , PAREA04 ,

FUG_DUST PAREA07 , PAREA08 , L0010058, L0010059, L0010060, L0010061, L0010062, L0010063, L0010064, L0010065, L0010066, L0010067, L0010068, L0010069, L0010070, L0010071, L0010072, L0010073, L0010074, L0010075, L0010076, L0010077, L0010078, L0010079,



DFAULT ELEV FLGPOL
*** SOURCE IDs DEFINING SOURCE GROUPS ***

L0000029, L0000030, L0000031, L0000032, L0000033, L0000034, L0000035, L0000036, L0000037, L0000038, L0000039, L0000040, L0000041, L0000042, L0000043, L0000044, L0000045, L0000046, L0000047, L0000048, L0000049, L0000050, L0000051, L0000052, L0000053, L0000054, L0000055, L0000056, L0000057, L0000058, L0000059, L0000060, L0000061, L0000062, L0000063, L0000064, L0000065, L0000066, L0000067, L0000068, L0000069, L0000070, L0000071, L0000072, L0000073, L0000074, L0000075, L0000076, L0000077, L0000078, L0000079, L0000080, L0000081, L0000082, L0000083, L0000084, L0000085, L0000086, L0000087, L0000088, L0000089, L0000090, L0000091, L0000092, L0000093, L0000094, L0000095, L0000096, L0000097, L0000098, L0000099, L0000100, L0000101, L0000102, L0000103, L0000104, L0000105, L0000106, L0000107, L0000108, L0000109, L0000110, L0000111, L0000112, L0000113, L0000114, L0000115, L0000116, L0000117, L0000118, L0000119, L0000120, L0000121, L0000122, L0000123, L0000124, L0000125, L0000126, L0000127, L0000128, L0000129, L0000130, L0000131, L0000132, L0000133, L0000134, L0000135, L0000136, L0000137, L0000138, L0000139, L0000140, L0000141, L0000142, L0000143, L0000144, L0000145, L0000146, L0000147, L0000148, L0000149, L0000150, L0000151, L0000152, L0000153, L0000154, L0000155, L0000156, L0000157, L0000158, L0000159, L0000160, L0000161, L0000162, L0000163, L0000164, L0000165, L0000166, L0000167, L0000168, L0000169, L0000170, L0000171, L0000172, L0000173, L0000174, L0000175, L0000176, L0000177, L0000178, L0000179, L0000180, L0000181, L0000182, L0000183, L0000184, L0000185, L0000186, L0000187, L0000188, L0000189, L0000190, L0000191, L0000192, L0000193, L0000194, L0010058, L0010059, L0010060, L0010061, L0010062, L0010063, L0010064, L0010065, L0010066, L0010067, L0010068, L0010069, L0010070, L0010071, L0010072, L0010073, L0010074, L0010075, L0010076, L0010077, L0010078, L0010079, L0010080, L0010081, L0010082, L0010083, L0010084, L0010085, L0010086, L0010087, L0010088, L0010089, L0010090, L0010091, L0010092, L0010093, L0010094, L0010095, L0010096, L0010097, L0010098, L0010099, L0010100, L0010101, L0010102, L0010103, L0010104, L0010105, L0010106, L0010107, L0010108, L0010109, L0010110, L0010111, L0010112, L0010113, L0010114, L0010115, L0010116, L0010117, L0010118, L0010119, L0010120, L0010121, L0010122, L0010123, L0010124, L0010125, L0010126, L0010127, L0010128, L0010129, L0010130, L0010131,

* AERMOD	*** LAX CFTP CONSTRUCTION	***	11/18/08
	*** PM10 24-HOUR UNMITIGATED	***	18:52:44
**MODELOPTs:			PAGE 17

DFAULT ELEV FLGPOL
*** SOURCE IDs DEFINING SOURCE GROUPS *** L0010156, L0010157, L0010158, L0010159, L0010160, L0010161, L0010162, L0010163, L0010164, L0010165, L0010166, L0010167, L0010168, L0010169, L0010170, L0010171, L0010172, L0010173, L0010174, L0010175, L0010176, L0010177, L0010178, L0010179, L0010180, L0010181, L0010182, L0010183, L0010184, L0010185, L0010186, L0010187, L0010188, L0010189, L0010190, L0010191, L0010192, L0010193, L0010194, L0010195, L0010196, L0010197, L0010198, L0010199, L0010200, L0010201, L0010202, L0010203, L0010204, L0010205, L0010206, L0010207, L0010208, L0010209, L0010210, L0010211, L0010212, L0010213, L0010214, L0010215, L0010216, L0010217, L0010218, L0010219, L0010220, L0010221, L0010222, L0010223, L0010224, L0010225, L0010226, L0010227, L0010228, L0010229, L0010230, L0010231, L0010232, L0010233, L0010234, L0010235, L0010236, L0010237, L0010238, L0010239, L0010240, L0010241, L0010242, L0010243, L0010244, L0010245, L0010246, L0010247, L0010248, L0010249, L0010250, L0010251,

```
*** AERMOD - VERSION 07026 *** *** LAX CFTP CONSTRUCTION
```

*** PM10 24-HOUR UNMITIGATED
$\begin{array}{cr}\text { *** } & 11 / 18 / 08 \\ * * & 18: 52: 44\end{array}$
**MODELOPTs:
DFAULT ELEV FLGPOL

* SOURCE EMISSION RATE SCALARS WHICH VARY FOR EACH HOUR OF THE DAY *

```
CONC

DFAULT ELEV FLGPOL

*** AERMOD - VERSION 07026 *** *** LAX CFTP CONSTRUCTION
*** PM10 24-HOUR UNMITIGATED
DFAULT ELEV FLGPOL
* SOURCE EMISSION RATE SCALARS WHICH VARY FOR EACH HOUR OF THE DAY *

The following 77 pages have been deleted from the original AERMOD output file. The source emission rate scalars are identical for Source IDs L0000001 through L0000194 and L0010058 through L0010251, so pages 20 through 96 have been deleted since the data above are simply repeated for each of these sources.
\begin{tabular}{|c|c|c|c|}
\hline * AERMOD & *** LAX CFTP CONSTRUCTION & ** & 11/18/08 \\
\hline & *** PM10 24-HOUR UNMITIGATED & ** & 18:52:44 \\
\hline **MODELOPTs: & & & PAGE 97 \\
\hline
\end{tabular}

\section*{DFAULT ELEV FLGPOL}
* SOURCE EMISSION RATE SCALARS WHICH VARY FOR EACH HOUR OF THE DAY *

*** ***
**MODELOPTs:
CONC

DFAULT ELEV FLGPOL
*** DISCRETE CARTESIAN RECEPTORS ***
X-COORD, Y-COORD, ZELEV, ZHILL, ZFLAG
(METERS)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline (367483.7, & 3755199.0, & 0.0, & 0.0, & 1.8); & (367300.9, & 3755623.2, & 0.0, & 0.0, & 1.8); \\
\hline (367114.3, & 3756056.2, & 0.0, & 0.0, & 1.8); & (366984.5, & 3756357.5, & 0.0, & 0.0, & 1.8); \\
\hline (366852.9, & 3756663.0, & 0.0, & 0.0, & 1.8); & (366902.3, & 3756692.0, & 0.0, & 0.0, & 1.8); \\
\hline (366875.5, & 3756760.0, & 0.0, & 0.0, & 1.8); & (366812.7, & 3756738.5, & 0.0, & 0.0, & 1.8); \\
\hline (366677.2, & 3757024.5, & 0.0, & 0.0, & 1.8); & (366536.2, & 3757322.0, & 0.0, & 0.0, & 1.8); \\
\hline (366437.3, & 3757530.8, & 0.0, & 0.0, & 1.8); & (366486.9, & 3757537.2, & 0.0, & 0.0, & 1.8); \\
\hline (366623.9, & 3757468.0, & 0.0, & 0.0, & 1.8); & (366644.4, & 3757530.8, & 0.0, & 0.0, & 1.8); \\
\hline (366777.1, & 3757519.8, & 0.0, & 0.0, & 1.8); & (366998.6, & 3757642.2, & 0.0, & 0.0, & 1.8); \\
\hline (367174.2, & 3757739.5, & 0.0, & 0.0, & 1.8); & (367290.7, & 3757694.2, & 0.0, & 0.0, & 1.8); \\
\hline (367412.7, & 3757694.8, & 0.0, & 0.0, & 1.8); & (367409.8, & 3757735.8, & 0.0, & 0.0, & 1.8); \\
\hline (367517.8, & 3757796.2, & 0.0, & 0.0, & 1.8); & (367539.2, & 3757802.0, & 0.0, & 0.0, & 1.8); \\
\hline (367609.1, & 3757676.8, & 0.0, & 0.0, & 1.8); & (367769.1, & 3757644.2, & 0.0, & 0.0, & 1.8); \\
\hline (367774.8, & 3757718.5, & 0.0, & 0.0, & 1.8); & (367809.5, & 3757834.5, & 0.0, & 0.0, & 1.8); \\
\hline (367807.1, & 3757935.5, & 0.0, & 0.0, & 1.8); & (367774.9, & 3757958.5, & 0.0, & 0.0, & 1.8); \\
\hline (367798.1, & 3758011.0, & 0.0, & 0.0, & 1.8); & (367914.4, & 3757961.5, & 0.0, & 0.0, & 1.8); \\
\hline (367904.5, & 3757930.2, & 0.0, & 0.0, & 1.8); & (368108.7, & 3757840.2, & 0.0, & 0.0, & 1.8); \\
\hline (368232.8, & 3757790.2, & 0.0, & 0.0, & 1.8); & (368308.9, & 3757761.5, & 0.0, & 0.0, & 1.8); \\
\hline (368603.4, & 3757765.0, & 0.0, & 0.0, & 1.8); & (368603.8, & 3757718.5, & 0.0, & 0.0, & 1.8); \\
\hline (368769.7, & 3757798.5, & 0.0, & 0.0, & 1.8); & (369017.2, & 3757954.2 , & 0.0, & 0.0, & 1.8); \\
\hline (369080.3, & 3757864.0, & 0.0, & 0.0, & 1.8); & (369224.0, & 3757952.2, & 0.0, & 0.0, & 1.8); \\
\hline (369408.7, & 3757730.0, & 0.0, & 0.0, & 1.8); & (369454.2, & 3757776.0, & 0.0, & 0.0, & 1.8); \\
\hline (369265.0, & 3757996.5, & 0.0, & 0.0, & 1.8); & (369451.6, & 3758128.0, & 0.0, & 0.0, & 1.8); \\
\hline (369460.0, & 3758394.2, & 0.0, & 0.0, & 1.8); & (369853.1, & 3758394.2, & 0.0, & 0.0, & 1.8); \\
\hline (369850.4, & 3758078.0, & 0.0, & 0.0, & 1.8); & (370298.6, & 3758078.2, & 0.0, & 0.0, & 1.8); \\
\hline (370297.5, & 3757962.8, & 0.0, & 0.0, & 1.8); & (370382.3, & 3757966.0, & 0.0, & 0.0, & 1.8); \\
\hline (370510.1, & 3758027.2, & 0.0, & 0.0, & 1.8); & (370505.6, & 3758087.8 , & 0.0, & 0.0, & 1.8); \\
\hline (370886.4, & 3758089.0, & 0.0, & 0.0, & 1.8); & (370885.1, & 3757750.5, & 0.0, & 0.0, & 1.8); \\
\hline (370907.3, & 3757701.5, & 0.0, & 0.0, & 1.8); & (370944.9, & 3757670.0, & 0.0, & 0.0, & 1.8); \\
\hline (371045.8, & 3757667.5, & 0.0, & 0.0, & 1.8); & (371046.3, & 3757585.0, & 0.0, & 0.0, & 1.8); \\
\hline (371121.7, & 3757583.5, & 0.0, & 0.0, & 1.8); & (371192.6, & 3757720.2, & 0.0, & 0.0, & 1.8); \\
\hline (371254.0, & 3757762.2, & 0.0, & 0.0, & 1.8); & (371263.7, & 3757782.5, & 0.0, & 0.0, & 1.8); \\
\hline (371372.3, & 3757782.2, & 0.0, & 0.0, & 1.8); & (371399.4, & 3757806.2, & 0.0, & 0.0, & 1.8); \\
\hline (371798.3, & 3758080.2, & 0.0, & 0.0, & 1.8); & (371908.2, & 3757933.5, & 0.0, & 0.0, & 1.8); \\
\hline (371964.2, & 3757921.8, & 0.0, & 0.0, & 1.8); & (371970.2, & 3757841.5, & 0.0, & 0.0, & 1.8); \\
\hline (372023.3, & 3757843.2, & 0.0, & 0.0, & 1.8); & (372019.9, & 3757551.5, & 0.0, & 0.0, & 1.8); \\
\hline (372002.4, & 3757140.2, & 0.0, & 0.0, & 1.8); & (371514.1, & 3757136.2, & 0.0, & 0.0, & 1.8); \\
\hline (371034.6, & 3757132.5, & 0.0, & 0.0, & 1.8); & (371034.4, & 3757085.2, & 0.0, & 0.0, & 1.8); \\
\hline (370764.2, & 3757087.0, & 0.0, & 0.0, & 1.8); & (370754.0, & 3756817.8, & 0.0, & 0.0, & 1.8); \\
\hline (371031.5, & 3756807.2, & 0.0, & 0.0, & 1.8); & (371033.1, & 3756780.2, & 0.0, & 0.0, & 1.8); \\
\hline (371483.1, & 3756770.2, & 0.0, & 0.0, & 1.8); & (371817.2, & 3756763.0, & 0.0, & 0.0, & 1.8); \\
\hline (372274.4, & 3756752.8, & 0.0, & 0.0, & 1.8); & (372713.4, & 3756743.0, & 0.0, & 0.0, & 1.8); \\
\hline (372702.6, & 3756552.5, & 0.0, & 0.0, & 1.8); & (372818.8, & 3756548.8, & 0.0, & 0.0, & 1.8); \\
\hline (372814.4, & 3756455.0, & 0.0, & 0.0, & 1.8); & (372796.8, & 3756367.5, & 0.0, & 0.0, & 1.8); \\
\hline (372704.8, & 3756371.5, & 0.0, & 0.0, & 1.8); & (372706.3, & 3756326.8, & 0.0, & 0.0, & 1.8); \\
\hline (372927.1, & 3756319.2, & 0.0, & 0.0, & 1.8); & (372926.2, & 3756245.0, & 0.0, & 0.0, & 1.8); \\
\hline
\end{tabular}
*** AERMOD - VERSION 07026 *** *** LAX CFTP CONSTRUCTION
*** PM10 24-HOUR UNMITIGATED

\section*{DFAULT ELEV FLGPOL}
*** DISCRETE CARTESIAN RECEPTORS *** (X-COORD, Y-COORD, ZELEV, ZHILL, ZFLAG
(METERS)
\begin{tabular}{|c|c|c|c|c|}
\hline 373448.0, & 3755559.8, & 0.0, & 0.0, & 1.8) \\
\hline 373219.3, & 3755705.0, & 0.0, & 0.0, & 1.8) \\
\hline (373131.2, & 3755566.8, & 0.0, & 0.0, & 1.8) \\
\hline (373046.2, & 3755174.0, & 0.0, & 0.0, & 1.8) \\
\hline (372624.1, & 3755182.2, & 0.0, & 0.0, & 1.8) \\
\hline (371843.0, & 3755188.8, & 0.0, & 0.0, & \(1.8)\) \\
\hline (371049.0, & 3755195.5, & 0.0, & 0.0, & 1.8) \\
\hline (371043.4, & 3755384.0, & 0.0, & 0.0, & 1.8) \\
\hline (370995.8, & 3755560.2, & 0.0, & 0.0, & 1.8) \\
\hline (370801.4, & 3755275.5, & 0.0, & 0.0, & 1.8) \\
\hline (370380.3, & 3755263.2, & 0.0, & 0.0, & 1.8) \\
\hline (369786.9, & 3755266.5, & 0.0, & 0.0, & 1.8) \\
\hline (369193.6, & 3755269.8, & 0.0, & 0.0, & 1.8) \\
\hline (368569.3, & 3755273.2, & 0.0, & 0.0, & 1.8) \\
\hline 367936.4, & 3755213.2, & 0.0, & 0.0, & 1.8) \\
\hline
\end{tabular}
\begin{tabular}{lll}
0.0, & 0.0, & \(1.8) ;\) \\
0.0, & 0.0, & \(1.8) ;\) \\
0.0, & 0.0, & \(1.8) ;\) \\
0.0, & 0.0, & \(1.8) ;\) \\
0.0, & 0.0, & \(1.8) ;\) \\
0.0, & 0.0, & \(1.8) ;\) \\
0.0, & 0.0, & \(1.8) ;\) \\
0.0, & 0.0, & \(1.8) ;\) \\
0.0, & 0.0, & \(1.8) ;\) \\
0.0, & 0.0, & \(1.8) ;\) \\
0.0, & 0.0, & \(1.8) ;\) \\
0.0, & 0.0, & \(1.8) ;\) \\
0.0, & 0.0, & \(1.8) ;\) \\
0.0, & 0.0, & \(1.8) ;\) \\
0.0, & 0.0, & \(1.8) ;\)
\end{tabular}
(\(373456.8,3756235.5\) \(373222.5,3755568.8\) 373134.7, 3755704.0, 373054.1, 3755562.8 372725.5, 3755177.0, (372237.7, 3755185.5, 371462.8, 3755192.0 371056.3, 3755349.0 371042.4, 3755556.2 371042.4,
371001.0, 3755419.2, \(\begin{array}{ll}371001.0, & 3755419.2, \\ 370666.7, & 3755261.8\end{array}\) 370075.9, 3755265.0, 369498.0, 3755268.2, 368889.2, 3755271.5, 368274.8, 3755274.8
*** AERMOD - VERSION 07026 *** *** LAX CFTP CONSTRUCTION
*** 11/18/08
*** PM10 24-HOUR UNMITIGATED
*** 18:52:44
**MODELOPTs
CONC

\section*{DFAULT ELEV FLGPOL}
*** METEOROLOGICAL DAYS SELECTED FOR PROCESSING ***
(1=YES; 0=NO)

*** UPPER BOUND OF FIRST THROUGH FIFTH WIND SPEED CATEGORIES ***
(METERS/SEC)
1.54, \(3.09, \quad 5.14, \quad 8.23,10.80\),
```

** AERMOD - VERSION 07026 *** LAX CFTP CONSTRUCTION
*** PM10 24-HOUR UNMITIGATED
*** 11/18/08
**MODELOPTs:
PAGE 101

```
DFAULT ELEV FLGPOL

DFAULT ELEV FLGPOL
*** UP TO THE FIRST 24 HOURS OF METEOROLOGICAL DATA ***
```

Surface file: C:\LAKES\LAXTAXC\OS_96.SFC Met Version: 07026
Profile file: C:\LAKES\LAXTAXC\OS_96.PFL
Surface format: (3(I2,1X),I3,1X,I2,1X,F6.1,1X,3(F6.3,1X),2(F5.0,1X),F8.1,1X,F6.3,1X,2(F6.2,1X),F7.2,1X,F5.0,3(1X,F6.1))
Profile format: (4(I2,1X),F6.1,1X,I1,1X,F5.0,1X,F7.2,1X,F7.2,1X,F6.1,1X,F7.2)
Surface station no.: 23174,1X,11,1X,F5.0,MX,Nor, Upper air station no.: 3190

| Name: LOS_ANGELES/INT'L_ARPT | Name: UNKNOWN |  |
| :--- | :---: | :---: | :---: |
| Year: 1996 | Year: | 1996 |

```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline YR MO DY & JDY HR & H0 & U* & W* & DT/DZ & ZICNV & ZIMCH & M-O LEN & Z0 & BOWEN & ALBEDO & REF WS & WD & HT & REF TA & HT \\
\hline - - - - & - - - - & - - - & - - - - & - - - - & & & - - - & - - - - & - - - & - - & - - - & - - - & - - & - - - & - - - & \\
\hline 960101 & 101 & -64.0 & 0.658 & -9.000 & -9.000 & -999. & 1228. & 400.6 & 1.00 & 1.50 & 1.00 & 3.10 & 61. & 6.1 & 291.4 & 2.0 \\
\hline 960101 & 102 & -45.5 & 0.415 & -9.000 & -9.000 & -999. & 669. & 141.3 & 1.00 & 1.50 & 1.00 & 2.10 & 38. & 6.1 & 288.1 & 2.0 \\
\hline 960101 & 103 & -27.5 & 0.248 & -9.000 & -9.000 & -999. & 311. & 50.0 & 1.00 & 1.50 & 1.00 & 1.50 & 34. & 6.1 & 285.4 & 2.0 \\
\hline 960101 & 104 & -27.5 & 0.248 & -9.000 & -9.000 & -999. & 284. & 50.0 & 1.00 & 1.50 & 1.00 & 1.50 & 233. & 6.1 & 285.4 & 2.0 \\
\hline 960101 & 105 & -27.5 & 0.248 & -9.000 & -9.000 & -999. & 285. & 50.2 & 1.00 & 1.50 & 1.00 & 1.50 & 293. & 6.1 & 285.9 & 2.0 \\
\hline 960101 & 106 & -45.8 & 0.415 & -9.000 & -9.000 & -999. & 614. & 140.2 & 1.00 & 1.50 & 1.00 & 2.10 & 162. & 6.1 & 286.4 & 2.0 \\
\hline 960101 & 107 & -57.3 & 0.538 & -9.000 & -9.000 & -999. & 907. & 245.1 & 1.00 & 1.50 & 1.00 & 2.60 & 185. & 6.1 & 285.4 & 2.0 \\
\hline 960101 & 108 & -64.0 & 0.892 & -9.000 & -9.000 & -999. & 1936. & 1000.6 & 1.00 & 1.50 & 0.68 & 4.10 & 183. & 6.1 & 289.2 & 2.0 \\
\hline 960101 & 109 & 22.5 & 0.910 & 0.371 & 0.005 & 82. & 1995. & -998.0 & 1.00 & 1.50 & 0.47 & 4.10 & 237. & 6.1 & 290.4 & 2.0 \\
\hline 960101 & 110 & 70.3 & 0.917 & 1.041 & 0.005 & 580. & 2019. & -990.8 & 1.00 & 1.50 & 0.40 & 4.10 & 181 & 6.1 & 293.8 & 2.0 \\
\hline 960101 & 111 & 101.2 & 0.814 & 1.300 & 0.005 & 785. & 1707. & -481.9 & 1.00 & 1.50 & 0.38 & 3.60 & 234. & 6.1 & 294.9 & 2.0 \\
\hline 960101 & 112 & 119.0 & 1.270 & 1.378 & 0.007 & 795. & 3284. & -998.0 & 1.00 & 1.50 & 0.37 & 5.70 & 236. & 6.1 & 294.9 & 2.0 \\
\hline 960101 & 113 & 117.5 & 1.270 & 1.378 & 0.007 & 804. & 3290. & -998.0 & 1.00 & 1.50 & 0.37 & 5.70 & 243. & 6.1 & 293.8 & 2.0 \\
\hline 960101 & 114 & 98.4 & 1.029 & 1.303 & 0.005 & 811. & 2494. & -998.1 & 1.00 & 1.50 & 0.38 & 4.60 & 249. & 6.1 & 293.8 & 2.0 \\
\hline 960101 & 115 & 64.2 & 0.916 & 1.132 & 0.005 & 816. & 2051. & -998.0 & 1.00 & 1.50 & 0.41 & 4.10 & 252. & 6.1 & 293.8 & 2.0 \\
\hline 960101 & 116 & 13.6 & 0.689 & 0.676 & 0.005 & 817. & 1381. & -998.0 & 1.00 & 1.50 & 0.49 & 3.10 & 254. & 6.1 & 293.1 & 2.0 \\
\hline 960101 & 117 & -25.2 & -9.000 & -9.000 & -9.000 & -999. & -999. & -99999.0 & 1.00 & 1.50 & 0.72 & 0.00 & 0. & 6.1 & 291.4 & 2.0 \\
\hline 960101 & 118 & -64.0 & 0.658 & -9.000 & -9.000 & -999. & 1228. & 401.4 & 1.00 & 1.50 & 1.00 & 3.10 & 237. & 6.1 & 290.4 & 2.0 \\
\hline 960101 & 119 & -27.4 & 0.250 & -9.000 & -9.000 & -999. & 505. & 51.2 & 1.00 & 1.50 & 1.00 & 1.50 & 4. & 6.1 & 288.8 & 2.0 \\
\hline 960101 & 120 & -27.3 & 0.250 & -9.000 & -9.000 & -999. & 294. & 51.6 & 1.00 & 1.50 & 1.00 & 1.50 & 67. & 6.1 & 289.9 & 2.0 \\
\hline 960101 & 121 & -27.4 & 0.250 & -9.000 & -9.000 & -999. & 287. & 51.2 & 1.00 & 1.50 & 1.00 & 1.50 & 30. & 6.1 & 288.8 & 2.0 \\
\hline 960101 & 122 & -27.2 & 0.251 & -9.000 & -9.000 & -999. & 290. & 52.8 & 1.00 & 1.50 & 1.00 & 1.50 & 52. & 6.1 & 288.8 & 2.0 \\
\hline 960101 & 123 & -999.0 & -9.000 & -9.000 & -9.000 & -999. & -999. & -99999.0 & 1.00 & 1.50 & 1.00 & 0.00 & 0. & 6.1 & 288.1 & 2.0 \\
\hline 960101 & 124 & -59.6 & 0.536 & -9.000 & -9.000 & -999. & 904. & 233.4 & 1.00 & 1.50 & 1.00 & 2.60 & 90. & 6.1 & 286.4 & 2.0 \\
\hline
\end{tabular}
First hour of profile data
YR MO DY HR HEIGHT F WDIR WSPD AMB_TMP sigmaA sigmaW sigmaV
\(\begin{array}{lllllllllll}96 & 01 & 01 & 6.1 & 61 & 6.10 & 291.5 & 99.0 & -99.00 & -99.00\end{array}\)

F indicates top of profile (=1) or below (=0)
*** THE 1ST HIGHEST 24-HR AVERAGE CONCENTRATION VALUES FOR SOURCE GROUP: DIESEL *** INCLUDING SOURCE (S): PAREA01, PAREA02 , L0000001, L0000002, L0000003, L0000004, L0000005, L0000006, L0000007, L0000008, L0000009, L0000010, L0000011, L0000012, L0000013, L0000014, L0000015, L0000016, L0000017, L0000018, L0000019, L0000020, L0000021, L0000022, L0000023, L0000024, L0000025, L0000026, L0000027, L0000028, . . . ,

\section*{DFAULT ELEV FLGPOL}
*** THE 1ST HIGHEST 24-HR AVERAGE CONCENTRATION VALUES FOR SOURCE GROUP: DIESEL *** INCLUDING SOURCE(S): PAREA01, PAREA02, L0000001, L0000002, L0000003, L0000004, L0000005, L0000006, L0000007, L0000008, L0000009, L0000010, L0000011, L0000012, L0000013, L0000014, L0000015, L0000016, L0000017, L0000018, L0000019, L0000020, L0000021, L0000022, L0000023, L0000024, L0000025, L0000026, L0000027, L0000028, . . .
*** DISCRETE CARTESIAN RECEPTOR POINTS ***
** CONC OF DAILYPM1 IN MICROGRAMS/M**3

*** THE 1ST HIGHEST 24-HR AVERAGE CONCENTRATION VALUES FOR SOURCE GROUP: GASOLINE *** INCLUDING SOURCE(S):

PAREA03 , PAREA04 ,
*** DISCRETE CARTESIAN RECEPTOR POINTS ***
** CONC OF DAILYPM1 IN MICROGRAMS/M**3

*** AERMOD - VERSION 07026 *** *** LAX CFTP CONSTRUCTION
*** PM10 24-HOUR UNMITIGATED
\(\begin{array}{lr}\text { *** } & 11 / 18 / 08 \\ * * & 18: 52: 44\end{array}\)
**MODELOPTs
CONC

\section*{DFAULT ELEV FLGPOL}
*** THE 1ST HIGHEST 24-HR AVERAGE CONCENTRATION VALUES FOR SOURCE GROUP: GASOLINE *** INCLUDING SOURCE(S): PAREA03 , PAREA04 ,
*** DISCRETE CARTESIAN RECEPTOR POINTS ***
** CONC OF DAILYPM1 IN MICROGRAMS/M**3
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline X-COORD (M) & Y-COORD (M) & CONC & (YYMMDDHH) & X-COORD (M) & Y-COORD (M) & CONC & (YYMMDDHH) \\
\hline - - - - - - & - - - - - & - - - - & - - - - - & - - - - - & - - - - - & - - - - & (YYMMDD \\
\hline 372274.41 & 3756752.75 & \(0.00105 c\) & (96021424) & 372713.41 & 3756743.00 & 0.00086 c & (96021424) \\
\hline 372702.62 & 3756552.50 & 0.00073 c & (96021424) & 372818.81 & 3756548.75 & 0.00070c & (96021424) \\
\hline 372814.44 & 3756455.00 & 0.00063 c & (96021424) & 372796.75 & 3756367.50 & 0.00057 c & (96021424) \\
\hline 372704.81 & 3756371.50 & 0.00060c & (96021424) & 372706.31 & 3756326.75 & 0.00056 c & (96021424) \\
\hline 372927.09 & 3756319.25 & 0.00051 c & (96021424) & 372926.22 & 3756245.00 & 0.00046c & (96021424) \\
\hline 373456.81 & 3756235.50 & 0.00038 c & (96021424) & 373448.00 & 3755559.75 & \(0.00025 c\) & (96052124) \\
\hline 373222.47 & 3755568.75 & 0.00026c & (96010224) & 373219.34 & 3755705.00 & 0.00027c & (96052124) \\
\hline 373134.66 & 3755704.00 & 0.00028 c & (96052124) & 373131.22 & 3755566.75 & 0.00028c & (96010224) \\
\hline 373054.09 & 3755562.75 & 0.00029 c & (96010224) & 373046.22 & 3755174.00 & \(0.00035 c\) & (96010224) \\
\hline 372725.47 & 3755177.00 & 0.00040c & (96010224) & 372624.12 & 3755182.25 & 0.00042c & (96010224) \\
\hline 372237.69 & 3755185.50 & 0.00050c & (96010224) & 371843.00 & 3755188.75 & 0.00058c & (96010224) \\
\hline 371462.81 & 3755192.00 & \(0.00065 c\) & (96010224) & 371049.03 & 3755195.50 & 0.00071 c & (96010224) \\
\hline 371056.31 & 3755349.00 & 0.00079 c & (96010224) & 371043.41 & 3755384.00 & 0.00081 c & (96010224) \\
\hline 371042.38 & 3755556.25 & 0.00088 c & (96010224) & 370995.81 & 3755560.25 & 0.00090c & (96010224) \\
\hline 371001.00 & 3755419.25 & 0.00084 c & (96010224) & 370801.41 & 3755275.50 & 0.00078 c & (96010224) \\
\hline 370666.66 & 3755261.75 & 0.00078 c & (96010224) & 370380.28 & 3755263.25 & 0.00077c & (96010924) \\
\hline 370075.88 & 3755265.00 & \(0.00095 c\) & (96012924) & 369786.91 & 3755266.50 & 0.00119c & (96012924) \\
\hline 369498.00 & 3755268.25 & 0.00131 c & (96012924) & 369193.59 & 3755269.75 & 0.00203 c & (96022824) \\
\hline 368889.16 & 3755271.50 & 0.00348 c & (96011024) & 368569.28 & 3755273.25 & 0.00496c & (96012624) \\
\hline 368274.84 & 3755274.75 & 0.00462c & (96012624) & 367936.44 & 3755213.25 & 0.00335 c & (96012624) \\
\hline
\end{tabular}
*** THE 1ST HIGHEST 24-HR AVERAGE CONCENTRATION VALUES FOR SOURCE GROUP: FUG_DUST *** INCLUDING SOURCE(S): PAREA07 , PAREA08, L0010058, L0010059, L0010060, L0010061, L0010062, L0010063, L0010064, L0010065, L0010066, L0010067, L0010068, L0010069, L0010070, L0010071, L0010072, L0010073, L0010074, L0010075, L0010076, L0010077, L0010078, L0010079, L0010080, L0010081, L0010082, L0010083, L0010084, L0010085, . . .

\section*{DFAULT ELEV FLGPOL}
*** THE 1ST HIGHEST 24-HR AVERAGE CONCENTRATION VALUES FOR SOURCE GROUP: FUG_DUST ***
INCLUDING SOURCE(S): PAREA07 , PAREA08 , L0010058, L0010059, L0010060, L0010061, L0010062, L0010063, L0010064, L0010065, L0010066, L0010067, L0010068, L0010069, L0010070, L0010071, L0010072, L0010073, L0010074, L0010075, L0010076, L0010077, L0010078, L0010079, L0010080, L0010081, L0010082, L0010083, L0010084, L0010085, . . . ,
*** DISCRETE CARTESIAN RECEPTOR POINTS ***
** CONC OF DAILYPM1 IN MICROGRAMS/M**3

*** THE 1ST HIGHEST 24-HR AVERAGE CONCENTRATION VALUES FOR SOURCE GROUP: BATCH *** INCLUDING SOURCE(S): STCK01,
*** DISCRETE CARTESIAN RECEPTOR POINTS ***
** CONC OF DAILYPM1 IN MICROGRAMS/M**3

*** AERMOD - VERSION 07026 *** *** LAX CFTP CONSTRUCTION
*** PM10 24-HOUR UNMITIGATED
*** \(\quad 18: 52: 44\) **MODELOPTs:
CONC

\section*{DFAULT ELEV FLGPOL}
*** THE 1ST HIGHEST 24-HR AVERAGE CONCENTRATION VALUES FOR SOURCE GROUP: BATCH *** INCLUDING SOURCE(S): STCK01 ,
*** DISCRETE CARTESIAN RECEPTOR POINTS ***
** CONC OF DAILYPM1 IN MICROGRAMS/M**3 **

*** THE 1ST HIGHEST 24-HR AVERAGE CONCENTRATION VALUES FOR SOURCE GROUP: CRUSHER *** INCLUDING SOURCE(S): STCK02 ,
*** DISCRETE CARTESIAN RECEPTOR POINTS ***
** CONC OF DAILYPM1 IN MICROGRAMS/M**3

*** AERMOD - VERSION 07026 *** *** LAX CFTP CONSTRUCTION
*** PM10 24-HOUR UNMITIGATED
\(\begin{array}{lr}\text { *** } & 11 / 18 / 08 \\ \text { *** } & 18: 52: 4\end{array}\)
**MODELOPTs:
CONC

\section*{DFAULT ELEV FLGPOL}
*** THE 1ST HIGHEST 24-HR AVERAGE CONCENTRATION VALUES FOR SOURCE GROUP: CRUSHER ***
INCLUDING SOURCE(S): STCK02
*** DISCRETE CARTESIAN RECEPTOR POINTS ***
** CONC OF DAILYPM1 IN MICROGRAMS/M**3
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline X-COORD (M) & Y-COORD (M) & CONC & (YYMMDDHH) & X-COORD (M) & Y-COORD (M) & CONC & (YYMMDDHH) \\
\hline - - & - - - - - & - - - - - & - - - - & - - - - - & - - - - - - & - - - - & (YY \\
\hline 372274.41 & 3756752.75 & 0.00094 c & (96021424) & 372713.41 & 3756743.00 & 0.00080c & (96021424) \\
\hline 372702.62 & 3756552.50 & \(0.00075 c\) & (96021424) & 372818.81 & 3756548.75 & 0.00072c & (96021424) \\
\hline 372814.44 & 3756455.00 & 0.00069c & (96021424) & 372796.75 & 3756367.50 & \(0.00065 c\) & (96021424) \\
\hline 372704.81 & 3756371.50 & 0.00067c & (96021424) & 372706.31 & 3756326.75 & \(0.00065 c\) & (96021424) \\
\hline 372927.09 & 3756319.25 & 0.00060c & (96021424) & 372926.22 & 3756245.00 & 0.00057 c & (96021424) \\
\hline 373456.81 & 3756235.50 & 0.00047c & (96021424) & 373448.00 & 3755559.75 & \(0.00023 c\) & (96052124) \\
\hline 373222.47 & 3755568.75 & 0.00024c & (96052124) & 373219.34 & 3755705.00 & 0.00028c & (96021424) \\
\hline 373134.66 & 3755704.00 & 0.00029c & (96021424) & 373131.22 & 3755566.75 & \(0.00025 c\) & (96052124) \\
\hline 373054.09 & 3755562.75 & \(0.00025 c\) & (96052124) & 373046.22 & 3755174.00 & \(0.00027 c\) & (96052124) \\
\hline 372725.47 & 3755177.00 & 0.00029c & (96052124) & 372624.12 & 3755182.25 & 0.00030c & (96052124) \\
\hline 372237.69 & 3755185.50 & 0.00033c & (96052124) & 371843.00 & 3755188.75 & 0.00036c & (96052124) \\
\hline 371462.81 & 3755192.00 & 0.00046c & (96010224) & 371049.03 & 3755195.50 & 0.00060c & (96010224) \\
\hline 371056.31 & 3755349.00 & 0.00054c & (96010224) & 371043.41 & 3755384.00 & 0.00053 c & (96010224) \\
\hline 371042.38 & 3755556.25 & 0.00053c & (96052124) & 370995.81 & 3755560.25 & 0.00054 c & (96052124) \\
\hline 371001.00 & 3755419.25 & 0.00053c & (96010224) & 370801.41 & 3755275.50 & 0.00068 c & (96010224) \\
\hline 370666.66 & 3755261.75 & 0.00076c & (96010224) & 370380.28 & 3755263.25 & \(0.00095 c\) & (96010224) \\
\hline 370075.88 & 3755265.00 & 0.00119c & (96010224) & 369786.91 & 3755266.50 & 0.00147 c & (96010224) \\
\hline 369498.00 & 3755268.25 & 0.00178c & (96010224) & 369193.59 & 3755269.75 & 0.00203 c & (96010224) \\
\hline 368889.16 & 3755271.50 & 0.00195c & (96010224) & 368569.28 & 3755273.25 & \(0.00265 c\) & (96102524) \\
\hline 368274.84 & 3755274.75 & 0.00330c & (96100724) & 367936.44 & 3755213.25 & 0.00514 c & (96022824) \\
\hline
\end{tabular}
*** THE 1ST HIGHEST 24-HR AVERAGE CONCENTRATION VALUES FOR SOURCE GROUP: ALL
INCLUDING SOURCE \((\mathrm{S}):\) STCK01 , STCK02 , PAREA01 , PAREA02 , PAREA03 , PAREA04 , PAREA07 ,
PAREA08, L0000001, L0000002, L0000003, L0000004, L0000005, L0000006, L0000007, L0000008, L0000009, L0000010, L0000011, L0000012, L0000013, L0000014, L0000015, L0000016, L0000017, L0000018, L0000019, L0000020, L0000021, L0000022, . . .
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{*** DISCRETE CARTESIAN RECEPTOR POINTS ***} \\
\hline X-COORD (M) & Y-COORD (M) & CONC & (YYMMDDHH) & X-COORD (M) & Y-COORD (M) & CONC & (YYMMDDHH) & \\
\hline - - - - - & - - - - & - & (YYMMD & - - - - & - - - & - - - - & - & - \\
\hline 367483.66 & 3755199.00 & 0.88137 c & (96020724) & 367300.88 & 3755623.25 & 1.14121c & (96011524) & \\
\hline 367114.28 & 3756056.25 & 1.30221c & (96012724) & 366984.53 & 3756357.50 & 1.07036 c & (96012924) & \\
\hline 366852.91 & 3756663.00 & 1.02383c & (96012924) & 366902.28 & 3756692.00 & 1.03593c & (96012924) & \\
\hline 366875.53 & 3756760.00 & 1.00738c & (96012924) & 366812.69 & 3756738.50 & 0.99078 c & (96012924) & \\
\hline 366677.25 & 3757024.50 & 0.85674 c & (96020224) & 366536.22 & 3757322.00 & 0.85960 c & (96020224) & \\
\hline 366437.28 & 3757530.75 & 0.79220c & (96020224) & 366486.94 & 3757537.25 & 0.79720c & (96020224) & \\
\hline 366623.91 & 3757468.00 & 0.85071 c & (96020224) & 366644.38 & 3757530.75 & 0.82501 c & (96020224) & \\
\hline 366777.06 & 3757519.75 & 0.85273 c & (96020224) & 366998.56 & 3757642.25 & 0.74510 c & (96020224) & \\
\hline 367174.25 & 3757739.50 & 0.56828 c & (96020224) & 367290.72 & 3757694.25 & 0.61270c & (96020224) & \\
\hline 367412.66 & 3757694.75 & 0.59310c & (96020724) & 367409.81 & 3757735.75 & 0.59107c & (96020724) & \\
\hline 367517.78 & 3757796.25 & 0.63349c & (96020724) & 367539.25 & 3757802.00 & 0.64180c & (96020724) & \\
\hline 367609.12 & 3757676.75 & 0.69461 c & (96020724) & 367769.06 & 3757644.25 & 0.79521 c & (96020724) & \\
\hline 367774.81 & 3757718.50 & 0.77470c & (96020724) & 367809.47 & 3757834.50 & 0.75657 c & (96020124) & \\
\hline 367807.06 & 3757935.50 & \(0.75316 c\) & (96020124) & 367774.94 & 3757958.50 & 0.73769c & (96020124) & \\
\hline 367798.12 & 3758011.00 & 0.73666c & (96020124) & 367914.41 & 3757961.50 & 0.77692 c & (96020124) & \\
\hline 367904.53 & 3757930.25 & 0.78648 c & (96020124) & 368108.69 & 3757840.25 & 0.85929 c & (96020124) & \\
\hline 368232.75 & 3757790.25 & 0.88753 c & (96020124) & 368308.88 & 3757761.50 & 0.89453 c & (96020124) & \\
\hline 368603.38 & 3757765.00 & 0.79410c & (96020324) & 368603.84 & 3757718.50 & 0.84999 c & (96020324) & \\
\hline 368769.72 & 3757798.50 & 1.31692 & (96032224) & 369017.16 & 3757954.25 & 1.20098 & (96032224) & \\
\hline 369080.28 & 3757864.00 & 1.20338 & (96032224) & 369224.00 & 3757952.25 & 1.06113c & (96010924) & \\
\hline 369408.72 & 3757730.00 & 1.07545 c & (96010924) & 369454.22 & 3757776.00 & 0.91174 c & (96010924) & \\
\hline 369264.97 & 3757996.50 & 1.00488c & (96010924) & 369451.62 & 3758128.00 & 0.71346 c & (96010924) & \\
\hline 369459.97 & 3758394.25 & 0.59488c & (96010924) & 369853.09 & 3758394.25 & 0.50080c & (96040824) & \\
\hline 369850.44 & 3758078.00 & 0.58674 c & (96040824) & 370298.62 & 3758078.25 & 1.07054c & (96092924) & \\
\hline 370297.53 & 3757962.75 & 1.36164 c & (96092924) & 370382.34 & 3757966.00 & 1.42816c & (96092924) & \\
\hline 370510.12 & 3758027.25 & 1.36829c & (96092924) & 370505.62 & 3758087.75 & 1.26803c & (96092924) & \\
\hline 370886.41 & 3758089.00 & 1.16640c & (96092924) & 370885.06 & 3757750.50 & 1.13109 & (96020524) & \\
\hline 370907.31 & 3757701.50 & 1.12800 & (96020524) & 370944.91 & 3757670.00 & 1.09862 & (96020524) & \\
\hline 371045.81 & 3757667.50 & 1.01502 & (96020524) & 371046.34 & 3757585.00 & 0.97744 & (96020524) & \\
\hline 371121.66 & 3757583.50 & 0.91880 & (96101124) & 371192.59 & 3757720.25 & 0.91617 & (96020524) & \\
\hline 371253.97 & 3757762.25 & 0.88567 & (96020524) & 371263.66 & 3757782.50 & 0.88534 & (96020524) & \\
\hline 371372.34 & 3757782.25 & 0.80958 & (96020524) & 371399.44 & 3757806.25 & 0.80086 & (96020524) & \\
\hline 371798.31 & 3758080.25 & 0.66251 & (96020524) & 371908.19 & 3757933.50 & 0.57802 & (96101124) & \\
\hline 371964.22 & 3757921.75 & 0.56592 & (96101124) & 371970.19 & 3757841.50 & 0.56622 & (96101124) & \\
\hline 372023.31 & 3757843.25 & 0.55015 & (96101124) & 372019.88 & 3757551.50 & 0.47841 & (96101124) & \\
\hline 372002.41 & 3757140.25 & 0.59946c & (96021424) & 371514.12 & 3757136.25 & 0.72507c & (96021424) & \\
\hline 371034.56 & 3757132.50 & \(0.93506 c\) & (96021424) & 371034.44 & 3757085.25 & \(0.92255 c\) & (96021424) & \\
\hline 370764.19 & 3757087.00 & 1.12982 c & (96021424) & 370754.00 & 3756817.75 & 0.99277 c & (96021424) & \\
\hline 371031.47 & 3756807.25 & 0.84643c & (96021424) & 371033.12 & 3756780.25 & 0.83880c & (96021424) & \\
\hline 371483.09 & 3756770.25 & 0.64796c & (96021424) & 371817.25 & 3756763.00 & 0.53742c & (96021424) & \\
\hline
\end{tabular}
```

*** AERMOD - VERSION 07026 *** LAX CFTP CONSTRUCTION
*** PM10 24-HOUR UNMITIGATED
*** 11/18/08
*MODELOPTs:

```
CONC

\section*{DFAULT ELEV FLGPOL}
*** THE 1ST HIGHEST 24-HR AVERAGE CONCENTRATION VALUES FOR SOURCE GROUP: ALL *** INCLUDING SOURCE (S) : STCK01 , STCK02 , PAREA01 , PAREA02 , PAREA03 , PAREA04 , PAREA07 PAREA08 , L0000001, L0000002, L0000003, L0000004, L0000005, L0000006, L0000007, L0000008, L0000009, L0000010, L0000011, L0000012, L0000013, L0000014, L0000015, L0000016, L0000017, L0000018, L0000019, L0000020, L0000021, L0000022, . . .
*** DISCRETE CARTESIAN RECEPTOR POINTS ***
** CONC OF DAILYPM1 IN MICROGRAMS/M**3


```

** AERMOD - VERSION 07026 *** *** LAX CFTP CONSTRUCTION
*** PM10 24-HOUR UNMITIGATED
**MODELOPTs:

## DFAULT ELEV FLGPOL

```
*** Message Summary : AERMOD Model Execution ***
--------- Summary of Total Messages --------
A Total of 0 Fatal Error Message(s)
A Total of
A Total of
0 Warning Message(s)
2275 Informational Message(s)
A Total of 920 Calm Hours Identified
A Total of 1355 Missing Hours Identified (15.43 Percent)
CAUTION!: Number of Missing Hours Exceeds 10 Percent of Total!
Data May Not Be Acceptable for Regulatory Applications.
See Section 5.3.2 of "Meteorological Monitoring Guidance for Regulatory Modeling Applications" (EPA-454/R-99-005)
******** FATAL ERROR MESSAGES ********
*** NONE ***
******** WARNING MESSAGES ********
*** NONE ***
```

***********************************
** AERMOD Finishes Successfully ${ }^{* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *)}$

```
** AERMOD - VERSION 07026 *** *** LAX CFTP Construction
 *** PM2.5 24-HOUR Uncontrolled
 *** 11/19/08
*MODELOPTs:
09:41:44
CONC
DFAULT ELEV FLGPOL

\section*{MODEL SETUP OPTIONS SUMMARY}
**
**Model Is Setup For Calculation of Average CONCentration Values.
-- DEPOSITION LOGIC
**Model Uses NO DRY DEPLETION. DDPLETE \(=F\)
**Model Uses NO WET DEPLETION. WDPLETE = F
**NO GAS DRY DEPOSITION Data Provided.
**Model Uses URBAN Dispersion Algorithm for the SBL for 396 Source(s), for Total of 1 Urban Area(s):
Urban Population \(=165468.0\); Urban Roughness Length \(=1.000 \mathrm{~m}\)
**Model Uses Regulatory DEFAULT Options:
1. Stack-tip Downwash.
2. Model Accounts for ELEVated Terrain Effects.
3. Use Calms Processing Routine.
4. Use Missing Data Processing Routine.
5. No Exponential Decay for URBAN/Non-SO2
**Model Accepts FLAGPOLE Receptor Heights.
**Model Calculates 1 Short Term Average(s) of: 24-HR
**This Run Includes: 396 Source(s); 6 Source Group(s); and 120 Receptor(s)
**The Model Assumes A Pollutant Type of: PM2.5DAY
**Model Set To Continue RUNning After the Setup Testing.
**Output Options Selected:
Model Outputs Tables of Highest Short Term Values by Receptor (RECTABLE Keyword)
Model Outputs External File(s) of High Values for Plotting (PLOTFILE Keyword)
**NOTE: The Following Flags May Appear Following CONC Values: c for Calm Hours
m for Missing Hours
b for Both Calm and Missing Hours

**Approximate Storage Requirements of Model \(=\quad 2.0 \mathrm{MB}\) of RAM.
**File for Saving Result Arrays: C13P2DUn.sv1

*** POINT SOURCE DATA ***
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline SOURCE ID & NUMBER PART. CATS. & \begin{tabular}{l}
EMISSION RATE \\
(GRAMS/SEC)
\end{tabular} & \begin{tabular}{l}
X \\
(METERS)
\end{tabular} & \begin{tabular}{l}
Y \\
(METERS)
\end{tabular} & \[
\begin{aligned}
& \text { BASE } \\
& \text { ELEV. } \\
& \text { (METERS) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { STACK } \\
& \text { HEIGHT } \\
& \text { (METERS) }
\end{aligned}
\] & STACK TEMP. (DEG.K) & STACK EXIT VEL. (M/SEC) & \begin{tabular}{l}
STACK \\
DIAMETER \\
(METERS)
\end{tabular} & \[
\begin{aligned}
& \text { BLDG } \\
& \text { EXISTS }
\end{aligned}
\] & URBAN SOURCE & \[
\begin{aligned}
& \text { CAP/ } \\
& \text { HOR }
\end{aligned}
\] & EMIS RATE SCALAR VARY BY \\
\hline STCK01 & \(\bigcirc\) & 0.18400E-01 & 368061.3 & 3756043.2 & 0.0 & 10.00 & 293.00 & 10.00 & 2.00 & NO & YES & NO & HROFDY \\
\hline STCK02 & \(\bigcirc\) & 0.44099E-02 & 367935.2 & 3756111.5 & 0.0 & 10.00 & 293.00 & 10.00 & 2.00 & NO & YES & NO & HROFDY \\
\hline
\end{tabular}

*** VOLUME SOURCE DATA ***
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & NUMBER & EMISSION RATE & & & BASE & RELEASE & INIT. & INIT. & URBAN & EMISSION RATE \\
\hline SOURCE & PART. & (GRAMS/SEC) & X & Y & ELEV. & HEIGHT & SY & SZ & SOURCE & SCALAR VARY \\
\hline ID & CATS. & & (METERS) & (METERS) & (METERS) & (METERS) & (METERS) & (METERS) & & BY \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline L0000777 & 0 & 0.79381E-04 & 368157.3 & 3755892.2 & 0.0 & 0.00 & 8.74 & 1.16 & YES & HROFDY \\
\hline L0000778 & 0 & 0.79381E-04 & 368175.7 & 3755896.0 & 0.0 & 0.00 & 8.74 & 1.16 & YES & HROFDY \\
\hline L0000779 & 0 & 0.79381E-04 & 368182.2 & 3755885.0 & 0.0 & 0.00 & 7.96 & 1.16 & YES & HROFDY \\
\hline L0000780 & 0 & 0.79381E-04 & 368184.6 & 3755868.0 & 0.0 & 0.00 & 7.96 & 1.16 & YES & HROFDY \\
\hline L0000781 & 0 & 0.79381E-04 & 368187.0 & 3755851.0 & 0.0 & 0.00 & 7.96 & 1.16 & YES & HROFDY \\
\hline L0000782 & 0 & 0.79381E-04 & 368189.3 & 3755834.0 & 0.0 & 0.00 & 7.96 & 1.16 & YES & HROFDY \\
\hline L0000783 & 0 & 0.79381E-04 & 368191.7 & 3755817.2 & 0.0 & 0.00 & 7.96 & 1.16 & YES & HROFDY \\
\hline L0000784 & 0 & 0.79381E-04 & 368194.0 & 3755800.2 & 0.0 & 0.00 & 7.96 & 1.16 & YES & HROFDY \\
\hline L0000785 & 0 & 0.79381E-04 & 368209.4 & 3755797.2 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline L0000786 & 0 & 0.79381E-04 & 368229.2 & 3755799.8 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline L0000787 & 0 & 0.79381E-04 & 368248.8 & 3755802.2 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline L0000788 & 0 & 0.79381E-04 & 368268.5 & 3755804.8 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline L0000789 & 0 & 0.79381E-04 & 368288.2 & 3755807.2 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline L0000790 & 0 & 0.79381E-04 & 368307.9 & 3755810.0 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline L0000791 & 0 & 0.79381E-04 & 368327.6 & 3755812.5 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline L0000792 & 0 & 0.79381E-04 & 368347.3 & 3755815.0 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline L0000793 & 0 & 0.79381E-04 & 368367.0 & 3755817.5 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline L0000794 & 0 & 0.79381E-04 & 368386.7 & 3755820.0 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline L0000795 & 0 & 0.79381E-04 & 368406.4 & 3755822.8 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline L0000796 & 0 & 0.79381E-04 & 368426.1 & 3755825.2 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline L0000797 & 0 & 0.79381E-04 & 368445.8 & 3755827.8 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline L0000798 & 0 & 0.79381E-04 & 368465.5 & 3755830.2 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline L0000799 & 0 & 0.79381E-04 & 368485.2 & 3755832.8 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline L0000800 & 0 & 0.79381E-04 & 368504.8 & 3755835.5 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline L0000801 & 0 & 0.79381E-04 & 368524.5 & 3755838.0 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline L0000802 & 0 & 0.79381E-04 & 368544.2 & 3755840.5 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline L0000803 & 0 & 0.79381E-04 & 368563.9 & 3755843.0 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline L0000804 & 0 & 0.79381E-04 & 368583.6 & 3755845.5 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline L0000805 & 0 & 0.79381E-04 & 368603.3 & 3755848.2 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline L0000806 & 0 & 0.79381E-04 & 368623.0 & 3755850.8 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline L0000807 & 0 & 0.79381E-04 & 368642.7 & 3755853.2 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline L0000808 & 0 & 0.79381E-04 & 368662.4 & 3755855.8 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline L0000809 & 0 & 0.79381E-04 & 368682.1 & 3755858.2 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline L0000810 & 0 & 0.79381E-04 & 368701.8 & 3755861.0 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline L0000811 & 0 & 0.79381E-04 & 368721.5 & 3755863.5 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline L0000812 & 0 & 0.79381E-04 & 368741.2 & 3755866.0 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline L0000813 & 0 & 0.79381E-04 & 368760.8 & 3755868.5 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline L0000814 & 0 & 0.79381E-04 & 368780.5 & 3755871.0 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline L0000815 & 0 & 0.79381E-04 & 368800.2 & 3755873.5 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline L0000816 & 0 & 0.79381E-04 & 368819.9 & 3755876.2 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline
\end{tabular}

*** VOLUME SOURCE DATA ***
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & NUMBER & EMISSION RATE & & & BASE & RELEASE & INIT. & INIT. & URBAN & EMISSION RATE \\
\hline SOURCE & PART. & (GRAMS/SEC) & X & Y & ELEV. & HEIGHT & SY & SZ & SOURCE & SCALAR VARY \\
\hline ID & CATS. & & (METERS) & (METERS) & (METERS) & (METERS) & (METERS) & (METERS) & & BY \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline L0000817 & 0 & 0.79381E-04 & 368839.6 & 3755878.8 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline L0000818 & 0 & 0.79381E-04 & 368859.3 & 3755881.2 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline L0000819 & 0 & 0.79381E-04 & 368879.0 & 3755883.8 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline L0000820 & 0 & 0.79381E-04 & 368898.7 & 3755886.2 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline L0000821 & 0 & 0.79381E-04 & 368918.4 & 3755889.0 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline L0000822 & 0 & 0.79381E-04 & 368938.1 & 3755891.5 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline L0000823 & 0 & 0.79381E-04 & 368957.8 & 3755894.0 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline L0000824 & 0 & 0.79381E-04 & 368977.5 & 3755896.5 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline L0000825 & 0 & 0.79381E-04 & 368997.2 & 3755899.0 & 0.0 & 0.00 & 9.24 & 1.16 & YES & HROFDY \\
\hline L0000826 & 0 & 0.79381E-04 & 369001.1 & 3755914.8 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000827 & 0 & 0.79381E-04 & 368999.8 & 3755934.5 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000828 & 0 & 0.79381E-04 & 368998.5 & 3755954.5 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000829 & 0 & 0.79381E-04 & 368997.2 & 3755974.5 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000830 & 0 & 0.79381E-04 & 368995.8 & 3755994.5 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000831 & 0 & 0.79381E-04 & 368994.5 & 3756014.2 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000832 & 0 & 0.79381E-04 & 368993.2 & 3756034.2 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000833 & 0 & 0.79381E-04 & 368991.8 & 3756054.2 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000834 & 0 & 0.79381E-04 & 368990.5 & 3756074.2 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000835 & 0 & 0.79381E-04 & 368989.2 & 3756094.0 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000836 & 0 & 0.79381E-04 & 368987.8 & 3756114.0 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000837 & 0 & 0.79381E-04 & 368986.5 & 3756134.0 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000838 & 0 & 0.79381E-04 & 368985.2 & 3756153.8 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000839 & 0 & 0.79381E-04 & 368983.8 & 3756173.8 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000840 & 0 & 0.79381E-04 & 368982.5 & 3756193.8 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000841 & 0 & 0.79381E-04 & 368981.2 & 3756213.8 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000842 & 0 & 0.79381E-04 & 368979.9 & 3756233.5 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000843 & 0 & 0.79381E-04 & 368978.5 & 3756253.5 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000844 & 0 & 0.79381E-04 & 368977.2 & 3756273.5 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000845 & 0 & 0.79381E-04 & 368975.9 & 3756293.5 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000846 & 0 & 0.79381E-04 & 368974.6 & 3756313.2 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000847 & 0 & 0.79381E-04 & 368973.2 & 3756333.2 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000848 & 0 & 0.79381E-04 & 368971.9 & 3756353.2 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000849 & 0 & 0.79381E-04 & 368970.6 & 3756373.0 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000850 & 0 & 0.79381E-04 & 368969.2 & 3756393.0 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000851 & 0 & 0.79381E-04 & 368967.9 & 3756413.0 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000852 & 0 & 0.79381E-04 & 368966.6 & 3756433.0 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000853 & 0 & 0.79381E-04 & 368965.2 & 3756452.8 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000854 & 0 & 0.79381E-04 & 368963.9 & 3756472.8 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000855 & 0 & 0.79381E-04 & 368962.6 & 3756492.8 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000856 & 0 & 0.79381E-04 & 368961.3 & 3756512.8 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline
\end{tabular}

*** VOLUME SOURCE DATA ***
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & NUMBER & EMISSION RATE & & & BASE & RELEASE & INIT. & INIT. & URBAN & EMISSION RATE \\
\hline SOURCE & PART. & (GRAMS/SEC) & X & Y & ELEV. & HEIGHT & SY & SZ & SOURCE & SCALAR VARY \\
\hline ID & CATS. & & (METERS) & (METERS) & (METERS) & (METERS) & (METERS) & (METERS) & & BY \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline L0000857 & 0 & 0.79381E-04 & 368959.9 & 3756532.5 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000858 & 0 & 0.79381E-04 & 368958.6 & 3756552.5 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000859 & 0 & 0.79381E-04 & 368957.3 & 3756572.5 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000860 & 0 & 0.79381E-04 & 368956.0 & 3756592.2 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000861 & 0 & 0.79381E-04 & 368954.6 & 3756612.2 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000862 & 0 & 0.79381E-04 & 368953.3 & 3756632.2 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000863 & 0 & 0.79381E-04 & 368952.0 & 3756652.2 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000864 & 0 & 0.79381E-04 & 368950.7 & 3756672.0 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000865 & 0 & 0.79381E-04 & 368949.3 & 3756692.0 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000866 & 0 & 0.79381E-04 & 368948.0 & 3756712.0 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000867 & 0 & 0.79381E-04 & 368946.7 & 3756732.0 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000868 & 0 & 0.79381E-04 & 368945.3 & 3756751.8 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000869 & 0 & 0.79381E-04 & 368944.0 & 3756771.8 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000870 & 0 & 0.79381E-04 & 368942.7 & 3756791.8 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000871 & 0 & 0.79381E-04 & 368941.3 & 3756811.5 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000872 & 0 & 0.79381E-04 & 368940.0 & 3756831.5 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000873 & 0 & 0.79381E-04 & 368938.7 & 3756851.5 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000874 & 0 & 0.79381E-04 & 368937.4 & 3756871.5 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000875 & 0 & 0.79381E-04 & 368936.0 & 3756891.2 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000876 & 0 & 0.79381E-04 & 368934.7 & 3756911.2 & 0.0 & 0.00 & 9.29 & 1.16 & YES & HROFDY \\
\hline L0000877 & 0 & 0.79381E-04 & 368919.5 & 3756914.5 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000878 & 0 & 0.79381E-04 & 368899.7 & 3756912.2 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000879 & 0 & 0.79381E-04 & 368879.9 & 3756910.0 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000880 & 0 & 0.79381E-04 & 368860.0 & 3756907.8 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000881 & 0 & 0.79381E-04 & 368840.2 & 3756905.5 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000882 & 0 & 0.79381E-04 & 368820.4 & 3756903.2 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000883 & 0 & 0.79381E-04 & 368800.6 & 3756901.0 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000884 & 0 & 0.79381E-04 & 368780.8 & 3756898.8 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000885 & 0 & 0.79381E-04 & 368760.9 & 3756896.5 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000886 & 0 & 0.79381E-04 & 368741.1 & 3756894.2 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000887 & 0 & 0.79381E-04 & 368721.3 & 3756892.0 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000888 & 0 & 0.79381E-04 & 368701.4 & 3756889.8 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000889 & 0 & 0.79381E-04 & 368681.6 & 3756887.5 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000890 & 0 & 0.79381E-04 & 368661.8 & 3756885.2 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000891 & 0 & 0.79381E-04 & 368642.0 & 3756883.0 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000892 & 0 & 0.79381E-04 & 368622.2 & 3756880.8 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000893 & 0 & 0.79381E-04 & 368602.3 & 3756878.5 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000894 & 0 & 0.79381E-04 & 368582.5 & 3756876.0 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000895 & 0 & 0.79381E-04 & 368562.7 & 3756873.8 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000896 & 0 & 0.79381E-04 & 368542.8 & 3756871.5 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline
\end{tabular}

*** VOLUME SOURCE DATA ***
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & NUMBER & EMISSION RATE & & & BASE & RELEASE & INIT. & INIT. & URBAN & EMISSION RATE \\
\hline SOURCE & PART. & (GRAMS/SEC) & X & Y & ELEV. & HEIGHT & SY & SZ & SOURCE & SCALAR VARY \\
\hline ID & CATS. & & (METERS) & (METERS) & (METERS) & (METERS) & (METERS) & (METERS) & & BY \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline L0000897 & 0 & 0.79381E-04 & 368523.0 & 3756869.2 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000898 & 0 & 0.79381E-04 & 368503.2 & 3756867.0 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000899 & 0 & 0.79381E-04 & 368483.4 & 3756864.8 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000900 & 0 & 0.79381E-04 & 368463.5 & 3756862.5 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000901 & 0 & 0.79381E-04 & 368443.7 & 3756860.2 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000902 & 0 & 0.79381E-04 & 368423.9 & 3756858.0 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000903 & 0 & 0.79381E-04 & 368404.1 & 3756855.8 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000904 & 0 & 0.79381E-04 & 368384.2 & 3756853.5 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000905 & 0 & 0.79381E-04 & 368364.4 & 3756851.2 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000906 & 0 & 0.79381E-04 & 368344.6 & 3756849.0 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000907 & 0 & 0.79381E-04 & 368324.8 & 3756846.8 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000908 & 0 & 0.79381E-04 & 368304.9 & 3756844.5 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000909 & 0 & 0.79381E-04 & 368285.1 & 3756842.2 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000910 & 0 & 0.79381E-04 & 368265.3 & 3756840.0 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000911 & 0 & 0.79381E-04 & 368245.5 & 3756837.8 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000912 & 0 & 0.79381E-04 & 368225.7 & 3756835.5 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000913 & 0 & 0.79381E-04 & 368205.8 & 3756833.2 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000914 & 0 & 0.79381E-04 & 368186.0 & 3756831.0 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000915 & 0 & 0.79381E-04 & 368166.2 & 3756828.8 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000916 & 0 & 0.79381E-04 & 368146.3 & 3756826.2 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000917 & 0 & 0.79381E-04 & 368126.5 & 3756824.0 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000918 & 0 & 0.79381E-04 & 368106.7 & 3756821.8 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000919 & 0 & 0.79381E-04 & 368086.9 & 3756819.5 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000920 & 0 & 0.79381E-04 & 368067.0 & 3756817.2 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000921 & 0 & 0.79381E-04 & 368047.2 & 3756815.0 & 0.0 & 0.00 & 9.28 & 1.16 & YES & HROFDY \\
\hline L0000922 & 0 & 0.79381E-04 & 368044.1 & 3756800.0 & 0.0 & 0.00 & 9.07 & 1.16 & YES & HROFDY \\
\hline L0000923 & 0 & 0.79381E-04 & 368046.5 & 3756780.8 & 0.0 & 0.00 & 9.07 & 1.16 & YES & HROFDY \\
\hline L0000924 & 0 & 0.79381E-04 & 368048.9 & 3756761.5 & 0.0 & 0.00 & 9.07 & 1.16 & YES & HROFDY \\
\hline L0000925 & 0 & 0.79381E-04 & 368051.3 & 3756742.0 & 0.0 & 0.00 & 9.07 & 1.16 & YES & HROFDY \\
\hline L0000926 & 0 & 0.79381E-04 & 368053.8 & 3756722.8 & 0.0 & 0.00 & 9.07 & 1.16 & YES & HROFDY \\
\hline L0000927 & 0 & 0.79381E-04 & 368056.2 & 3756703.2 & 0.0 & 0.00 & 9.07 & 1.16 & YES & HROFDY \\
\hline L0000928 & 0 & 0.79381E-04 & 368058.6 & 3756684.0 & 0.0 & 0.00 & 9.07 & 1.16 & YES & HROFDY \\
\hline L0000929 & 0 & 0.79381E-04 & 368061.0 & 3756664.5 & 0.0 & 0.00 & 9.07 & 1.16 & YES & HROFDY \\
\hline L0000930 & 0 & 0.79381E-04 & 368063.4 & 3756645.2 & 0.0 & 0.00 & 9.07 & 1.16 & YES & HROFDY \\
\hline L0000931 & 0 & 0.79381E-04 & 368065.8 & 3756626.0 & 0.0 & 0.00 & 9.07 & 1.16 & YES & HROFDY \\
\hline L0000932 & 0 & 0.79381E-04 & 368068.2 & 3756606.5 & 0.0 & 0.00 & 9.07 & 1.16 & YES & HROFDY \\
\hline L0000933 & 0 & 0.79381E-04 & 368070.7 & 3756587.2 & 0.0 & 0.00 & 9.07 & 1.16 & YES & HROFDY \\
\hline L0000934 & 0 & 0.79381E-04 & 368073.1 & 3756567.8 & 0.0 & 0.00 & 9.07 & 1.16 & YES & HROFDY \\
\hline L0000935 & 0 & 0.79381E-04 & 368075.5 & 3756548.5 & 0.0 & 0.00 & 9.07 & 1.16 & YES & HROFDY \\
\hline L0000936 & 0 & 0.79381E-04 & 368077.9 & 3756529.0 & 0.0 & 0.00 & 9.07 & 1.16 & YES & HROFDY \\
\hline
\end{tabular}

\title{
*** AERMOD - VERSION 07026 *** *** LAX CFTP Construction
}
*** PM2.5 24-HOUR Uncontrolled
\begin{tabular}{ll}
*** & \(11 / 19 / 08\) \\
*** & \(09: 41: 44\) \\
&
\end{tabular}

CONC DFAULT ELEV FLGPOL
*** VOLUME SOURCE DATA ***
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & NUMBER & EMISSION RATE & & & BASE & RELEASE & INIT. & INIT. & URBAN & EMISSION RATE \\
\hline SOURCE & PART. & (GRAMS/SEC) & X & Y & ELEV. & HEIGHT & SY & SZ & SOURCE & SCALAR VARY \\
\hline ID & CATS. & & (METERS) & (METERS) & (METERS) & (METERS) & (METERS) & (METERS) & & BY \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline L0000937 & 0 & 0.79381E-04 & 368080.4 & 3756509.8 & 0.0 & 0.00 & 9.07 & 1.16 & YES & HROFDY \\
\hline L0000938 & 0 & 0.79381E-04 & 368082.8 & 3756490.5 & 0.0 & 0.00 & 9.07 & 1.16 & YES & HROFDY \\
\hline L0000939 & 0 & 0.79381E-04 & 368085.2 & 3756471.0 & 0.0 & 0.00 & 9.07 & 1.16 & YES & HROFDY \\
\hline L0000940 & 0 & 0.79381E-04 & 368087.6 & 3756451.8 & 0.0 & 0.00 & 9.07 & 1.16 & YES & HROFDY \\
\hline L0000941 & 0 & 0.79381E-04 & 368090.1 & 3756432.2 & 0.0 & 0.00 & 9.07 & 1.16 & YES & HROFDY \\
\hline L0000942 & 0 & 0.79381E-04 & 368092.5 & 3756413.0 & 0.0 & 0.00 & 9.07 & 1.16 & YES & HROFDY \\
\hline L0000943 & 0 & 0.79381E-04 & 368090. 2 & 3756397.2 & 0.0 & 0.00 & 7.47 & 1.16 & YES & HROFDY \\
\hline L0000944 & 0 & 0.79381E-04 & 368085.9 & 3756381.8 & 0.0 & 0.00 & 7.47 & 1.16 & YES & HROFDY \\
\hline L0000945 & 0 & 0.79381E-04 & 368086.6 & 3756365.0 & 0.0 & 0.00 & 7.99 & 1.16 & YES & HROFDY \\
\hline L0000946 & 0 & 0.79381E-04 & 368089.4 & 3756348.0 & 0.0 & 0.00 & 7.99 & 1.16 & YES & HROFDY \\
\hline L0000947 & 0 & 0.79381E-04 & 368092.2 & 3756331.0 & 0.0 & 0.00 & 7.99 & 1.16 & YES & HROFDY \\
\hline L0000948 & 0 & 0.79381E-04 & 368095.1 & 3756314.2 & 0.0 & 0.00 & 7.99 & 1.16 & YES & HROFDY \\
\hline L0000949 & 0 & 0.79381E-04 & 368097.9 & 3756297.2 & 0.0 & 0.00 & 7.99 & 1.16 & YES & HROFDY \\
\hline L0000950 & 0 & 0.79381E-04 & 368107.4 & 3756283.5 & 0.0 & 0.00 & 8.05 & 1.16 & YES & HROFDY \\
\hline L0000951 & 0 & 0.79381E-04 & 368119.7 & 3756271.2 & 0.0 & 0.00 & 8.05 & 1.16 & YES & HROFDY \\
\hline L0000952 & 0 & 0.79381E-04 & 368131.9 & 3756259.0 & 0.0 & 0.00 & 8.05 & 1.16 & YES & HROFDY \\
\hline L0000953 & 0 & 0.79381E-04 & 368137.3 & 3756240.8 & 0.0 & 0.00 & 9.27 & 1.16 & YES & HROFDY \\
\hline L0000954 & 0 & 0.79381E-04 & 368139.8 & 3756221.0 & 0.0 & 0.00 & 9.27 & 1.16 & YES & HROFDY \\
\hline L0000955 & 0 & 0.79381E-04 & 368142.3 & 3756201.2 & 0.0 & 0.00 & 9.27 & 1.16 & YES & HROFDY \\
\hline L0000956 & 0 & 0.79381E-04 & 368144.8 & 3756181.5 & 0.0 & 0.00 & 9.27 & 1.16 & YES & HROFDY \\
\hline L0000957 & 0 & 0.79381E-04 & 368147.3 & 3756161.8 & 0.0 & 0.00 & 9.27 & 1.16 & YES & HROFDY \\
\hline L0000958 & 0 & 0.79381E-04 & 368149.8 & 3756142.0 & 0.0 & 0.00 & 9.27 & 1.16 & YES & HROFDY \\
\hline L0000959 & 0 & 0.79381E-04 & 368152.3 & 3756122.0 & 0.0 & 0.00 & 9.27 & 1.16 & YES & HROFDY \\
\hline L0000960 & 0 & 0.79381E-04 & 368154.9 & 3756102.2 & 0.0 & 0.00 & 9.27 & 1.16 & YES & HROFDY \\
\hline L0000961 & 0 & 0.79381E-04 & 368157.4 & 3756082.5 & 0.0 & 0.00 & 9.27 & 1.16 & YES & HROFDY \\
\hline L0000962 & 0 & 0.79381E-04 & 368159.9 & 3756062.8 & 0.0 & 0.00 & 9.27 & 1.16 & YES & HROFDY \\
\hline L0000963 & 0 & 0.79381E-04 & 368162.4 & 3756043.0 & 0.0 & 0.00 & 9.27 & 1.16 & YES & HROFDY \\
\hline L0000964 & 0 & 0.79381E-04 & 368164.9 & 3756023.2 & 0.0 & 0.00 & 9.27 & 1.16 & YES & HROFDY \\
\hline L0000965 & 0 & 0.79381E-04 & 368167.4 & 3756003.5 & 0.0 & 0.00 & 9.27 & 1.16 & YES & HROFDY \\
\hline L0000966 & 0 & 0.79381E-04 & 368169.9 & 3755983.8 & 0.0 & 0.00 & 9.27 & 1.16 & YES & HROFDY \\
\hline L0000967 & 0 & 0.79381E-04 & 368172.4 & 3755964.0 & 0.0 & 0.00 & 9.27 & 1.16 & YES & HROFDY \\
\hline L0000968 & 0 & 0.79381E-04 & 368174.9 & 3755944.2 & 0.0 & 0.00 & 9.27 & 1.16 & YES & HROFDY \\
\hline L0000969 & 0 & 0.79381E-04 & 368177.4 & 3755924.5 & 0.0 & 0.00 & 9.27 & 1.16 & YES & HROFDY \\
\hline L0000970 & 0 & 0.79381E-04 & 368180.0 & 3755904.8 & 0.0 & 0.00 & 9.27 & 1.16 & YES & HROFDY \\
\hline L0000971 & 0 & 0.61856E-05 & 368157.3 & 3755892.2 & 0.0 & 0.00 & 8.74 & 2.33 & YES & HROFDY \\
\hline L0000972 & 0 & 0.61856E-05 & 368175.7 & 3755896.0 & 0.0 & 0.00 & 8.74 & 2.33 & YES & HROFDY \\
\hline L0000973 & 0 & 0.61856E-05 & 368182.2 & 3755885.0 & 0.0 & 0.00 & 7.96 & 2.33 & YES & HROFDY \\
\hline L0000974 & 0 & 0.61856E-05 & 368184.6 & 3755868.0 & 0.0 & 0.00 & 7.96 & 2.33 & YES & HROFDY \\
\hline L0000975 & 0 & 0.61856E-05 & 368187.0 & 3755851.0 & 0.0 & 0.00 & 7.96 & 2.33 & YES & HROFDY \\
\hline L0000976 & 0 & 0.61856E-05 & 368189.3 & 3755834.0 & 0.0 & 0.00 & 7.96 & 2.33 & YES & HROFDY \\
\hline
\end{tabular}

*** VOLUME SOURCE DATA ***
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & NUMBER & EMISSION RATE & & & BASE & RELEASE & INIT. & INIT. & URBAN & EMISSION RATE \\
\hline SOURCE & PART. & (GRAMS/SEC) & X & Y & ELEV. & HEIGHT & SY & SZ & SOURCE & SCALAR VARY \\
\hline ID & CATS. & & (METERS) & (METERS) & (METERS) & (METERS) & (METERS) & (METERS) & & BY \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline L0000977 & 0 & 0.61856E-05 & 368191.7 & 3755817.2 & 0.0 & 0.00 & 7.96 & 2.33 & YES & HROFDY \\
\hline L0000978 & 0 & 0.61856E-05 & 368194.0 & 3755800.2 & 0.0 & 0.00 & 7.96 & 2.33 & YES & HROFDY \\
\hline L0000979 & 0 & 0.61856E-05 & 368209.4 & 3755797.2 & 0.0 & 0.00 & 9.24 & 2.33 & YES & HROFDY \\
\hline L0000980 & 0 & 0.61856E-05 & 368229.2 & 3755799.8 & 0.0 & 0.00 & 9.24 & 2.33 & YES & HROFDY \\
\hline L0000981 & 0 & 0.61856E-05 & 368248.8 & 3755802.2 & 0.0 & 0.00 & 9.24 & 2.33 & YES & HROFDY \\
\hline L0000982 & 0 & 0.61856E-05 & 368268.5 & 3755804.8 & 0.0 & 0.00 & 9.24 & 2.33 & YES & HROFDY \\
\hline L0000983 & 0 & 0.61856E-05 & 368288.2 & 3755807.2 & 0.0 & 0.00 & 9.24 & 2.33 & YES & HROFDY \\
\hline L0000984 & 0 & 0.61856E-05 & 368307.9 & 3755810.0 & 0.0 & 0.00 & 9.24 & 2.33 & YES & HROFDY \\
\hline L0000985 & 0 & 0.61856E-05 & 368327.6 & 3755812.5 & 0.0 & 0.00 & 9.24 & 2.33 & YES & HROFDY \\
\hline L0000986 & 0 & 0.61856E-05 & 368347.3 & 3755815.0 & 0.0 & 0.00 & 9.24 & 2.33 & YES & HROFDY \\
\hline L0000987 & 0 & 0.61856E-05 & 368367.0 & 3755817.5 & 0.0 & 0.00 & 9.24 & 2.33 & YES & HROFDY \\
\hline L0000988 & 0 & 0.61856E-05 & 368386.7 & 3755820.0 & 0.0 & 0.00 & 9.24 & 2.33 & YES & HROFDY \\
\hline L0000989 & 0 & 0.61856E-05 & 368406.4 & 3755822.8 & 0.0 & 0.00 & 9.24 & 2.33 & YES & HROFDY \\
\hline L0000990 & 0 & 0.61856E-05 & 368426.1 & 3755825.2 & 0.0 & 0.00 & 9.24 & 2.33 & YES & HROFDY \\
\hline L0000991 & 0 & 0.61856E-05 & 368445.8 & 3755827.8 & 0.0 & 0.00 & 9.24 & 2.33 & YES & HROFDY \\
\hline L0000992 & 0 & 0.61856E-05 & 368465.5 & 3755830.2 & 0.0 & 0.00 & 9.24 & 2.33 & YES & HROFDY \\
\hline L0000993 & 0 & 0.61856E-05 & 368485.2 & 3755832.8 & 0.0 & 0.00 & 9.24 & 2.33 & YES & HROFDY \\
\hline L0000994 & 0 & 0.61856E-05 & 368504.8 & 3755835.5 & 0.0 & 0.00 & 9.24 & 2.33 & YES & HROFDY \\
\hline L0000995 & 0 & 0.61856E-05 & 368524.5 & 3755838.0 & 0.0 & 0.00 & 9.24 & 2.33 & YES & HROFDY \\
\hline L0000996 & 0 & 0.61856E-05 & 368544.2 & 3755840.5 & 0.0 & 0.00 & 9.24 & 2.33 & YES & HROFDY \\
\hline L0000997 & 0 & 0.61856E-05 & 368563.9 & 3755843.0 & 0.0 & 0.00 & 9.24 & 2.33 & YES & HROFDY \\
\hline L0000998 & 0 & 0.61856E-05 & 368583.6 & 3755845.5 & 0.0 & 0.00 & 9.24 & 2.33 & YES & HROFDY \\
\hline L0000999 & 0 & 0.61856E-05 & 368603.3 & 3755848.2 & 0.0 & 0.00 & 9.24 & 2.33 & YES & HROFDY \\
\hline L0001000 & 0 & 0.61856E-05 & 368623.0 & 3755850.8 & 0.0 & 0.00 & 9.24 & 2.33 & YES & HROFDY \\
\hline L0001001 & 0 & 0.61856E-05 & 368642.7 & 3755853.2 & 0.0 & 0.00 & 9.24 & 2.33 & YES & HROFDY \\
\hline L0001002 & 0 & 0.61856E-05 & 368662.4 & 3755855.8 & 0.0 & 0.00 & 9.24 & 2.33 & YES & HROFDY \\
\hline L0001003 & 0 & 0.61856E-05 & 368682.1 & 3755858.2 & 0.0 & 0.00 & 9.24 & 2.33 & YES & HROFDY \\
\hline L0001004 & 0 & 0.61856E-05 & 368701.8 & 3755861.0 & 0.0 & 0.00 & 9.24 & 2.33 & YES & HROFDY \\
\hline L0001005 & 0 & 0.61856E-05 & 368721.5 & 3755863.5 & 0.0 & 0.00 & 9.24 & 2.33 & YES & HROFDY \\
\hline L0001006 & 0 & 0.61856E-05 & 368741.2 & 3755866.0 & 0.0 & 0.00 & 9.24 & 2.33 & YES & HROFDY \\
\hline L0001007 & 0 & 0.61856E-05 & 368760.8 & 3755868.5 & 0.0 & 0.00 & 9.24 & 2.33 & YES & HROFDY \\
\hline L0001008 & 0 & 0.61856E-05 & 368780.5 & 3755871.0 & 0.0 & 0.00 & 9.24 & 2.33 & YES & HROFDY \\
\hline L0001009 & 0 & 0.61856E-05 & 368800.2 & 3755873.5 & 0.0 & 0.00 & 9.24 & 2.33 & YES & HROFDY \\
\hline L0001010 & 0 & 0.61856E-05 & 368819.9 & 3755876.2 & 0.0 & 0.00 & 9.24 & 2.33 & YES & HROFDY \\
\hline L0001011 & 0 & 0.61856E-05 & 368839.6 & 3755878.8 & 0.0 & 0.00 & 9.24 & 2.33 & YES & HROFDY \\
\hline L0001012 & 0 & 0.61856E-05 & 368859.3 & 3755881.2 & 0.0 & 0.00 & 9.24 & 2.33 & YES & HROFDY \\
\hline L0001013 & 0 & 0.61856E-05 & 368879.0 & 3755883.8 & 0.0 & 0.00 & 9.24 & 2.33 & YES & HROFDY \\
\hline L0001014 & 0 & 0.61856E-05 & 368898.7 & 3755886.2 & 0.0 & 0.00 & 9.24 & 2.33 & YES & HROFDY \\
\hline L0001015 & 0 & 0.61856E-05 & 368918.4 & 3755889.0 & 0.0 & 0.00 & 9.24 & 2.33 & YES & HROFDY \\
\hline L0001016 & 0 & 0.61856E-05 & 368938.1 & 3755891.5 & 0.0 & 0.00 & 9.24 & 2.33 & YES & HROFDY \\
\hline
\end{tabular}

*** VOLUME SOURCE DATA ***
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & NUMBER & EMISSION RATE & & & BASE & RELEASE & INIT. & INIT. & URBAN & EMISSION RATE \\
\hline SOURCE & PART. & (GRAMS/SEC) & X & Y & ELEV. & HEIGHT & SY & SZ & SOURCE & SCALAR VARY \\
\hline ID & CATS. & & (METERS) & (METERS) & (METERS) & (METERS) & (METERS) & (METERS) & & BY \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline L0001017 & 0 & 0.61856E-05 & 368957.8 & 3755894.0 & 0.0 & 0.00 & 9.24 & 2.33 & YES & HROFDY \\
\hline L0001018 & 0 & 0.61856E-05 & 368977.5 & 3755896.5 & 0.0 & 0.00 & 9.24 & 2.33 & YES & HROFDY \\
\hline L0001019 & 0 & 0.61856E-05 & 368997.2 & 3755899.0 & 0.0 & 0.00 & 9.24 & 2.33 & YES & HROFDY \\
\hline L0001020 & 0 & 0.61856E-05 & 369001.1 & 3755914.8 & 0.0 & 0.00 & 9.29 & 2.33 & YES & HROFDY \\
\hline L0001021 & 0 & 0.61856E-05 & 368999.8 & 3755934.5 & 0.0 & 0.00 & 9.29 & 2.33 & YES & HROFDY \\
\hline L0001022 & 0 & 0.61856E-05 & 368998.5 & 3755954.5 & 0.0 & 0.00 & 9.29 & 2.33 & YES & HROFDY \\
\hline L0001023 & 0 & 0.61856E-05 & 368997.2 & 3755974.5 & 0.0 & 0.00 & 9.29 & 2.33 & YES & HROFDY \\
\hline L0001024 & 0 & 0.61856E-05 & 368995.8 & 3755994.5 & 0.0 & 0.00 & 9.29 & 2.33 & YES & HROFDY \\
\hline L0001025 & 0 & 0.61856E-05 & 368994.5 & 3756014.2 & 0.0 & 0.00 & 9.29 & 2.33 & YES & HROFDY \\
\hline L0001026 & 0 & 0.61856E-05 & 368993.2 & 3756034.2 & 0.0 & 0.00 & 9.29 & 2.33 & YES & HROFDY \\
\hline L0001027 & 0 & 0.61856E-05 & 368991.8 & 3756054.2 & 0.0 & 0.00 & 9.29 & 2.33 & YES & HROFDY \\
\hline L0001028 & 0 & 0.61856E-05 & 368990.5 & 3756074.2 & 0.0 & 0.00 & 9.29 & 2.33 & YES & HROFDY \\
\hline L0001029 & 0 & 0.61856E-05 & 368989.2 & 3756094.0 & 0.0 & 0.00 & 9.29 & 2.33 & YES & HROFDY \\
\hline L0001030 & 0 & 0.61856E-05 & 368987.8 & 3756114.0 & 0.0 & 0.00 & 9.29 & 2.33 & YES & HROFDY \\
\hline L0001031 & 0 & 0.61856E-05 & 368986.5 & 3756134.0 & 0.0 & 0.00 & 9.29 & 2.33 & YES & HROFDY \\
\hline L0001032 & 0 & 0.61856E-05 & 368985.2 & 3756153.8 & 0.0 & 0.00 & 9.29 & 2.33 & YES & HROFDY \\
\hline L0001033 & 0 & 0.61856E-05 & 368983.8 & 3756173.8 & 0.0 & 0.00 & 9.29 & 2.33 & YES & HROFDY \\
\hline L0001034 & 0 & 0.61856E-05 & 368982.5 & 3756193.8 & 0.0 & 0.00 & 9.29 & 2.33 & YES & HROFDY \\
\hline L0001035 & 0 & 0.61856E-05 & 368981.2 & 3756213.8 & 0.0 & 0.00 & 9.29 & 2.33 & YES & HROFDY \\
\hline L0001036 & 0 & 0.61856E-05 & 368979.9 & 3756233.5 & 0.0 & 0.00 & 9.29 & 2.33 & YES & HROFDY \\
\hline L0001037 & 0 & 0.61856E-05 & 368978.5 & 3756253.5 & 0.0 & 0.00 & 9.29 & 2.33 & YES & HROFDY \\
\hline L0001038 & 0 & 0.61856E-05 & 368977.2 & 3756273.5 & 0.0 & 0.00 & 9.29 & 2.33 & YES & HROFDY \\
\hline L0001039 & 0 & 0.61856E-05 & 368975.9 & 3756293.5 & 0.0 & 0.00 & 9.29 & 2.33 & YES & HROFDY \\
\hline L0001040 & 0 & 0.61856E-05 & 368974.6 & 3756313.2 & 0.0 & 0.00 & 9.29 & 2.33 & YES & HROFDY \\
\hline L0001041 & 0 & 0.61856E-05 & 368973.2 & 3756333.2 & 0.0 & 0.00 & 9.29 & 2.33 & YES & HROFDY \\
\hline L0001042 & 0 & 0.61856E-05 & 368971.9 & 3756353.2 & 0.0 & 0.00 & 9.29 & 2.33 & YES & HROFDY \\
\hline L0001043 & 0 & 0.61856E-05 & 368970.6 & 3756373.0 & 0.0 & 0.00 & 9.29 & 2.33 & YES & HROFDY \\
\hline L0001044 & 0 & 0.61856E-05 & 368969.2 & 3756393.0 & 0.0 & 0.00 & 9.29 & 2.33 & YES & HROFDY \\
\hline L0001045 & 0 & 0.61856E-05 & 368967.9 & 3756413.0 & 0.0 & 0.00 & 9.29 & 2.33 & YES & HROFDY \\
\hline L0001046 & 0 & 0.61856E-05 & 368966.6 & 3756433.0 & 0.0 & 0.00 & 9.29 & 2.33 & YES & HROFDY \\
\hline L0001047 & 0 & 0.61856E-05 & 368965.2 & 3756452.8 & 0.0 & 0.00 & 9.29 & 2.33 & YES & HROFDY \\
\hline L0001048 & 0 & 0.61856E-05 & 368963.9 & 3756472.8 & 0.0 & 0.00 & 9.29 & 2.33 & YES & HROFDY \\
\hline L0001049 & 0 & 0.61856E-05 & 368962.6 & 3756492.8 & 0.0 & 0.00 & 9.29 & 2.33 & YES & HROFDY \\
\hline L0001050 & 0 & 0.61856E-05 & 368961.3 & 3756512.8 & 0.0 & 0.00 & 9.29 & 2.33 & YES & HROFDY \\
\hline L0001051 & 0 & 0.61856E-05 & 368959.9 & 3756532.5 & 0.0 & 0.00 & 9.29 & 2.33 & YES & HROFDY \\
\hline L0001052 & 0 & 0.61856E-05 & 368958.6 & 3756552.5 & 0.0 & 0.00 & 9.29 & 2.33 & YES & HROFDY \\
\hline L0001053 & 0 & 0.61856E-05 & 368957.3 & 3756572.5 & 0.0 & 0.00 & 9.29 & 2.33 & YES & HROFDY \\
\hline L0001054 & 0 & 0.61856E-05 & 368956.0 & 3756592.2 & 0.0 & 0.00 & 9.29 & 2.33 & YES & HROFDY \\
\hline L0001055 & 0 & 0.61856E-05 & 368954.6 & 3756612.2 & 0.0 & 0.00 & 9.29 & 2.33 & YES & HROFDY \\
\hline L0001056 & 0 & 0.61856E-05 & 368953.3 & 3756632.2 & 0.0 & 0.00 & 9.29 & 2.33 & YES & HROFDY \\
\hline
\end{tabular}
```

*** AERMOD - VERSION 07026 *** LAX CFTP Construction
*** PM2.5 24-HOUR Uncontrolled
*** 11/19/08
**MODELOPTs
FAULT ELEV FLGPOL

```
*** VOLUME SOURCE DATA ***
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & NUMBER & EMISSION RATE & & & BASE & RELEASE & INIT. & INIT. & URBAN & EMISSION RATE \\
\hline SOURCE & PART. & (GRAMS/SEC) & X & Y & ELEV. & HEIGHT & SY & SZ & SOURCE & SCALAR VARY \\
\hline ID & CATS. & & (METERS) & (METERS) & (METERS) & (METERS) & (METERS) & (METERS) & & BY \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline L0001057 & 0 & 0.61856E-05 & 368952.0 & 3756652.2 & 0.0 & 0.00 & 9.29 & 2.33 & YES & HROFDY \\
\hline L0001058 & 0 & 0.61856E-05 & 368950.7 & 3756672.0 & 0.0 & 0.00 & 9.29 & 2.33 & YES & HROFDY \\
\hline L0001059 & 0 & 0.61856E-05 & 368949.3 & 3756692.0 & 0.0 & 0.00 & 9.29 & 2.33 & YES & HROFDY \\
\hline L0001060 & 0 & 0.61856E-05 & 368948.0 & 3756712.0 & 0.0 & 0.00 & 9.29 & 2.33 & YES & HROFDY \\
\hline L0001061 & 0 & 0.61856E-05 & 368946.7 & 3756732.0 & 0.0 & 0.00 & 9.29 & 2.33 & YES & HROFDY \\
\hline L0001062 & 0 & 0.61856E-05 & 368945.3 & 3756751.8 & 0.0 & 0.00 & 9.29 & 2.33 & YES & HROFDY \\
\hline L0001063 & 0 & 0.61856E-05 & 368944.0 & 3756771.8 & 0.0 & 0.00 & 9.29 & 2.33 & YES & HROFDY \\
\hline L0001064 & 0 & 0.61856E-05 & 368942.7 & 3756791.8 & 0.0 & 0.00 & 9.29 & 2.33 & YES & HROFDY \\
\hline L0001065 & 0 & 0.61856E-05 & 368941.3 & 3756811.5 & 0.0 & 0.00 & 9.29 & 2.33 & YES & HROFDY \\
\hline L0001066 & 0 & 0.61856E-05 & 368940.0 & 3756831.5 & 0.0 & 0.00 & 9.29 & 2.33 & YES & HROFDY \\
\hline L0001067 & 0 & 0.61856E-05 & 368938.7 & 3756851.5 & 0.0 & 0.00 & 9.29 & 2.33 & YES & HROFDY \\
\hline L0001068 & 0 & 0.61856E-05 & 368937.4 & 3756871.5 & 0.0 & 0.00 & 9.29 & 2.33 & YES & HROFDY \\
\hline L0001069 & 0 & 0.61856E-05 & 368936.0 & 3756891.2 & 0.0 & 0.00 & 9.29 & 2.33 & YES & HROFDY \\
\hline L0001070 & 0 & 0.61856E-05 & 368934.7 & 3756911.2 & 0.0 & 0.00 & 9.29 & 2.33 & YES & HROFDY \\
\hline L0001071 & 0 & 0.61856E-05 & 368919.5 & 3756914.5 & 0.0 & 0.00 & 9.28 & 2.33 & YES & HROFDY \\
\hline L0001072 & 0 & 0.61856E-05 & 368899.7 & 3756912.2 & 0.0 & 0.00 & 9.28 & 2.33 & YES & HROFDY \\
\hline L0001073 & 0 & 0.61856E-05 & 368879.9 & 3756910.0 & 0.0 & 0.00 & 9.28 & 2.33 & YES & HROFDY \\
\hline L0001074 & 0 & 0.61856E-05 & 368860.0 & 3756907.8 & 0.0 & 0.00 & 9.28 & 2.33 & YES & HROFDY \\
\hline L0001075 & 0 & 0.61856E-05 & 368840.2 & 3756905.5 & 0.0 & 0.00 & 9.28 & 2.33 & YES & HROFDY \\
\hline L0001076 & 0 & 0.61856E-05 & 368820.4 & 3756903.2 & 0.0 & 0.00 & 9.28 & 2.33 & YES & HROFDY \\
\hline L0001077 & 0 & 0.61856E-05 & 368800.6 & 3756901.0 & 0.0 & 0.00 & 9.28 & 2.33 & YES & HROFDY \\
\hline L0001078 & 0 & 0.61856E-05 & 368780.8 & 3756898.8 & 0.0 & 0.00 & 9.28 & 2.33 & YES & HROFDY \\
\hline L0001079 & 0 & 0.61856E-05 & 368760.9 & 3756896.5 & 0.0 & 0.00 & 9.28 & 2.33 & YES & HROFDY \\
\hline L0001080 & 0 & 0.61856E-05 & 368741.1 & 3756894.2 & 0.0 & 0.00 & 9.28 & 2.33 & YES & HROFDY \\
\hline L0001081 & 0 & 0.61856E-05 & 368721.3 & 3756892.0 & 0.0 & 0.00 & 9.28 & 2.33 & YES & HROFDY \\
\hline L0001082 & 0 & 0.61856E-05 & 368701.4 & 3756889.8 & 0.0 & 0.00 & 9.28 & 2.33 & YES & HROFDY \\
\hline L0001083 & 0 & 0.61856E-05 & 368681.6 & 3756887.5 & 0.0 & 0.00 & 9.28 & 2.33 & YES & HROFDY \\
\hline L0001084 & 0 & 0.61856E-05 & 368661.8 & 3756885.2 & 0.0 & 0.00 & 9.28 & 2.33 & YES & HROFDY \\
\hline L0001085 & 0 & 0.61856E-05 & 368642.0 & 3756883.0 & 0.0 & 0.00 & 9.28 & 2.33 & YES & HROFDY \\
\hline L0001086 & 0 & 0.61856E-05 & 368622.2 & 3756880.8 & 0.0 & 0.00 & 9.28 & 2.33 & YES & HROFDY \\
\hline L0001087 & 0 & 0.61856E-05 & 368602.3 & 3756878.5 & 0.0 & 0.00 & 9.28 & 2.33 & YES & HROFDY \\
\hline L0001088 & 0 & 0.61856E-05 & 368582.5 & 3756876.0 & 0.0 & 0.00 & 9.28 & 2.33 & YES & HROFDY \\
\hline L0001089 & 0 & 0.61856E-05 & 368562.7 & 3756873.8 & 0.0 & 0.00 & 9.28 & 2.33 & YES & HROFDY \\
\hline L0001090 & 0 & 0.61856E-05 & 368542.8 & 3756871.5 & 0.0 & 0.00 & 9.28 & 2.33 & YES & HROFDY \\
\hline L0001091 & 0 & 0.61856E-05 & 368523.0 & 3756869.2 & 0.0 & 0.00 & 9.28 & 2.33 & YES & HROFDY \\
\hline L0001092 & 0 & 0.61856E-05 & 368503.2 & 3756867.0 & 0.0 & 0.00 & 9.28 & 2.33 & YES & HROFDY \\
\hline L0001093 & 0 & 0.61856E-05 & 368483.4 & 3756864.8 & 0.0 & 0.00 & 9.28 & 2.33 & YES & HROFDY \\
\hline L0001094 & 0 & 0.61856E-05 & 368463.5 & 3756862.5 & 0.0 & 0.00 & 9.28 & 2.33 & YES & HROFDY \\
\hline L0001095 & 0 & 0.61856E-05 & 368443.7 & 3756860.2 & 0.0 & 0.00 & 9.28 & 2.33 & YES & HROFDY \\
\hline L0001096 & 0 & 0.61856E-05 & 368423.9 & 3756858.0 & 0.0 & 0.00 & 9.28 & 2.33 & YES & HROFDY \\
\hline
\end{tabular}

\title{
*** AERMOD - VERSION 07026 *** *** LAX CFTP Construction
}
*** PM2.5 24-HOUR Uncontrolled
\begin{tabular}{ll}
\(* * *\) & \(11 / 19 / 08\) \\
\(* * *\) & \(09: 41: 44\) \\
& PAGE 11
\end{tabular}
**MODELOPTs:
CONC
DFAULT ELEV FLGPOL
*** VOLUME SOURCE DATA ***
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & NUMBER & EMISSION RATE & & & BASE & RELEASE & INIT. & INIT. & URBAN & EMISSION RATE \\
\hline SOURCE & PART. & (GRAMS/SEC) & X & Y & ELEV. & HEIGHT & SY & SZ & SOURCE & SCALAR VARY \\
\hline ID & CATS. & & (METERS) & (METERS) & (METERS) & (METERS) & (METERS) & (METERS) & & BY \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline L0001097 & 0 & 0.61856E-05 & 368404.1 & 3756855.8 & 0.0 & 0.00 & 9.28 & 2.33 & YES & HROFDY \\
\hline L0001098 & 0 & 0.61856E-05 & 368384.2 & 3756853.5 & 0.0 & 0.00 & 9.28 & 2.33 & YES & HROFDY \\
\hline L0001099 & 0 & 0.61856E-05 & 368364.4 & 3756851.2 & 0.0 & 0.00 & 9.28 & 2.33 & YES & HROFDY \\
\hline L0001100 & 0 & 0.61856E-05 & 368344.6 & 3756849.0 & 0.0 & 0.00 & 9.28 & 2.33 & YES & HROFDY \\
\hline L0001101 & 0 & 0.61856E-05 & 368324.8 & 3756846.8 & 0.0 & 0.00 & 9.28 & 2.33 & YES & HROFDY \\
\hline L0001102 & 0 & 0.61856E-05 & 368304.9 & 3756844.5 & 0.0 & 0.00 & 9.28 & 2.33 & YES & HROFDY \\
\hline L0001103 & 0 & 0.61856E-05 & 368285.1 & 3756842.2 & 0.0 & 0.00 & 9.28 & 2.33 & YES & HROFDY \\
\hline L0001104 & 0 & 0.61856E-05 & 368265.3 & 3756840.0 & 0.0 & 0.00 & 9.28 & 2.33 & YES & HROFDY \\
\hline L0001105 & 0 & 0.61856E-05 & 368245.5 & 3756837.8 & 0.0 & 0.00 & 9.28 & 2.33 & YES & HROFDY \\
\hline L0001106 & 0 & 0.61856E-05 & 368225.7 & 3756835.5 & 0.0 & 0.00 & 9.28 & 2.33 & YES & HROFDY \\
\hline L0001107 & 0 & 0.61856E-05 & 368205.8 & 3756833.2 & 0.0 & 0.00 & 9.28 & 2.33 & YES & HROFDY \\
\hline L0001108 & 0 & 0.61856E-05 & 368186.0 & 3756831.0 & 0.0 & 0.00 & 9.28 & 2.33 & YES & HROFDY \\
\hline L0001109 & 0 & 0.61856E-05 & 368166.2 & 3756828.8 & 0.0 & 0.00 & 9.28 & 2.33 & YES & HROFDY \\
\hline L0001110 & 0 & 0.61856E-05 & 368146.3 & 3756826.2 & 0.0 & 0.00 & 9.28 & 2.33 & YES & HROFDY \\
\hline L0001111 & 0 & 0.61856E-05 & 368126.5 & 3756824.0 & 0.0 & 0.00 & 9.28 & 2.33 & YES & HROFDY \\
\hline L0001112 & 0 & 0.61856E-05 & 368106.7 & 3756821.8 & 0.0 & 0.00 & 9.28 & 2.33 & YES & HROFDY \\
\hline L0001113 & 0 & 0.61856E-05 & 368086.9 & 3756819.5 & 0.0 & 0.00 & 9.28 & 2.33 & YES & HROFDY \\
\hline L0001114 & 0 & 0.61856E-05 & 368067.0 & 3756817.2 & 0.0 & 0.00 & 9.28 & 2.33 & YES & HROFDY \\
\hline L0001115 & 0 & 0.61856E-05 & 368047.2 & 3756815.0 & 0.0 & 0.00 & 9.28 & 2.33 & YES & HROFDY \\
\hline L0001116 & 0 & 0.61856E-05 & 368044.1 & 3756800.0 & 0.0 & 0.00 & 9.07 & 2.33 & YES & HROFDY \\
\hline L0001117 & 0 & 0.61856E-05 & 368046.5 & 3756780.8 & 0.0 & 0.00 & 9.07 & 2.33 & YES & HROFDY \\
\hline L0001118 & 0 & 0.61856E-05 & 368048.9 & 3756761.5 & 0.0 & 0.00 & 9.07 & 2.33 & YES & HROFDY \\
\hline L0001119 & 0 & 0.61856E-05 & 368051.3 & 3756742.0 & 0.0 & 0.00 & 9.07 & 2.33 & YES & HROFDY \\
\hline L0001120 & 0 & 0.61856E-05 & 368053.8 & 3756722.8 & 0.0 & 0.00 & 9.07 & 2.33 & YES & HROFDY \\
\hline L0001121 & 0 & 0.61856E-05 & 368056.2 & 3756703.2 & 0.0 & 0.00 & 9.07 & 2.33 & YES & HROFDY \\
\hline L0001122 & 0 & 0.61856E-05 & 368058.6 & 3756684.0 & 0.0 & 0.00 & 9.07 & 2.33 & YES & HROFDY \\
\hline L0001123 & 0 & 0.61856E-05 & 368061.0 & 3756664.5 & 0.0 & 0.00 & 9.07 & 2.33 & YES & HROFDY \\
\hline L0001124 & 0 & 0.61856E-05 & 368063.4 & 3756645.2 & 0.0 & 0.00 & 9.07 & 2.33 & YES & HROFDY \\
\hline L0001125 & 0 & 0.61856E-05 & 368065.8 & 3756626.0 & 0.0 & 0.00 & 9.07 & 2.33 & YES & HROFDY \\
\hline L0001126 & 0 & 0.61856E-05 & 368068.2 & 3756606.5 & 0.0 & 0.00 & 9.07 & 2.33 & YES & HROFDY \\
\hline L0001127 & 0 & 0.61856E-05 & 368070.7 & 3756587.2 & 0.0 & 0.00 & 9.07 & 2.33 & YES & HROFDY \\
\hline L0001128 & 0 & 0.61856E-05 & 368073.1 & 3756567.8 & 0.0 & 0.00 & 9.07 & 2.33 & YES & HROFDY \\
\hline L0001129 & 0 & 0.61856E-05 & 368075.5 & 3756548.5 & 0.0 & 0.00 & 9.07 & 2.33 & YES & HROFDY \\
\hline L0001130 & 0 & 0.61856E-05 & 368077.9 & 3756529.0 & 0.0 & 0.00 & 9.07 & 2.33 & YES & HROFDY \\
\hline L0001131 & 0 & 0.61856E-05 & 368080.4 & 3756509.8 & 0.0 & 0.00 & 9.07 & 2.33 & YES & HROFDY \\
\hline L0001132 & 0 & 0.61856E-05 & 368082.8 & 3756490.5 & 0.0 & 0.00 & 9.07 & 2.33 & YES & HROFDY \\
\hline L0001133 & 0 & 0.61856E-05 & 368085.2 & 3756471.0 & 0.0 & 0.00 & 9.07 & 2.33 & YES & HROFDY \\
\hline L0001134 & 0 & 0.61856E-05 & 368087.6 & 3756451.8 & 0.0 & 0.00 & 9.07 & 2.33 & YES & HROFDY \\
\hline L0001135 & 0 & 0.61856E-05 & 368090.1 & 3756432.2 & 0.0 & 0.00 & 9.07 & 2.33 & YES & HROFDY \\
\hline L0001136 & 0 & 0.61856E-05 & 368092.5 & 3756413.0 & 0.0 & 0.00 & 9.07 & 2.33 & YES & HROFDY \\
\hline
\end{tabular}
*** AERMOD - VERSION 07026 *** *** LAX CFTP Construction
*** PM2.5 24-HOUR Uncontrolled
\begin{tabular}{ll}
*** & \(11 / 19 / 08\) \\
\(* * *\) & \(09: 41: 44\) \\
&
\end{tabular}

DFAULT ELEV FLGPOL
*** VOLUME SOURCE DATA ***
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & NUMBER & EMISSION RATE & & & BASE & RELEASE & INIT. & INIT. & URBAN & EMISSION RATE \\
\hline SOURCE & PART. & (GRAMS/SEC) & X & Y & ELEV. & HEIGHT & SY & SZ & SOURCE & SCALAR VARY \\
\hline ID & CATS. & & (METERS) & (METERS) & (METERS) & (METERS) & (METERS) & (METERS) & & BY \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline L0001137 & 0 & 0.61856E-05 & 368090.2 & 3756397.2 & 0.0 & 0.00 & 7.47 & 2.33 & YES & HROFDY \\
\hline L0001138 & 0 & 0.61856E-05 & 368085.9 & 3756381.8 & 0.0 & 0.00 & 7.47 & 2.33 & YES & HROFDY \\
\hline L0001139 & 0 & 0.61856E-05 & 368086.6 & 3756365.0 & 0.0 & 0.00 & 7.99 & 2.33 & YES & HROFDY \\
\hline L0001140 & 0 & 0.61856E-05 & 368089.4 & 3756348.0 & 0.0 & 0.00 & 7.99 & 2.33 & YES & HROFDY \\
\hline L0001141 & 0 & 0.61856E-05 & 368092.2 & 3756331.0 & 0.0 & 0.00 & 7.99 & 2.33 & YES & HROFDY \\
\hline L0001142 & 0 & 0.61856E-05 & 368095.1 & 3756314.2 & 0.0 & 0.00 & 7.99 & 2.33 & YES & HROFDY \\
\hline L0001143 & 0 & 0.61856E-05 & 368097.9 & 3756297.2 & 0.0 & 0.00 & 7.99 & 2.33 & YES & HROFDY \\
\hline L0001144 & 0 & 0.61856E-05 & 368107.4 & 3756283.5 & 0.0 & 0.00 & 8.05 & 2.33 & YES & HROFDY \\
\hline L0001145 & 0 & 0.61856E-05 & 368119.7 & 3756271.2 & 0.0 & 0.00 & 8.05 & 2.33 & YES & HROFDY \\
\hline L0001146 & 0 & 0.61856E-05 & 368131.9 & 3756259.0 & 0.0 & 0.00 & 8.05 & 2.33 & YES & HROFDY \\
\hline L0001147 & 0 & 0.61856E-05 & 368137.3 & 3756240.8 & 0.0 & 0.00 & 9.27 & 2.33 & YES & HROFDY \\
\hline L0001148 & 0 & 0.61856E-05 & 368139.8 & 3756221.0 & 0.0 & 0.00 & 9.27 & 2.33 & YES & HROFDY \\
\hline L0001149 & 0 & 0.61856E-05 & 368142.3 & 3756201.2 & 0.0 & 0.00 & 9.27 & 2.33 & YES & HROFDY \\
\hline L0001150 & 0 & 0.61856E-05 & 368144.8 & 3756181.5 & 0.0 & 0.00 & 9.27 & 2.33 & YES & HROFDY \\
\hline L0001151 & 0 & 0.61856E-05 & 368147.3 & 3756161.8 & 0.0 & 0.00 & 9.27 & 2.33 & YES & HROFDY \\
\hline L0001152 & \(\bigcirc\) & 0.61856E-05 & 368149.8 & 3756142.0 & 0.0 & 0.00 & 9.27 & 2.33 & YES & HROFDY \\
\hline L0001153 & 0 & 0.61856E-05 & 368152.3 & 3756122.0 & 0.0 & 0.00 & 9.27 & 2.33 & YES & HROFDY \\
\hline L0001154 & 0 & 0.61856E-05 & 368154.9 & 3756102.2 & 0.0 & 0.00 & 9.27 & 2.33 & YES & HROFDY \\
\hline L0001155 & 0 & 0.61856E-05 & 368157.4 & 3756082.5 & 0.0 & 0.00 & 9.27 & 2.33 & YES & HROFDY \\
\hline L0001156 & 0 & 0.61856E-05 & 368159.9 & 3756062.8 & 0.0 & 0.00 & 9.27 & 2.33 & YES & HROFDY \\
\hline L0001157 & 0 & 0.61856E-05 & 368162.4 & 3756043.0 & 0.0 & 0.00 & 9.27 & 2.33 & YES & HROFDY \\
\hline L0001158 & 0 & 0.61856E-05 & 368164.9 & 3756023.2 & 0.0 & 0.00 & 9.27 & 2.33 & YES & HROFDY \\
\hline L0001159 & 0 & 0.61856E-05 & 368167.4 & 3756003.5 & 0.0 & 0.00 & 9.27 & 2.33 & YES & HROFDY \\
\hline L0001160 & 0 & 0.61856E-05 & 368169.9 & 3755983.8 & 0.0 & 0.00 & 9.27 & 2.33 & YES & HROFDY \\
\hline L0001161 & 0 & 0.61856E-05 & 368172.4 & 3755964.0 & 0.0 & 0.00 & 9.27 & 2.33 & YES & HROFDY \\
\hline L0001162 & 0 & 0.61856E-05 & 368174.9 & 3755944.2 & 0.0 & 0.00 & 9.27 & 2.33 & YES & HROFDY \\
\hline L0001163 & 0 & 0.61856E-05 & 368177.4 & 3755924.5 & 0.0 & 0.00 & 9.27 & 2.33 & YES & HROFDY \\
\hline L0001164 & 0 & 0.61856E-05 & 368180. 0 & 3755904.8 & 0.0 & 0.00 & 9.27 & 2.33 & YES & HROFDY \\
\hline
\end{tabular}

*** AREAPOLY SOURCE DATA ***

\begin{tabular}{|c|c|c|c|}
\hline * AERMOD & *** LAX CFTP Construction & *** & 11/19/08 \\
\hline & *** PM2.5 24-HOUR Uncontrolled & *** & 09:41:44 \\
\hline **MODELOPTs: & & & PAGE 14 \\
\hline
\end{tabular}

DFAULT ELEV FLGPOL
*** SOURCE IDs DEFINING SOURCE GROUPS ***
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DIESEL & PAREA01 , & PAREA02 , & L0000777, & L0000778, & L0000779, & L0000780, & L0000781, & L0000782, & L0000783, & L0000784, & L0000785, & L0000786 \\
\hline & L0000787, & L0000788, & L0000789, & L0000790, & L0000791, & L0000792, & L0000793, & L0000794, & L0000795, & L0000796, & L0000797, & L0000798, \\
\hline & L0000799, & L0000800, & L0000801, & L0000802, & L0000803, & L0000804, & L0000805, & L0000806, & L0000807, & L0000808, & L0000809, & L0000810, \\
\hline & L0000811, & L0000812, & L0000813, & L0000814, & L0000815, & L0000816, & L0000817, & L0000818, & L0000819, & L0000820, & L0000821, & L0000822, \\
\hline & L0000823, & L0000824, & L0000825, & L0000826, & L0000827, & L0000828, & L0000829, & L0000830, & L0000831, & L0000832, & L0000833, & L0000834, \\
\hline & L0000835, & L0000836, & L0000837, & L0000838, & L0000839, & L0000840, & L0000841, & L0000842, & L0000843, & L0000844, & L0000845, & L0000846, \\
\hline & L0000847, & L0000848, & L0000849, & L0000850, & L0000851, & L0000852, & L0000853, & L0000854, & L0000855, & L0000856, & L0000857, & L0000858, \\
\hline & L0000859, & L0000860, & L0000861, & L0000862, & L0000863, & L0000864, & L0000865, & L0000866, & L0000867, & L0000868, & L0000869, & L0000870, \\
\hline & L0000871, & L0000872, & L0000873, & L0000874, & L0000875, & L0000876, & L0000877, & L0000878, & L0000879, & L0000880, & L0000881, & L0000882, \\
\hline & L0000883, & L0000884, & L0000885, & L0000886, & L0000887, & L0000888, & L0000889, & L0000890, & L0000891, & L0000892, & L0000893, & L0000894, \\
\hline & L0000895, & L0000896, & L0000897, & L0000898, & L0000899, & L0000900, & L0000901, & L0000902, & L0000903, & L0000904, & L0000905, & L0000906, \\
\hline & L0000907, & L0000908, & L0000909, & L0000910, & L0000911, & L0000912, & L0000913, & L0000914, & L0000915, & L0000916, & L0000917, & L0000918, \\
\hline & L0000919, & L0000920, & L0000921, & L0000922, & L0000923, & L0000924, & L0000925, & L0000926, & L0000927, & L0000928, & L0000929, & L0000930, \\
\hline & L0000931, & L0000932, & L0000933, & L0000934, & L0000935, & L0000936, & L0000937, & L0000938, & L0000939, & L0000940, & L0000941, & L0000942, \\
\hline & L0000943, & L0000944, & L0000945, & L0000946, & L0000947, & L0000948, & L0000949, & L0000950, & L0000951, & L0000952, & L0000953, & L0000954, \\
\hline & L0000955, & L0000956, & L0000957, & L0000958, & L0000959, & L0000960, & L0000961, & L0000962, & L0000963, & L0000964, & L0000965, & L0000966, \\
\hline & L0000967, & L0000968, & L0000969, & L0000970, & & & & & & & & \\
\hline GASOLINE & PAREA03 , & PAREA04 , & & & & & & & & & & \\
\hline FUG_DUST & PAREA07 , & PAREA08 , & L0000971, & L0000972, & L0000973, & L0000974, & L0000975, & L0000976, & L0000977, & L0000978, & L0000979, & L0000980, \\
\hline
\end{tabular}
L0000981, L0000982, L0000983, L0000984, L0000985, L0000986, L0000987, L0000988, L0000989, L0000990, L0000991, L0000992,

\begin{tabular}{|c|c|c|c|}
\hline * AERMOD & *** LAX CFTP Construction & *** & 11/19/08 \\
\hline & *** PM2.5 24-HOUR Uncontrolled & *** & 09:41:44 \\
\hline **MODELOPTs: & & & PAGE 16 \\
\hline
\end{tabular}
*** SOURCE IDs DEFINING SOURCE GROUPS ***

L0000805, L0000806, L0000807, L0000808, L0000809, L0000810, L0000811, L0000812, L0000813, L0000814, L0000815, L0000816, L0000817, L0000818, L0000819, L0000820, L0000821, L0000822, L0000823, L0000824, L0000825, L0000826, L0000827, L0000828, L0000829, L0000830, L0000831, L0000832, L0000833, L0000834, L0000835, L0000836, L0000837, L0000838, L0000839, L0000840, L0000841, L0000842, L0000843, L0000844, L0000845, L0000846, L0000847, L0000848, L0000849, L0000850, L0000851, L0000852, L0000853, L0000854, L0000855, L0000856, L0000857, L0000858, L0000859, L0000860, L0000861, L0000862, L0000863, L0000864, L0000865, L0000866, L0000867, L0000868, L0000869, L0000870, L0000871, L0000872, L0000873, L0000874, L0000875, L0000876, L0000877, L0000878, L0000879, L0000880, L0000881, L0000882, L0000883, L0000884, L0000885, L0000886, L0000887, L0000888, L0000889, L0000890, L0000891, L0000892, L0000893, L0000894, L0000895, L0000896, L0000897, L0000898, L0000899, L0000900, L0000901, L0000902, L0000903, L0000904, L0000905, L0000906, L0000907, L0000908, L0000909, L0000910, L0000911, L0000912, L0000913, L0000914, L0000915, L0000916, L0000917, L0000918, L0000919, L0000920, L0000921, L0000922, L0000923, L0000924, L0000925, L0000926, L0000927, L0000928, L0000929, L0000930, L0000931, L0000932, L0000933, L0000934, L0000935, L0000936, L0000937, L0000938, L0000939, L0000940, L0000941, L0000942, L0000943, L0000944, L0000945, L0000946, L0000947, L0000948, L0000949, L0000950, L0000951, L0000952, L0000953, L0000954, L0000955, L0000956, L0000957, L0000958, L0000959, L0000960, L0000961, L0000962, L0000963, L0000964, L0000965, L0000966, L0000967, L0000968, L0000969, L0000970, L0000971, L0000972, L0000973, L0000974, L0000975, L0000976, L0000977, L0000978, L0000979, L0000980, L0000981, L0000982, L0000983, L0000984, L0000985, L0000986, L0000987, L0000988, L0000989, L0000990, L0000991, L0000992, L0000993, L0000994, L0000995, L0000996, L0000997, L0000998, L0000999, L0001000, L0001001, L0001002, L0001003, L0001004, L0001005, L0001006, L0001007, L0001008, L0001009, L0001010, L0001011, L0001012, L0001013, L0001014, L0001015, L0001016, L0001017, L0001018, L0001019, L0001020, L0001021, L0001022, L0001023, L0001024, L0001025, L0001026, L0001027, L0001028, L0001029, L0001030, L0001031, L0001032, L0001033, L0001034, L0001035, L0001036, L0001037, L0001038, L0001039, L0001040, L0001041, L0001042, L0001043, L0001044,

*** SOURCE IDs DEFINING SOURCE GROUPS ***

\section*{SOURCE IDs}

L0001045, L0001046, L0001047, L0001048, L0001049, L0001050, L0001051, L0001052, L0001053, L0001054, L0001055, L0001056, L0001057, L0001058, L0001059, L0001060, L0001061, L0001062, L0001063, L0001064, L0001065, L0001066, L0001067, L0001068, L0001069, L0001070, L0001071, L0001072, L0001073, L0001074, L0001075, L0001076, L0001077, L0001078, L0001079, L0001080, L0001081, L0001082, L0001083, L0001084, L0001085, L0001086, L0001087, L0001088, L0001089, L0001090, L0001091, L0001092, L0001093, L0001094, L0001095, L0001096, L0001097, L0001098, L0001099, L0001100, L0001101, L0001102, L0001103, L0001104, L0001105, L0001106, L0001107, L0001108, L0001109, L0001110, L0001111, L0001112, L0001113, L0001114, L0001115, L0001116, L0001117, L0001118, L0001119, L0001120, L0001121, L0001122, L0001123, L0001124, L0001125, L0001126, L0001127, L0001128, L0001129, L0001130, L0001131, L0001132, L0001133, L0001134, L0001135, L0001136, L0001137, L0001138, L0001139, L0001140, L0001141, L0001142, L0001143, L0001144, L0001145, L0001146, L0001147, L0001148, L0001149, L0001150, L0001151, L0001152, L0001153, L0001154, L0001155, L0001156, L0001157, L0001158, L0001159, L0001160, L0001161, L0001162, L0001163, L0001164,
```

*** AERMOD - VERSION 07026 *** LAX CFTP Construction
** PM2.5 24-HOUR Uncontrolled
*** 11/19/08
*MODELOPTs:
CONC
DFAULT ELEV FLGPOL

```
* SOURCE EMISSION RATE SCALARS WHICH VARY FOR EACH HOUR OF THE DAY *
HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR

```

*** AERMOD - VERSION 07026 *** *** LAX CFTP Construction

```
*** PM2.5 24-HOUR Uncontrolled
\begin{tabular}{ll}
*** & \(11 / 19 / 08\) \\
*** & \(09: 41: 44\)
\end{tabular} **MODELOPTs: CONC

DFAULT ELEV FLGPOL
* SOURCE EMISSION RATE SCALARS WHICH VARY FOR EACH HOUR OF THE DAY *
HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{SOURCE ID = PAREA04} & \multicolumn{10}{|l|}{SOURCE TYPE = AREAPOLY :} \\
\hline 1 & . 20000E+00 & 2 & . 20000E+00 & 3 & . \(00000 \mathrm{E}+00\) & 4 & . \(00000 \mathrm{E}+00\) & 5 & . \(00000 \mathrm{E}+00\) & 6 & . \(00000 \mathrm{E}+00\) \\
\hline 7 & . 80000E+00 & 8 & . 80000E+00 & 9 & . \(80000 \mathrm{E}+00\) & 10 & . \(80000 \mathrm{E}+00\) & 11 & . \(80000 \mathrm{E}+00\) & 12 & . \(80000 \mathrm{E}+00\) \\
\hline 13 & . \(80000 \mathrm{E}+00\) & 14 & . 80000E+00 & 15 & . 20000E+00 & 16 & . \(20000 \mathrm{E}+00\) & 17 & . \(20000 \mathrm{E}+00\) & 18 & . \(20000 \mathrm{E}+00\) \\
\hline 19 & . \(20000 \mathrm{E}+00\) & 20 & . \(20000 \mathrm{E}+00\) & 21 & . 20000E+00 & 22 & . \(20000 \mathrm{E}+00\) & 23 & . \(20000 \mathrm{E}+00\) & 24 & . \(20000 \mathrm{E}+00\) \\
\hline SOURCE I & = PAREA07 & \multicolumn{10}{|l|}{SOURCE TYPE = AREAPOLY :} \\
\hline 1 & . 20000E+00 & 2 & . \(20000 \mathrm{E}+00\) & 3 & . \(00000 \mathrm{E}+00\) & 4 & . \(00000 \mathrm{E}+00\) & 5 & . \(00000 \mathrm{E}+00\) & 6 & . \(00000 \mathrm{E}+00\) \\
\hline 7 & . \(80000 \mathrm{E}+00\) & 8 & . 80000E+00 & 9 & . \(80000 \mathrm{E}+00\) & 10 & . \(80000 \mathrm{E}+00\) & 11 & . \(80000 \mathrm{E}+00\) & 12 & . \(80000 \mathrm{E}+00\) \\
\hline 13 & . 80000E+00 & 14 & . 80000E+00 & 15 & . 20000E+00 & 16 & . \(20000 \mathrm{E}+00\) & 17 & . \(20000 \mathrm{E}+00\) & 18 & . 20000E+00 \\
\hline 19 & . \(20000 \mathrm{E}+00\) & 20 & . 20000E+00 & 21 & . 20000E+00 & 22 & . \(20000 \mathrm{E}+00\) & 23 & . \(20000 \mathrm{E}+00\) & 24 & . \(20000 \mathrm{E}+00\) \\
\hline SOURCE I & = PAREA08 & \multicolumn{10}{|l|}{SOURCE TYPE = AREAPOLY :} \\
\hline 1 & . \(20000 \mathrm{E}+00\) & 2 & . \(20000 \mathrm{E}+00\) & 3 & . \(00000 \mathrm{E}+00\) & 4 & . \(00000 \mathrm{E}+00\) & 5 & . \(00000 \mathrm{E}+00\) & 6 & . \(00000 \mathrm{E}+00\) \\
\hline 7 & . \(80000 \mathrm{E}+00\) & 8 & . \(80000 \mathrm{E}+00\) & 9 & . \(80000 \mathrm{E}+00\) & 10 & . \(80000 \mathrm{E}+00\) & 11 & . \(80000 \mathrm{E}+00\) & 12 & . \(80000 \mathrm{E}+00\) \\
\hline 13 & . 80000E+00 & 14 & . 80000E+00 & 15 & . 20000E+00 & 16 & . \(20000 \mathrm{E}+00\) & 17 & . \(20000 \mathrm{E}+00\) & 18 & . \(20000 \mathrm{E}+00\) \\
\hline 19 & . 20000E+00 & 20 & . 20000E+00 & 21 & . 20000E+00 & 22 & . \(20000 \mathrm{E}+00\) & 23 & . \(20000 \mathrm{E}+00\) & 24 & . 20000E+00 \\
\hline SOURCE I & \(=\mathrm{L} 0000777\) & \multicolumn{10}{|l|}{SOURCE TYPE = VOLUME :} \\
\hline 1 & . \(20000 \mathrm{E}+00\) & 2 & . \(20000 \mathrm{E}+00\) & 3 & . \(00000 \mathrm{E}+00\) & 4 & . \(00000 \mathrm{E}+00\) & 5 & . \(00000 \mathrm{E}+00\) & 6 & . \(00000 \mathrm{E}+00\) \\
\hline 7 & . \(80000 \mathrm{E}+00\) & 8 & . 80000E+00 & 9 & . \(80000 \mathrm{E}+00\) & 10 & . \(80000 \mathrm{E}+00\) & 11 & . \(80000 \mathrm{E}+00\) & 12 & . \(80000 \mathrm{E}+00\) \\
\hline 13 & . 80000E+00 & 14 & . 80000E+00 & 15 & . \(20000 \mathrm{E}+00\) & 16 & . \(20000 \mathrm{E}+00\) & 17 & . \(20000 \mathrm{E}+00\) & 18 & . \(20000 \mathrm{E}+00\) \\
\hline 19 & . \(20000 \mathrm{E}+00\) & 20 & . 20000E+00 & 21 & . 20000E+00 & 22 & . \(20000 \mathrm{E}+00\) & 23 & . \(20000 \mathrm{E}+00\) & 24 & . 20000E+00 \\
\hline SOURCE I & \(=\mathrm{L} 0000778\) & \multicolumn{10}{|l|}{SOURCE TYPE = VOLUME :} \\
\hline 1 & . \(20000 \mathrm{E}+00\) & 2 & . \(20000 \mathrm{E}+00\) & 3 & . \(00000 \mathrm{E}+00\) & 4 & . \(00000 \mathrm{E}+00\) & 5 & . \(00000 \mathrm{E}+00\) & 6 & . \(00000 \mathrm{E}+00\) \\
\hline 7 & . 80000E+00 & 8 & . 80000E+00 & 9 & . \(80000 \mathrm{E}+00\) & 10 & . \(80000 \mathrm{E}+00\) & 11 & . \(80000 \mathrm{E}+00\) & 12 & . \(80000 \mathrm{E}+00\) \\
\hline 13 & . 80000E+00 & 14 & . 80000E+00 & 15 & . \(20000 \mathrm{E}+00\) & 16 & . \(20000 \mathrm{E}+00\) & 17 & . \(20000 \mathrm{E}+00\) & 18 & . \(20000 \mathrm{E}+00\) \\
\hline 19 & . \(20000 \mathrm{E}+00\) & 20 & . 20000E+00 & 21 & . \(20000 \mathrm{E}+00\) & 22 & . \(20000 \mathrm{E}+00\) & 23 & . \(20000 \mathrm{E}+00\) & 24 & . \(20000 \mathrm{E}+00\) \\
\hline
\end{tabular}

The following 77 pages have been deleted from the original AERMOD output file. The source emission rate scalars are identical for Source IDs L0000777 through L0001164, so pages 20 through 96 have been deleted since the data above are simply repeated for each of these sources.
\begin{tabular}{|c|c|c|c|}
\hline * AERMOD & *** LAX CFTP Construction & *** & 11/19/08 \\
\hline & *** PM2.5 24-HOUR Uncontrolled & *** & 09:41:44 \\
\hline **MODELOPTs: & & & PAGE 97 \\
\hline CONC & & & \\
\hline
\end{tabular}
* SOURCE EMISSION RATE SCALARS WHICH VARY FOR EACH HOUR OF THE DAY *

\begin{tabular}{|c|c|c|c|}
\hline * AERMOD & *** LAX CFTP Construction & *** & 11/19/08 \\
\hline & *** PM2.5 24-HOUR Uncontrolled & *** & 09:41:44 \\
\hline **MODELOPTs: & & & PAGE 98 \\
\hline
\end{tabular}

DFAULT ELEV FLGPOL
*** DISCRETE CARTESIAN RECEPTORS ***
(X-COORD, Y-COORD, ZELEV, ZHILL, ZFLAG)
(METERS)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline *** AERMOD - VERSION 07026 & \multicolumn{5}{|c|}{\begin{tabular}{l}
*** LAX CFTP Construction \\
*** PM2.5 24-HOUR Uncontrolled
\end{tabular}} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& * * \\
& \text { ** }
\end{aligned}
\]}} & \[
\begin{aligned}
& 11 / 19 / 08 \\
& 09: 41: 44
\end{aligned}
\] \\
\hline **MODELOPTs: & & & & & & & & PAGE 99 \\
\hline \multirow[t]{2}{*}{CONC} & \multirow[t]{2}{*}{DFAULT ELEV} & FLGPOL & & & & & & \\
\hline & & \multicolumn{4}{|l|}{DISCRETE CARTESIAN RECEPTORS *** (X-COORD, Y-COORD, ZELEV, ZHILL, ZFLAG) (METERS)} & & & \\
\hline (373456.8, 3756235.5, & 0.0, & 0.0, & 1.8); & (373448.0, & 3755559.8 , & 0.0, & 0.0, & 1.8); \\
\hline (373222.5, 3755568.8, & 0.0, & 0.0, & 1.8); & (373219.3, & 3755705.0, & 0.0, & 0.0, & 1.8); \\
\hline (373134.7, 3755704.0, & 0.0, & 0.0, & 1.8); & (373131.2, & 3755566.8, & 0.0, & 0.0, & 1.8); \\
\hline (373054.1, 3755562.8, & 0.0, & 0.0, & 1.8); & (373046.2, & 3755174.0, & 0.0, & 0.0, & 1.8); \\
\hline (372725.5, 3755177.0, & 0.0, & 0.0, & 1.8); & (372624.1, & 3755182.2, & 0.0, & 0.0, & 1.8); \\
\hline (372237.7, 3755185.5, & 0.0, & 0.0, & 1.8); & (371843.0, & 3755188.8 , & 0.0, & 0.0, & 1.8); \\
\hline (371462.8, 3755192.0, & 0.0, & 0.0, & 1.8); & (371049.0, & 3755195.5, & 0.0, & 0.0, & 1.8); \\
\hline (371056.3, 3755349.0, & 0.0, & 0.0, & 1.8); & (371043.4 & 3755384.0 , & 0.0, & 0.0, & 1.8); \\
\hline (371042.4, 3755556.2, & 0.0, & 0.0, & 1.8); & (370995.8 & 3755560.2, & 0.0, & 0.0, & 1.8); \\
\hline (371001.0, 3755419.2, & 0.0, & 0.0, & 1.8); & (370801.4 & 3755275.5, & 0.0, & 0.0, & 1.8); \\
\hline (370666.7, 3755261.8, & 0.0, & 0.0, & 1.8); & (370380.3 & 3755263.2 , & 0.0, & 0.0, & 1.8); \\
\hline (370075.9, 3755265.0, & 0.0, & 0.0, & 1.8); & (369786.9 & 3755266.5 , & 0.0, & 0.0, & 1.8); \\
\hline (369498.0, 3755268.2, & 0.0 , & 0.0, & 1.8) ; & (369193.6 & 3755269.8 , & 0.0, & 0.0, & 1.8); \\
\hline (368889.2, 3755271.5, & 0.0 , & 0.0, & 1.8) ; & (368569.3 & 3755273.2 , & 0.0, & 0.0, & 1.8); \\
\hline (368274.8, 3755274.8, & 0.0, & 0.0, & 1.8); & (367936.4 & 3755213.2, & 0.0, & 0.0, & 1.8); \\
\hline
\end{tabular}
*** AERMOD - VERSION 07026 *** *** LAX CFTP Construction
*** METEOROLOGICAL DAYS SELECTED FOR PROCESSING ***
(1=YES; 0=NO)

*** UPPER BOUND OF FIRST THROUGH FIFTH WIND SPEED CATEGORIES ***
(METERS/SEC)
1.54, \(3.09, \quad 5.14, \quad 8.23,10.80\),
```

** AERMOD - VERSION 07026 *** LAX CFTP Construction
** PM2.5 24-HOUR Uncontrolled
*** 11/19/08
*MODELOPTs:

## DFAULT ELEV FLGPOL

** UP TO THE FIRST 24 HOURS OF METEOROLOGICAL DATA ***

```
Surface file: OS_96.SFC 06341
Profile file: OS 96.PFL
Surface format: (3(I2,1X),I3,1X,I2,1X,F6.1,1X,3(F6.3,1X),2(F5.0,1X),F8.1,1X,F6.3,1X,2(F6.2,1X),F7.2,1X,F5.0,3(1X,F6.1))
Profile format: (4(I2,1X),F6.1,1X,I1,1X,F5.0,1X,F7.2,1X,F7.2,1X,F6.1,1X,F7.2)
Surface station no.: 23174,1X,11,1X,F5.0,MX,Nor, Upper air station no.: 3190
 Name: LOS_ANGELES/INT'L_ARPT Name: UNKNOWN
 Year: 1996 Year: 1996
```

YR MO DY	JDY HR	H0	U*	W*	DT/DZ	ZICNV	ZIMCH	M-O LEN	Z0	BOWEN	ALBEDO	REF WS	WD	HT	REF TA	HT
- - -	- - - -	- - -														
60101	101	-64.0	0.658	-9.000	-9.000	-999.	1228.	400.6	1.00	1.50	1.00	3.10	61	6.1	291.4	2.0
0101	102	-45.5	0.415	-9.000	-9.000	-999.	669.	141.3	1.00	1.50	1.00	2.10	38.	6.1	288.1	2.0
0101	103	-27.5	0.248	-9.000	-9.000	-999.	311.	50.0	1.00	1.50	1.00	1.50	34	6.1	285.4	2.0
0101	104	-27.5	0.248	-9.000	-9.000	-999.	284.	50.0	1.00	1.50	1.00	1.50	233.	6.1	285.4	2.0
0101	105	-27.5	0.248	-9.000	-9.000	-999.	285.	50.2	1.00	1.50	1.00	1.50	293.	6.1	285.9	2.0
0101	106	-45.8	0.415	-9.000	-9.000	-999.	614.	140.2	1.00	1.50	1.00	2.10	162.	6.1	286.4	2.0
0101	107	-57.3	0.538	-9.000	-9.000	-999.	907.	245.1	1.00	1.50	1.00	2.60	185	6.1	285.4	2.0
0101	108	-64.0	0.892	-9.000	-9.000	-999.	1936.	1000.6	1.00	1.50	0.68	4.10	183.	6.1	289.2	2.0
0101	109	22.5	0.910	0.371	0.005	82	1995.	-998.0	1.00	1.50	0.47	4.10	237.	6.1	290.4	2.0
0101	110	70.3	0.917	1.041	0.005	580.	2019.	-990.8	1.00	1.50	0.40	4.10	181	6.1	293.8	2.0
0101	111	101.2	0.814	1.300	0.005	785.	1707.	-481.9	1.00	1.50	0.38	3.60	234.	6.1	294.9	2.0
0101	112	119.0	1.270	1.378	0.007	795.	3284.	-998.0	1.00	1.50	0.37	5.70	236.	6.1	294.9	2.0
0101	113	117.5	1.270	1.378	0.007	804.	3290.	-998.0	1.00	1.50	0.37	5.70	243.	6.1	293.8	2.0
0101	114	98.4	1.029	1.303	0.005	811.	2494.	-998.1	1.00	1.50	0.38	4.60	249.	6.1	293.8	2.0
0101	115	64.2	0.916	1.132	0.005	816.	2051.	-998.0	1.00	1.50	0.41	4.10	252.	6.1	293.8	2.0
0101	116	13.6	0.689	0.676	0.005	817.	1381.	-998.0	1.00	1.50	0.49	3.10	254.	6.1	293.1	2.0
0101	117	-25.2	-9.000	-9.000	-9.000	-999.	-999.	-99999.0	1.00	1.50	0.72	0.00	0	6.1	291.4	2.0
0101	118	-64.0	0.658	-9.000	-9.000	-999.	1228.	401.4	1.00	1.50	1.00	3.10	237.	6.1	290.4	2.0
0101	119	-27.4	0.250	-9.000	-9.000	-999.	505.	51.2	1.00	1.50	1.00	1.50	4	6.1	288.8	2.0
0101	120	-27.3	0.250	-9.000	-9.000	-999.	294.	51.6	1.00	1.50	1.00	1.50	67.	6.1	289.9	2.0
0101	121	-27.4	0.250	-9.000	-9.000	-999.	287.	51.2	1.00	1.50	1.00	1.50	30.	6.1	288.8	2.0
0101	122	-27.2	0.251	-9.000	-9.000	-999.	290.	52.8	1.00	1.50	1.00	1.50	52.	6.1	288.8	2.0
0101	123	-999.0	-9.000	-9.000	-9.000	-999.	-999.	-99999.0	1.00	1.50	1.00	0.00	0.	6.1	288.1	2.0
0101	124	-59.6			-9.000	-999.	904.	233.4	1.00	1.50	1.00	2.60	90.	6.1	286.4	

First hour of profile data
YR MO DY HR HEIGHT F WDIR WSPD AMB_TMP sigmaA sigmaW sigmaV
$\begin{array}{lllllllllll}96 & 01 & 01 & 6.1 & 1 & 61 . & 3.10 & 291.5 & 99.0 & -99.00 & -99.00\end{array}$

F indicates top of profile (=1) or below (=0)
*** THE 1ST HIGHEST 24-HR AVERAGE CONCENTRATION VALUES FOR SOURCE GROUP: DIESEL *** INCLUDING SOURCE(S): PAREA01, PAREA02, L0000777, L0000778, L0000779, L0000780, L0000781, L0000782, L0000783, L0000784, L0000785, L0000786, L0000787, L0000788, L0000789, L0000790, L0000791, L0000792, L0000793, L0000794, L0000795, L0000796, L0000797, L0000798, L0000799, L0000800, L0000801, L0000802, L0000803, L0000804, . . .


*** THE 1ST HIGHEST 24-HR AVERAGE CONCENTRATION VALUES FOR SOURCE GROUP: DIESEL *** INCLUDING SOURCE $(\mathrm{S}): \quad$ PAREA01, PAREA02, L0000777, L0000778, L0000779, L0000780, L0000781, L0000782, L0000783, L0000784, L0000785, L0000786, L0000787, L0000788, L0000789, L0000790, L0000791, L0000792, L0000793, L0000794, L0000795, L0000796, L0000797, L0000798, L0000799, L0000800, L0000801, L0000802, L0000803, L0000804, . . .
*** DISCRETE CARTESIAN RECEPTOR POINTS ***
** CONC OF PM2.5DAY IN MICROGRAMS/M**3

** PM2 5 24-HOUR Uncontrolled
*** 09:41:44 **MODELOPTs:
CONC
DFAULT ELEV FLGPOL
*** THE 1ST HIGHEST 24-HR AVERAGE CONCENTRATION VALUES FOR SOURCE GROUP: GASOLINE *** INCLUDING SOURCE(S):

PAREA03 , PAREA04 ,
*** DISCRETE CARTESIAN RECEPTOR POINTS ***
** CONC OF PM2.5DAY IN MICROGRAMS/M**3

X-COORD (M)	Y-COORD (M)	CONC	(YYMMDDHH)	X-COORD (M)	Y-COORD (M)	CONC	(YYMMDDHH)
- - - - - -	- - - - -	- - -	- - - - -	- - - - -	- - - - -	- - - -	-
367483.66	3755199.00	0.00188 c	(96020724)	367300.88	3755623.25	0.00222c	(96011524)
367114.28	3756056.25	0.00264c	(96012724)	366984.53	3756357.50	0.00211c	(96012924)
366852.91	3756663.00	0.00165c	(96012924)	366902.28	3756692.00	$0.00166 c$	(96012924)
366875.53	3756760.00	0.00158c	(96012924)	366812.69	3756738.50	$0.00156 c$	(96012924)
366677.25	3757024.50	0.00137c	(96020224)	366536.22	3757322.00	0.00124 c	(96020224)
366437.28	3757530.75	0.00111c	(96020224)	366486.94	3757537.25	0.00112 c	(96020224)
366623.91	3757468.00	0.00121c	(96020224)	366644.38	3757530.75	0.00117 c	(96020224)
366777.06	3757519.75	0.00122c	(96020224)	366998.56	3757642.25	$0.00115 c$	(96020224)
367174.25	3757739.50	0.00103c	(96020224)	367290.72	3757694.25	0.00110c	(96020224)
367412.66	3757694.75	0.00110c	(96020224)	367409.81	3757735.75	0.00102c	(96020724)
367517.78	3757796.25	0.00106c	(96020724)	367539.25	3757802.00	$0.00107 c$	(96020724)
367609.12	3757676.75	0.00118c	(96020724)	367769.06	3757644.25	0.00133 c	(96020724)
367774.81	3757718.50	0.00127c	(96020724)	367809.47	3757834.50	$0.00117 c$	(96020724)
367807.06	3757935.50	0.00106c	(96020124)	367774.94	3757958.50	$0.00104 c$	(96020124)
367798.12	3758011.00	0.00103c	(96020124)	367914.41	3757961.50	0.00110c	(96020124)
367904.53	3757930.25	0.00112c	(96020124)	368108.69	3757840.25	$0.00127 c$	(96020124)
368232.75	3757790.25	0.00136c	(96020124)	368308.88	3757761.50	0.00141c	(96020124)
368603.38	3757765.00	0.00165c	(96020324)	368603.84	3757718.50	0.00174 c	(96020324)
368769.72	3757798.50	0.00181	(96032224)	369017.16	3757954.25	0.00183	(96032224)
369080.28	3757864.00	0.00199	(96032224)	369224.00	3757952.25	$0.00165 c$	(96010924)
369408.72	3757730.00	0.00182c	(96010924)	369454.22	3757776.00	0.00160c	(96010924)
369264.97	3757996.50	0.00154c	(96010924)	369451.62	3758128.00	0.00113c	(96010924)
369459.97	3758394.25	0.00091c	(96010924)	369853.09	3758394.25	0.00068 c	(96040824)
369850.44	3758078.00	0.00115c	(96092924)	370298.62	3758078.25	0.00180c	(96092924)
370297.53	3757962.75	0.00211c	(96092924)	370382.34	3757966.00	0.00211 c	(96092924)
370510.12	3758027.25	0.00196c	(96092924)	370505.62	3758087.75	$0.00185 c$	(96092924)
370886.41	3758089.00	0.00167c	(96092924)	370885.06	3757750.50	$0.00176 c$	(96092924)
370907.31	3757701.50	0.00177c	(96100824)	370944.91	3757670.00	0.00174c	(96100824)
371045.81	3757667.50	0.00161c	(96100824)	371046.34	3757585.00	0.00161 c	(96100824)
371121.66	3757583.50	0.00151c	(96100824)	371192.59	3757720.25	0.00144 c	(96100824)
371253.97	3757762.25	0.00137c	(96100824)	371263.66	3757782.50	$0.00136 c$	(96100824)
371372.34	3757782.25	0.00126c	(96100824)	371399.44	3757806.25	0.00124 c	(96100824)
371798.31	3758080.25	0.00096c	(96100824)	371908.19	3757933.50	0.00088 c	(96090424)
371964.22	3757921.75	0.00086c	(96090424)	371970.19	3757841.50	0.00085 c	(96090424)
372023.31	3757843.25	0.00083c	(96090424)	372019.88	3757551.50	0.00078	(96101124)
372002.41	3757140.25	0.00089c	(96021424)	371514.12	3757136.25	0.00113 c	(96021424)
371034.56	3757132.50	0.00151c	(96021424)	371034.44	3757085.25	0.00152 c	(96021424)
370764.19	3757087.00	0.00186c	(96021424)	370754.00	3756817.75	0.00179c	(96021424)
371031.47	3756807.25	0.00143c	(96021424)	371033.12	3756780.25	0.00141c	(96021424)
371483.09	3756770.25	0.00105c	(96021424)	371817.25	3756763.00	0.00087 c	(96021424)


$* * *$ AERMOD - VERSION 07026 ***	$* * *$ LAX CFTP Construction	***	**
		$* *$ PM2.5 24-HOUR Uncontrolled	$09: 41: 44$

*MODELOPTs:
CONC

## DFAULT ELEV FLGPOL

*** THE 1ST HIGHEST 24-HR AVERAGE CONCENTRATION VALUES FOR SOURCE GROUP: GASOLINE *** INCLUDING SOURCE(S): PAREA03 , PAREA04
*** DISCRETE CARTESIAN RECEPTOR POINTS ***
** CONC OF PM2.5DAY IN MICROGRAMS/M**3

X-COORD (M)	Y-COORD (M)	CONC	(YYMMDDHH)	X-COORD (M)	Y-COORD (M)	CONC	(YYMMDDHH)
X	- - - - -	- - - -	- - - - -	- - - - -	-	- - - -	-
372274.41	3756752.75	0.00069 c	(96021424)	372713.41	3756743.00	0.00056 c	(96021424)
372702.62	3756552.50	0.00048 c	(96021424)	372818.81	3756548.75	0.00046 c	(96021424)
372814.44	3756455.00	0.00041 c	(96021424)	372796.75	3756367.50	0.00038 c	(96021424)
372704.81	3756371.50	0.00039 c	(96021424)	372706.31	3756326.75	0.00037 c	(96021424)
372927.09	3756319.25	0.00034 c	(96021424)	372926.22	3756245.00	0.00030c	(96021424)
373456.81	3756235.50	$0.00025 c$	(96021424)	373448.00	3755559.75	0.00016c	(96052124)
373222.47	3755568.75	0.00017 c	(96010224)	373219.34	3755705.00	0.00018c	(96052124)
373134.66	3755704.00	0.00018 c	(96052124)	373131.22	3755566.75	0.00018c	(96010224)
373054.09	3755562.75	0.00019 c	(96010224)	373046.22	3755174.00	$0.00023 c$	(96010224)
372725.47	3755177.00	0.00026 c	(96010224)	372624.12	3755182.25	0.00028 c	(96010224)
372237.69	3755185.50	0.00033 c	(96010224)	371843.00	3755188.75	0.00038 c	(96010224)
371462.81	3755192.00	0.00043 c	(96010224)	371049.03	3755195.50	0.00047 c	(96010224)
371056.31	3755349.00	0.00052 c	(96010224)	371043.41	3755384.00	0.00053 c	(96010224)
371042.38	3755556.25	0.00058 c	(96010224)	370995.81	3755560.25	0.00059 c	(96010224)
371001.00	3755419.25	$0.00055 c$	(96010224)	370801.41	3755275.50	0.00052c	(96010224)
370666.66	3755261.75	$0.00051 c$	(96010224)	370380.28	3755263.25	0.00051c	(96010924)
370075.88	3755265.00	0.00062c	(96012924)	369786.91	3755266.50	0.00078c	(96012924)
369498.00	3755268.25	0.00086 c	(96012924)	369193.59	3755269.75	0.00133 c	(96022824)
368889.16	3755271.50	0.00228 c	(96011024)	368569.28	3755273.25	$0.00325 c$	(96012624)
368274.84	3755274.75	0.00303 c	(96012624)	367936.44	3755213.25	0.00220c	(96012624)

** 11/19/08 *MODELOPTs
CONC
DFAULT ELEV FLGPOL
*** THE 1ST HIGHEST 24-HR AVERAGE CONCENTRATION VALUES FOR SOURCE GROUP: FUG_DUST *** INCLUDING SOURCE(S): PAREA07, PAREA08, L0000971, L0000972, L0000973, L0000974, L0000975, L0000976, L0000977, L0000978, L0000979, L0000980, L0000981, L0000982, L0000983, L0000984, L0000985, L0000986, L0000987, L0000988, L0000989, L0000990, L0000991, L0000992, L0000993, L0000994, L0000995, L0000996, L0000997, L0000998, . . .


*** THE 1ST HIGHEST 24-HR AVERAGE CONCENTRATION VALUES FOR SOURCE GROUP: FUG_DUST *** INCLUDING SOURCE(S): PAREA07, PAREA08, L0000971, L0000972, L0000973, L0000974, L0000975, L0000976, L0000977, L0000978, L0000979, L0000980, L0000981, L0000982, L0000983, L0000984, L0000985, L0000986, L0000987, L0000988, L0000989, L0000990, L0000991, L0000992, L0000993, L0000994, L0000995, L0000996, L0000997, L0000998, . . .
*** DISCRETE CARTESIAN RECEPTOR POINTS ***
** CONC OF PM2.5DAY IN MICROGRAMS/M**3


*MODELOPTs:
CONC

DFAULT ELEV FLGPOL
*** THE 1ST HIGHEST 24-HR AVERAGE CONCENTRATION VALUES FOR SOURCE GROUP: BATCH *** INCLUDING SOURCE(S): STCK01 ,
*** DISCRETE CARTESIAN RECEPTOR POINTS ***
** CONC OF PM2.5DAY IN MICROGRAMS/M**3


AERMOD	** LAX CFTP Construction	***	11/19/08
	*** PM2.5 24-HOUR Uncontrolled	*	09:41:44
**MODELOPTs:			PAGE 109

*MODELOPTs:
CONC

## DFAULT ELEV FLGPOL

*** THE 1ST HIGHEST 24-HR AVERAGE CONCENTRATION VALUES FOR SOURCE GROUP: BATCH *** INCLUDING SOURCE(S): STCK01 ,
*** DISCRETE CARTESIAN RECEPTOR POINTS ***
** CONC OF PM2.5DAY IN MICROGRAMS/M**3

X-COORD (M)	Y-COORD (M)	CONC	(YYMMDDHH)	X-COORD (M)	Y-COORD (M)	CONC	(YYMMDDHH)
- - - - - -	- - - - -	- - - -	- - - - -	- - - - -	- - - - -	- - - -	(YYMDDH)
372274.41	3756752.75	0.00118 c	(96021424)	372713.41	3756743.00	0.00102 c	(96021424)
372702.62	3756552.50	$0.00097 c$	(96021424)	372818.81	3756548.75	0.00093 c	(96021424)
372814.44	3756455.00	0.00089 c	(96021424)	372796.75	3756367.50	$0.00085 c$	(96021424)
372704.81	3756371.50	0.00088 c	(96021424)	372706.31	3756326.75	0.00086 c	(96021424)
372927.09	3756319.25	0.00079 c	(96021424)	372926.22	3756245.00	$0.00075 c$	(96021424)
373456.81	3756235.50	0.00062c	(96021424)	373448.00	3755559.75	0.00030c	(96021424)
373222.47	3755568.75	0.00032c	(96021424)	373219.34	3755705.00	0.00038 c	(96021424)
373134.66	3755704.00	0.00039c	(96021424)	373131.22	3755566.75	0.00032 c	(96021424)
373054.09	3755562.75	0.00033 c	(96021424)	373046.22	3755174.00	0.00034 c	(96052124)
372725.47	3755177.00	0.00037 c	(96052124)	372624.12	3755182.25	0.00038 c	(96052124)
372237.69	3755185.50	0.00042c	(96052124)	371843.00	3755188.75	0.00046 c	(96052124)
371462.81	3755192.00	0.00056 c	(96010224)	371049.03	3755195.50	$0.00075 c$	(96010224)
371056.31	3755349.00	0.00067 c	(96010224)	371043.41	3755384.00	$0.00065 c$	(96010224)
371042.38	3755556.25	0.00068 c	(96052124)	370995.81	3755560.25	0.00069c	(96052124)
371001.00	3755419.25	0.00066 c	(96052124)	370801.41	3755275.50	0.00086 c	(96010224)
370666.66	3755261.75	$0.00096 c$	(96010224)	370380.28	3755263.25	0.00121 c	(96010224)
370075.88	3755265.00	0.00156 c	(96010224)	369786.91	3755266.50	$0.00196 c$	(96010224)
369498.00	3755268.25	0.00241 c	(96010224)	369193.59	3755269.75	$0.00277 c$	(96010224)
368889.16	3755271.50	0.00272 c	(96012224)	368569.28	3755273.25	0.00414 c	(96102524)
368274.84	3755274.75	0.00473	(96030124)	367936.44	3755213.25	0.00921 c	(96022824)

** PM2 5 24-HOUR
$\begin{array}{ll}* * * & 11 / 19 / 08 \\ * * * & 09: 41: 44 \\ & \text { PAGE } 110\end{array}$ **MODELOPTs:
CONC
DFAULT ELEV FLGPOL
*** THE 1ST HIGHEST 24-HR AVERAGE CONCENTRATION VALUES FOR SOURCE GROUP: CRUSHER *** INCLUDING SOURCE(S): STCK02 ,
*** DISCRETE CARTESIAN RECEPTOR POINTS ***
** CONC OF PM2.5DAY IN MICROGRAMS/M**3


*MODELOPTs:
CONC

## DFAULT ELEV FLGPOL

*** THE 1ST HIGHEST 24-HR AVERAGE CONCENTRATION VALUES FOR SOURCE GROUP: CRUSHER *** INCLUDING SOURCE(S): STCK02 ,
*** DISCRETE CARTESIAN RECEPTOR POINTS ***
** CONC OF PM2.5DAY IN MICROGRAMS/M**3

X-COORD (M)	Y-COORD (M)	CONC	(YYMMDDHH)	X-COORD (M)	Y-COORD (M)	CONC	(YYMMDDHH)
- - - - - -	- - - - -	- - - -	- - - - -	- - - - -	- - - - -	- - - -	-
372274.41	3756752.75	$0.00027 c$	(96021424)	372713.41	3756743.00	0.00023 c	(96021424)
372702.62	3756552.50	0.00022 c	(96021424)	372818.81	3756548.75	0.00021c	(96021424)
372814.44	3756455.00	0.00020c	(96021424)	372796.75	3756367.50	0.00019c	(96021424)
372704.81	3756371.50	0.00019 c	(96021424)	372706.31	3756326.75	0.00019c	(96021424)
372927.09	3756319.25	0.00017 c	(96021424)	372926.22	3756245.00	0.00016c	(96021424)
373456.81	3756235.50	0.00014 c	(96021424)	373448.00	3755559.75	0.00006 c	(96052124)
373222.47	3755568.75	0.00007c	(96052124)	373219.34	3755705.00	0.00008c	(96021424)
373134.66	3755704.00	0.00008c	(96021424)	373131.22	3755566.75	0.00007c	(96052124)
373054.09	3755562.75	0.00007 c	(96052124)	373046.22	3755174.00	0.00008 c	(96052124)
372725.47	3755177.00	0.00008 c	(96052124)	372624.12	3755182.25	0.00009c	(96052124)
372237.69	3755185.50	0.00009 c	(96052124)	371843.00	3755188.75	0.00010c	(96052124)
371462.81	3755192.00	0.00013 c	(96010224)	371049.03	3755195.50	0.00017 c	(96010224)
371056.31	3755349.00	$0.00015 c$	(96010224)	371043.41	3755384.00	$0.00015 c$	(96010224)
371042.38	3755556.25	$0.00015 c$	(96052124)	370995.81	3755560.25	0.00016c	(96052124)
371001.00	3755419.25	$0.00015 c$	(96010224)	370801.41	3755275.50	0.00020c	(96010224)
370666.66	3755261.75	0.00022c	(96010224)	370380.28	3755263.25	$0.00027 c$	(96010224)
370075.88	3755265.00	0.00034 c	(96010224)	369786.91	3755266.50	0.00042c	(96010224)
369498.00	3755268.25	0.00051 c	(96010224)	369193.59	3755269.75	0.00058 c	(96010224)
368889.16	3755271.50	0.00056 c	(96010224)	368569.28	3755273.25	0.00076c	(96102524)
368274.84	3755274.75	0.00094c	(96100724)	367936.44	3755213.25	0.00147c	(96022824)

** PM2 5 24-HOUR Uncontrolled
*** THE 1ST HIGHEST 24-HR AVERAGE CONCENTRATION VALUES FOR SOURCE GROUP: ALL *** INCLUDING SOURCE (S): STCK01 , STCK02 , PAREA01, PAREA02 , PAREA03 , PAREA04 , PAREA07 PAREA08, L0000777, L0000778, L0000779, L0000780, L0000781, L0000782, L0000783, L0000784, L0000785, L0000786, L0000787, L0000788, L0000789, L0000790, L0000791, L0000792, L0000793, L0000794, L0000795, L0000796, L0000797, L0000798, . . . ,


** AERMOD	*** LAX CFTP Construction	***	11/19/08
	*** PM2.5 24-HOUR Uncontrolled	**	09:41:44
**MODELOPTs:			PAGE 113

*MODELOPTs:
CONC

## DFAULT ELEV FLGPOL

*** THE 1ST HIGHEST 24-HR AVERAGE CONCENTRATION VALUES FOR SOURCE GROUP: ALL ***
STCK01 , STCK02 , PAREA01 , PAREA02 , PAREA03 , PAREA04 , PAREA07 PAREA08 , L0000777, L0000778, L0000779, L0000780, L0000781, L0000782, L0000783, L0000784, L0000785, L0000786, L0000787, L0000788, L0000789, L0000790, L0000791, L0000792, L0000793, L0000794, L0000795, L0000796, L0000797, L0000798, . . .
*** DISCRETE CARTESIAN RECEPTOR POINTS ***
** CONC OF PM2.5DAY IN MICROGRAMS/M**3



```
** AERMOD - VERSION 07026 *** *** LAX CFTP Construction
*** PM2.5 24-HOUR Uncontrolled
```

*** Message Summary : AERMOD Model Execution **

```
*** Message Summary : AERMOD Model Execution **
--------- Summary of Total Messages --------
A Total of 0 Fatal Error Message(s)
Total of
A Total of
A Total of
0 Fatal Error Message(s)
0 Warning Message(s)
2275 Informational Message(s)
A Total of 920 Calm Hours Identified
A Total of 1355 Missing Hours Identified (15.43 Percent)
CAUTION!: Number of Missing Hours Exceeds 10 Percent of Total!
Data May Not Be Acceptable for Regulatory Applications
See Section 5.3.2 of "Meteorological Monitoring Guidance for Regulatory Modeling Applications" (EPA-454/R-99-005).
******** FATAL ERROR MESSAGES ********
*** NONE ***
WARNING MESSAGES
*** NONE ***
```

***
*** 11/19/08
*** PM2.5 24-HOUR Uncontrolled
FAULT ELEV FLGPOL

09:41:44 09:41:4 PAGE 115
***********************************
** AERMOD Finishes Successfully ${ }^{* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *)}$

This page intentionally left blank.

## Attachment 1

## Original Comment Letters

## on the CFTP Draft EIR



$\begin{array}{r} \text { SCHJ } \\ \text { Projoct Titte } \\ \text { Lead Agency } \end{array}$	200804105E   Lns Angelan international Alport (LAX) Crossfield Taxiway Project Les Angeles Wond Airpiots			
Type Description	As one of the airfieid improvements included in the LAX Master Plan, the LAX CFTP encompasses improvements to a portion of the exosting taxiway system that supoorts aircralh access betwoeh the north runway complex (i.e. Fumways 6L/24R and 6R/24L) and the south rurway complex (i.6. Rurways 7 L 25 R and 7R/25L). In particular, the proposed project would provide a new crossfield taxiway. identifed as Taxiway C13, and an associated connection to, and extension of, the existing Taxiway D In addition, a new peraliel sorvice road along Taxiway C13 would be buitt and the existing airctat! refcue and lie lighting facility (ARFF) would also be constructed as part of the project. The subject texiway improvements are proposed in light of airfield congustion that occurs pariodically at the neiar the existing midneld taxiwaya retalive to movement of aircraft on the ground, and also refluct ine phased implementation of improvernents that are included in thit approved LAX Mastar Plan. The proposed ARFF would repisce an existing station that is severely undersized and, stimilar to the taxiway improvements, would be developed consistent with the phased unplementation of the LAX Naster Plan:			
Lead Agency Contact				
Name	Dennis Cuiliam			
Agency	Los Angeles Worid Aimors	Fax		
Phone omall	310-846-7614			
Address	T30t Wordd Way Wust. 3 rd Floor			
City	Los Angeles	State CA		90045

Project Location


| Parcel No. Range Bection |  |
| :---: | :---: | :---: |
| Townithip | Sase |



## Localized Siguificance Thresholds

1. The SCAQMD requests that the tead agency evaluate localized ait quality impacts to ensure that any nearby sensitive receptors are not adversely affected by the construction activities that are occurting in close proximity. SCAQMD guidance for performing a localized air quality analysis can be found at the following web address hup://www,aqund gov/ceqa/handbook/LST/LST hitml.

## Construction Mitigation Measures

2. Because the construction air quality impacts from the proposed project are estimated to exceed established daily significance thresholds for carbon monoxide (CO), fugitive dust (PM10), volatile organic compounds (VOC) and nitrogen oxide ( $\mathrm{NO}_{4}$ ), the SCAQMD reconmends that the lead agency considet should consider adding the following mitigation measures to those listed on pages 4-70 and 4-71 in Tables 4.2-6 and $4.2-7 \mathrm{im}$ Volume I of the Draft EIR to further reduce construction air quality impacts from the project, if applicable and feasible:

The following is a list of additional reconmended mitigation measures to further reduce fugitive dust cumulative significant adverse PM10 impacts:

- Install wheel washers where vehicles enter and exit the construction site onto paved roads or wash off trucks and any equipment leaving the site each trip.
- Suspend all excavating and grading operations when wind speeds (as instantaneous gusts) exceed 25 mph ;
- All trucks hauling dirt, sand, 3oil, or other loose materials are to be covered;
- Traffic speeds on all umpayed roads to be reduced to 15 miph or less, and - Sweep streets al the end of the day if visible soil is carried onto adjacent public paved roads (recommend water sweepers with reelaimed water).

3. The following mitigation measure is recommended te further reduce projectspecific and cumulative NOx emission impacts:

- Use SCAQMD Rule 2449-Control of Oxides of Nitrogen from Off-Road Diesel Vehicles, compliant construction equipment


## SCAOMD Permit Requirements

4. In the Draff EIR, the lead agency describes concrete batching and agyregate rock crushing operations that might require SCAQMD permits. The tead agency should be aware that concrete batch and aggregate rook crushing operations are subject to the following rules and should note this in the Final EIR.

## EMALL FD NOVEMBER 14, 2008

November 14, 2008
Mr. Dernis Quilliam
Airport and Facilities Planning
Los Angeles World Airports
7301 World Way West, $3^{\text {to }}$ Floor
Los Angeles, CA $90045-5803$
Los Angeles, CA 90045-5803

## Draft Environmental Impact Report (Draft EIR) for the Proposed Las Angeles Intervational Airport Crossfield Taxiway Projest

The South Coast Air Quality Management District (SČAQMD) appreciates the opportumity to comment on the aboye-mentionied document. The SCAQMD would also like to thank the lead agency for the additional time to submit comments. The following comments are meant as guidance for the Lead Agency and should be incorporated into the Final Environmental tmpact Report

Pursumnt io Public Resources Code Section 21092.5, please provide the AQMD with written responses to all comments eontained hereim prior to the adoption of the Final Environmental Impaet Report. The SCAQMD staff would be happy to work with the Lead Agency to address these issues und any other questions that may arise. Please contact Gordon Mize, Air Quality Specialist - CEQA Seetion, at (909) 396-3302, if you have uny questions regarding these comments.

## Sincerely, <br> Steve Smith

Steve Smith
Program Supervisor - CEQA Section
Planning. Rule Development \& Area Sources
Attachinent
SS:GM
AC080926-017
Control Number

Mr. Dennis Quilliam
2
November 14, 2008

- Rule 1156 - PM10 Emission Reductions from Cenent Manufacturing Facilities;
- Rule 1157 - PMio Emission Reductions from Aggregate and Related Operations; and
- Regulation XIII - New Source Review.

Health Risk Assestment
5. In the Draft EIR, the lead agency states that the incremental health risks due to inhalation of TACs from operational sources associated with four build alternatives and the No Action/No Project Altemative was addressed in the LAX Master Plan Final EIR on page 4-77. There appears to be no further discussion of potential healit risks from operation. SCAQMD staff assumes that a formal HHRA for operational impacts was not prepared because the project results in a reduction of overall emission reductions. It would ho helpful if the lead agency summarized the emission reductions. It would be helptur the Final Program EIR for the LAX Master Plan and provide a better explamation in the Final EIR why an HHRA for the project operation was not prepared.

To: Cross Field Project
Cc: Abdulsamad Danishwar; Denise Chow; Namhee Kwon; Rowena Lau Subject: Memo: Los Angeles International Airport Crossfield TaxiwayProject

## Hi Roger,

My name is Denise Chow and am currently working on the Los Angeles International Airport Crossfield Taxiway Project. The CEQA regarding the crossfield taxiway is unrelated to sewers. We therefore have no further comments.

Denise Chow
Environmental Engineering Associate
Bureau of Sanitation - WESD
Dept of Public Works
City of LA
(323)342-1564

Denise.Chow@lacity.org

CHEVALIER, ALLEN \& LICHMAN LLP


November 10, 2008

By Facsimile, E-mail end U.S. Mail
crossficldronect(alawarg
dquillamatawnotg
(310)646-0686

Los Angeles World Airports
Airport and Facilities Planning
Attention: Dernis Quillam
7301 World Way West, $3^{\text {nd }}$ Floor
Los Angeles, CA 90045-5803
Re: Draff Envirónmental Impäet Repöt (Draf EIR) (SCH No. 2008041058)Los Angeles International Airpon Crossfield Taxiway Project

Dear Mr. Quillam:
The following are the comments of the Cities of Inglewood and Culver City ("Cities") conceming the Draff environmental Impact Report (DEIR) for the Los Angeles Interoational Airport ("LAX") Crossfield Taxiway Projeet (the "Project")."

1. THE "TIERING" OF THE DEIR ON THE "APPROVED MASTER PLAN EIR"

RESUITS IN IMPROPERI Y ATTENUATED ENVIRONMENTAL REVIEW.
The DEIR justifies expedited environmental review on the apparent ground that, as a part of "the approved LAX Master Plan" (DEIR, p. 1-10) adequate eavironmertal review was already completed during the prior Master Plan environmental review process. ${ }^{2}$ Cities disagree.

As a threshold issue, please be advised that Cities note that none of the issues they raised in their May 12, 2008, comment letfer regarding the Notice of Preparation were specifically addressed in the DEIR.
2. "Concurrent with the approval of the LAX Master Plan was the sertification of the I.AX Master Plan Final Plan Final EIR, which addresses the environmental impacts associated with the LAX Master Plan improvements. As a programmatic level EIR, the LAX Master Plan Final FIR was prepared and certified by LAWA for the entire LAX Master Plan. In accondance with CEQA, subsequent activities occurning within the program (i.ein the Master Plan) are

Dennis Quillam
City Planner
City of Los Angeles
Los Angeles World Aiports
November 10,2008
Page 2

It is true that CEQA requires, in pertinent part, fhat "environmental impact reports shall be liered whenever feasible . .... Public Rexources Code \& 21093(b). However, the uility of tiering is limited to those situations in which individual projects, such as the Crossfield Tuxiway are consissent with the larger project such as the approved Master Plan project which has already been environmentatly reviewed.

Despite the fact that the "approved Master Plan" remains in place, mosi of it most salient features, such as the off-site ficketing facility; closure of the Central Terminal Area ("CTA") to surface traffic, movement of Runway 6L/24R 340 feet to the south, thus necessitating restructuring of Terminals I through 3, have been replaced by the Specific Plan projects currently being evaluated as separate projects. Therefore, the Specific Plan projects, and their environmental impacts, will be radically differen from the projects and enyronmental impacts originally evaluated in conjunction with the approved Masler Plan. As a consequence, even if the Crossfield Taxiway Project were envisioned and evaluated in the EIR for the approved Master Plan, it cannot remain consistent with a "first tier decision" that has itself been radically transformed.

The seeond order consequence of this radical transformation is the potential for different and additional environmental impacts. For example, the DEIR fails to disclose if or how leaving Rumway $6 \mathrm{~L} / 24 \mathrm{R}$ in place or, as is currently being proposed, moving it 340 feet north, will shange the Project's impacts resulting from aircraft taxiing distances different from those envisioned in the Master Plan. In short, because of the manifest inconsistency between the "Approved Master Plan" and the current Specific Plan, the Cross Field Taxiway project must be fully and independently evaluated under CEQA.
examined in light of the program EIR to detemine whether an additional enveronmental document must be prepared.' DEIR. p.1-1.

1 "Tiering is a process by which agencies can adopt programs, plans, policies, or ordinances with EIRs focusing on 'the big picture' and can then use streamlined CEQA review for individual projects that dre consistent with such ., [first tier decisions] .,." Koster y.
Comnty of San Joaquin, 47 Cal.App.4th 29, 36 (1996)

## Dennis Quillam

City Planner
City of Los Angeles
Los Angeles World Aimorts
November 10,2008
Page 3
II. THE DEIR'S AIR QUAL ITY ANAL YSIS IS LIMITED ONL. Y TO MEMPORARY EMISSIONS EROM CONSTRUCTION" AND IS INADEQUATE TO SATISFY CEQA

CEQA requires that an EIR be "a detailed statement prepared under CEQA descrihing and analyzing the siunificant effects of a project and discussing ways to mitigate or avoid the effects." CEQA Guidelines, $\& 15362$. However, the DEIR does not address any of the air quality impacts of the Project except for emissions created by the actuat construction of the Project. Thus, the DEIR fails to analyze any of the significant effects that the operational components of the Project will have on air quality. The DEIR provides no justification for the minimal air the Project will have on air quality. The DEIR provides no justitication for the minmaif air
quality analysis of the Crossfield Taxiway Project, other than what was previously stated in the quality analysis of the Crossfield Taxiway Project, other than what was previously stated in the
Notice of Project (NOP)that "[w]hile it would reduce delays associated with taxaing aircraft, the Notice of Project (NOP) that " $\mathrm{w} / \mathrm{w}$ hile it would reduce delays associated with taxing aircraft, th
proposed project would not increase the capacity of the airfield, as that capacity is curremly proposed project would not increase the capacity of the airfield, as that capacity is currently
constrained by number and availability of gates," DEIR App. A, p. 4 (emphasis added). This premise is dawed.

First, and most obviously, while it is true that landside facility constraints will play a role in limiting airport capacity, the current constraint on numbers of gates to 153 , established in the "Judgmeni Pursuant to Stipulated Settlement," ("Settlemen1") 'expires at the end of 2020. Therefore, the "current" gate constraints (which do not in any event become applicable unless and until LAX reaches 75 million air passengers per yeare) will exist for a maximum of 12 more years. All envisioned improvements may only barely be completed by that date. As air quality should be evaluated for future as well as current scenarios, the "current" gate constraints relied should be evaluated for future as well as current scenarios, the "current" gate constraints relied
upon in the DEIR as an effective capacity constraint will not be the same constraint on future upon in the DEIR
capacity increases.

+ "This EIR for the CFTP tiers from the analysis and findings documented in thic LAX Master Plan Final EIR. This analysis has been further refined to incorporate detailed project-related assumptions regarding construction equipment that would be utilized and airpon activity levels daring the construction of the CFTP." DEIR, p.4-57.
? The settlement ended the challenge to the approved Master Plan brought by Cities. among other Petitioners. Civy of EI Segundo. et al. v. City of Lor Angeler, et al., Riverside County Superior Court Case No, 426822.

[^1]Dermis Quillam
City Planner
City of Los Angeles
Los Angeles World Airports
November 10. 2008
Page 4

Second, the decrease in delay which is the stated purpose of the Crossfield Taxiway Project (NOP, p, 4) may itself give rise to increased capacity, "Airport capacity" is defined by the FAA as "throughput rate,.$e$, the maximum number of operations that can take place in m hour," FAA Advisory Circular AC 150/5060-5, p. 1. Both the DEIR and the NOP concede that the Crossfield Taxiway Project's purpose is to "reduce delays associated with taxiing aircrafi" (NOP, p. 4) see also, DEIR pp. 2-21,2-22, The corollary of reduced delay is increased "throughput rate." As "nature abhors a vacuum," the slots created by increased throughput rate will, as has occurred at the vast majority of airports inctuding LAX in the past, ultimately result in a higher "maximum number of operations that can take place in an hour."

This is not a concept that is unfamiliar to those who work with aipons and proprictors of airports. This principle is explicitly recognixed in the FAA $\&$ regulatory guidance governing bencfit-cost analysis of airport projects. See. FAA Airport Benefit Cost Analysis Citdanee. (Office of Aviation Policy and Plans December 15, 1999) ("BCA Guidance"). The BCA Guidance, which is intended to help the FAA weigh the relative merits of airport projects in making discretionary funding decisions, relies on this principte to help FAA and airport proprietors justify, and quantify the benelits of, investments in aviation projects that reduce airpor delays. Id. § 1.1 at p. 1, § 10.4 .1 .3 at p. 41. The BCA Guidance acknowledges that transportation projects "oflen" induce higher levels of operations. Id.. $\$ 10.4 .1 .3$ at p. 41. It notes that this common-sense relationship between transportation projects and higher levels of operations applies with special foree to aviation projects that reduce flight delays. In the FAA's own words:

Allowance for Induced Demand. It is often the case with transportation projects that an improvement in service attributable to an invesiment at a facility will indace greater use of the facility than would have occurred without the investment. For instance, an investmert that lowers average deldy at ant airport will induce
some potential customers who formerly avoided the airport to use
it
fd. (emphasis in last sentence added).

[^2]Dennis Quillam
City Planner
City of Los Angeles
Los Angeles World Airports
November 10, 2008
Page 6

## impacts can result from individunlly minor, but collectively

 significant projects taking place over a period of time.CEQA Guidelines, $\% 15355$. The DEIR does mention the cumulative impacts that several censtruction projects will have, bur because the DEIR limits its discussion solely to construction impacts, there is no discussion of cumulative operational impacts.

First, there is no doubs that the Specific Plan projects are reasonably foresecable, given that the NOP for their environmental revietv was circulated conternporaneously with the NOP for this Project. Nor can it be argued than those projects are not closely related to the Crossfield Taxiway Project. For example, the purpose of the Specific Plan project separating the runways in the North Rumway Complex is accommodation of New Large Aircraft ("NL.A") like the A380 , the same purpose as asserted for the Crossfiefd Taxiway Project (NOP, p. 4). Morcover, the Crossfield Taxiway Project will facilitate iraffic berween the two rumway complexes for the express purpose of allowing NLA and other long haul aircraft which are currently able to use only the South Runway Complex efficiently, to access the North Rumway Complex:

Second, the Project's individual impacts may be portrayed as "minor." in comparison to those of the other projects, both individually and collectively, this comparison does not exempt the Crossfield Taxiway Project from a collective evaluation with the other contemporaneous Specific Plan and approved Master Plan projects. See, e.g., Kings Conoty Furm Bureau y. Cirs of Hanfiorl, 221 CaL.App,3d 692, 720 (1990) citing Cal.Admin. Code, titie 14 § 15355 (b) "Cumulative impacts can result from individually minor but collectively significant projects taking place over a period of time." In short, the Crossfield Taxiway Project is part of a larger complex of projects aimed at readying LAX for more numerous and larger aireraft. The DEIR should, iherefore, at minimum, disclose the potential camulative impacts of the Crossfield Taxiway Project when taken together with the Specific Plan and approved Master Plan projects which have manifestly the same purpose:

One of those potential cumulative impacts is noise. While the DEIR contemplales evaluation only of construction noise (DEIR, p, 3-2), the Crossfield Taxiway Ptoject's potential cumulative impacts on communities to the north and east of LAX extends far beyond construction noise. To the extent that NLA and other traffic is shifted from the South to the North Runway Complex; and to the extent that the firther Separation of runways on the North Complex contemplated in the Specific Plan Amendment Study allows not merely larget aircraft but more aircraft, by virtue of the planned center taxiway, the Crossfield Taxiway will be in

Dennis Quillam
City Planner
City of Los Angeles
Los Angeles World Airports.
Vovember 10,2008
Page 5

Moreover, BCA Guidance also offers a formula to calcufate the amoumt of indued demand created by reductions in delay: if "delay savings are more than one minute per operation, it is advisable to resimulate the project alternative case assuming 2 pereent inerements in operations/passengers." $l d$ Such 2 percent inerements in induced operations should be calculated for each 3 minute saving atributable to the project. Id. "Thus, in the case of a project saving 6 minutes per operation reiative to the base case, demand levels equivalent to the base case demand, the base case demand plus 2 pereent, and the base case demand plus 4 pereent should be simulated for the project case," Iid.

Finally, a consequence of increased capacity is increased emissions from the greater number of aircraft. Therefore, even though taxi/tdle time and distance traveled may be reduceu for individual atreratt, this air quality benefit is likely to be offsel by additional emissions from additional aircraft.

In short, the Crossfield Taxiway Project may not have the limited air quality impact portrayed in the DEIR. Cities therefore strongly recommend that, given the potential synergistic air quality impacts of the Crossfield Taxiway Project with other projects currently being evaluated in the separate NOP for the Specific Plan and the remaining projects in the proposed Master Plan, as well as the Crossfield Taxiway Project's potential for increasing capacity, a complete air quality analysis be performed as part of the EIR. The analysis should include, at minimum, an air quality conformity applicability analysis which takes into account the potential air quality impacts of all projects plarned or ongoing, in conjunction with construction of the Crossfield Taxiway Project.
iI. THE DEIR DOFS NOT TAKE INTO ACCOUNT CUMUL ATIVE IMPACTS OF THE CROSSFIELD TAXIWAY PROJECT WHEN TAKEN TOGETHER WITH THE SPECIFIC PLAN AND APPROVED MASTER PLAN PROIECTS

The DEIR does not mention, let alone evaluate, the impacts of the Specific Plan and approved Master Plan projects. Those projects are, however, elosely related to the Crossfield Taxiway Project.

The cumulative impact from several projects is the change in the environment which results from the incremental impact of the project when added to other closely related past, present and reasonably foreseeable probable fiture projects. Cumulative

Dennis Quillam
City Planner
City of Los Angeles
Los Angeles World Airports
November 10， 2008
Page 8
significance or regulatory thresholds for GHG ernissions on a local，state，or national basis．＂ DEIR，p．4－108：However，as part of CARB＇s mandate under AB 32 and under its duties under CEQA，on October 24，2008，it released its Preliminaly Draft Staff Proposal（PDSP）of Recommended dpproaches for Seting Interim Significance Thresholds for Greenhouse Gases under the Califarnia Environnemal Quality Act．＇In the PDSP，CARB reconmended that if industrial projects emit inore that 7,000 metric tons of CO 2 a year，an EIR should be prepared and all feasible greenhouse gas（GHG）mitigation measures be implemented．CARB believes that this threshold＂will result in a substanfial portion of the GHG emissions from new projects being subjeet to CEQA＇s mitigation requirement，consistent with a lead agency＇s obligation to avoid or minimize envitonmental damage where feasible．＂PDSP，p．5，citing Califorma Code of Regulations，title 14．$\$ 15021$.

Although CARB is still developing a＂proposal for an interim approach for thresholds for transportation projects，＂the DEIR should rake the PDSP into account by both evaluating the Project＇s potenial GHG impacts and developing further mitigation measures to offiet the potential increase in GHG ．This is particularly irue in light of the fact that CO 2 emissions from the construction sources alone go well above the 7,000 metric ton threshold．See，DEIR，p．4－116． Although the DEIR claims that there wiil be reduction in fuel consumption and thus CO 2 emissions，operational emissions，however，should be calculated so that the induced demand created by the project is taken into account．Once the PDSP＇s proposed threshold is taken into account and operational emissions are based on induced demand，the mitigation measures stated in 4．4．8 should be amended to account for the increase in GHG emissions．

Cities appreciate this opportunity to comment and request that future documents be Iransmitted to the oflice of their counsel，Chevalier．Allen \＆Lichman．LLP at the above address．

Sincerely，
CHEVALIER，ALLEN \＆LICHMAN，LLP
Bulluar ह．kituaw
Barbara E Lichman，Ph．D．

1 Atmost contemporancously with the PDSP，CARB issued its Climate Change Proposed Scoping Plan：a Framework for Change，as part of its milestones for the implementation of AB 32．Since the Proposed Scoping Plan does not take currently suggest iny measures for aircrafl and airports，we do nol discuss it here．

## Dennis Quilliam

November 7， 2008
Page 2
Taxiway Project．As requested by EI Segundo，the DEIR provides detailed information regarding the uses and facilities that would be displaced，information regarding where those uses will be relocated and an analysis of associated environmental impacts．

Similarly，El Segundo＇s NOP comment letter questioned whether and to what extent the Project was one of the Master Plan projects previously evaluated at a progranmatic level in the LAX Master Plan Envirommental Impact Statement／Environmental Impact Report．We asked for guidance regarding how the Master Plan EIS／EIR evaluated the proposed Crossfield Taxiway Project．In response，the DEIR acknowledges that the Crossfield Taxiway Project is rarely referenced specifically in the LAX Master Plan and its EIS／EIR，but points out how it was part of that plan and its environmental analysis（including noise，airfield efficiency，safety and capacity）．See DEIR at 2－12 through 2－21．

Thank you for your efforts to provide detailed and substantive responses to our prior comunents．Although the DEIR represents a marked improvement over LA WA＇s initial NOP for the Crossfield Taxiway Project，some issues remain．El Segundo therefore respectfully submits the following comments：

Relationship to Airfield Balance．In our comments on LAWA＇s NOP for the Crossfield Taxiway Project DEIR，we ooted that the City of EI Segundo is interested in ensuring that aireraft operations at LAX are balanced between the north and south airfields．The need for balance is particularly important for noisy large aircraft（＂heavies＂），which have historically used the south airfield（close to E1 Segundo）more than the north airfield．The DEIR prepared by LAWA responds to this comment by noting that one of the benefits of the Crossfield Taxiway Project is that it will help air traffic controllers better balance aircraft arrivals between the north and south airfields．See DEIR at 2－11．The DEIR acknowledges，however，that＂implementation of the CETP will not substantially change the existing overall daily split in operations between the north and south runway complexes，ror will it materially change the existing imbalance in the number of heavy aircraft operating on the north and south runway complexes．The assignment of departing heavy aircraft to a particular runway is based primarily on rumway length；Runway $7 \mathrm{~L} / 25 \mathrm{R}$ in the south complex is currently the longest numway at LAX and is the primary runway used for the departure of heavy aircraft．LAWA is currently evaluating options for improvements to the north runway complex，within the SPAS process，including the lengthening of runways to address that imbalance issue，＂DEIR at 2－11．

El Segundo appreciates this clarification regarding the relationship between the Crossfield Taxiway Project and airfield balance．The analysis provided further underscores the importance of completing the Specific Plan Advisory Study（＂SPAS＂）process expeditiously．As El Segundo has previously pointed out，the delay experienced in that process is inconsistent with the clear timeline and language in the Stipulated Settlement Agreement．Additionally，the SPAS process must produce solutions for the north airfield that address the need for safely

Shlte，Mifaly e Weinberger lle
ATTORNBYSATLAY


30e haves atreis

BAN TRAMEISEO GAGTOANIA Qafloz
TELEPMOHE（415）592－7ミフて
vacsimine（4） $51552-5$ Bio
WWW I smw Law COM

Via U．S．Mail and

## email to dquilliam＠lawa．org and crossfieldprojectalawa．org

Dennis Quilliam
Los Angeles World Airports
Airport and Facilities Planning
7301 World Way West， $3^{3 \text { d }}$ floor
Los Angeles，CA 90045－5803
Re：Draft Environmental Impact Report for LAX Crossfield Taxiway Project
Dear Mr．Quilliam：
We submit this letter on behalf of our client，the City of El Segundo，to comment on the Los Angeles World Airporis（＂LAWA＂）Draft Environmental Impact Report（＂DEIR＂）for its Crossficld Taxiway Project proposed for Los Angeles International Airport（＂LAX＂）．El Segundo has been an activo participant in the LAX Master Plan process since its inception．In February of 2006，El Segundo，together with other petitioners，entered into a Stipulated Settlement Agreement with LAWA．El Segundo continues to monitor LAWA＇s efforts to implement the LAX Master Plan in order to ensure those efforts comply with the terms of the Master Plan and Stipulated Settlement Agreement．In keeping with that approach，and in the spirit of cooperation，we submit this conment letter on behalf of the City of El Segundo．

We previously submitted a May 12， 2008 comment letter on behalf of El Segundo commenting on L．AWA＇s Notice of Preparation（＂NOP＂）for the Crossfield Taxiway Project DEIR．LAWA thereafter released a revised NOP，and has now circulated the DEIR for public review and comment．We are pleased to see that both the revised NOP and the DEIR respond to some of the issues raised in El Segundo＇s comment letter on the initial NOP．

For example，EI Segundo＇s NOP comment letter asked for additional information regarding existing uses and facilities that would be displaced by the proposed Crossfield

Dennis Quilliam
November 7， 2008
Page 3
improvements and better airfield balance．From the perspective of fairness，efficiency and safety，LAX simply cannot continue to operate in its current lopsided manner．The proposed． Crossfield Taxiway Project should be seen as a first，small step towards addressing that serious problem．

New Large Aircraft（＂NL．A＂）Operations．The DEIR indicates that one objective of the proposed Crossfield Taxiway Project is to＂provide a new crossfield taxiway designed to accommodate ADG VI aircraft（i．e．，NLA such as the Airbus A380 and Boeing 747－8）， recognizing that limited commercial operation of the A380 at LAX is scheduled to begin in October 2008 and is anticipated to increase substantially by early $20122^{-1}$ DEIR at 2－21．The DEIR also provides detailed new information regarding how NLA are expected to utilize the airfield on arrival and departure，with and without the proposed Crossfield Taxiway Project．See DEIR Figs，2－5，2－6，2－7 \＆2－8．

Most notably，the DEIR makes clear that LAWA anticipates that NLA will roufinely violate the longstanding preferential runway policy ${ }^{2}$ in place at LAX，by departing from the runway closest to El Segundo（Runway 25L）．See DEIR at 2－12 fn 7 ［＂As assumed in the Master Plan，NLA will depart only from Rumway 25L，as Runway 25 R does not meet separation standards between runway and Taxiway B／C for NLA．＂］\＆Figs．2－6，2－8．Prior to departure， NLA will also apparently use Taxiway A，which is located even closer to El Segundo than Runway 25L．NLA departures from Runway 25L，and the associated use of Taxiway A，will impose substantial adverse impacts on EI Segundo residents，including increased noise and air pollution．LAWA must make every effort to avoid and reduce those impaets．

El Segundo recognizes that the problem of potential NLA departures from Runway 25L exists regardless of the proposed Crossfield Taxiway Project．As such，the problem must be addressed through other means．Specifically，LAWA must concentrate on operational changes and pirfield modifications to address the problem．First，L．AWA should undertake an exhaustive effort to identify operational modes that would allow NLA to arrive，taxi and depart without

[^3]Dennis Quilliam
November 7, 2008
Page 4
violating L.AX's longstanding preferential rurway policy. This may mean restricting other aircraft operations during NLA arrivals, taxiing and departures. LAWA may also need to seek variances from FAA for certain separation standards, as it has done elsewhere at LAX.

It is also important to note that although the Master Plan may have assurned that NLA would depart from Runway 25L (in violation of the preferential runway policy) for a short period of time prior to the construction of the north airfield improyements, the Master Plan should also have assumed that compliance with the preferential nunway policy would be restored following the completion of those improvements. As such, it is disingenuous to imply, as the Crossfield Taxiway Project DEIR does, that the Master Plan assumed NLA would permanently depart from Runway 25L. Other Master Plan improvements can and must come on line to address the problem of potenual NLA departures from Runway 25L. This further underscores the need for the SPAS process to proceed expeditiously to identify and implement north airfield improvements to replace those that received a "Yeflow Light" in the Master Plan process.

Relationship to Midfield Satellite Terminal \& TBIT Backsiding. El Segundo's comments on the NOP for the Crossfield Taxiway Project noted that from a planning and CEQA perspective, the Crossfield Taxiway Project should be evaluated together with and as part of the Midfield Satellite Terminal Project and the proposed construction of gates on the west side of Tom Bradley International Terminal ("TBIT Backsiding Project"). To do otherwise would appear to segment the overall project. In the DEIR, however, LAWA has elected to treat the Crossfield Texiway Project as separate from the Midfield Satellite Terminal Project and TBIT Backsiding Project. See DEIR at J-10, 1-19. For the reasons stated in El Segundo's NOP comment letter, we continue to believe that the proposed Crossfield Taxiway Project should be evaluated together with the Midfield Satellite Terminal Project and TBIT Backsiding Project in order to give decisionmakers and the public a more complete understanding of the improvements proposed for the midfield area.

Ground Run-U/p Enclosures. As the DEIR notes, the Master Plan includes two ground run-up enclosures ("GREs"), which will make key contributions to the effort of reducing the airport's noise impact on its neighbors, especially E1 Segundo. DEIR at 2-29, 5-5; Master Plan FEIR at 3-82. While EI Segundo is pleased to see that the Crossfield Taxiway Project includes a proposed position for one of these GREs, the project could be improyed substantially by including actual construction of the facility, rather than merely siting.

Maintenance run-ups of aircraft engines contribute significantly to noise leyels in El Segundo, particularly to single-event noise. Siting this GRE is an important step toward reducing such noise. El Segundo is, however, disappointed that LAWA proposes to delay constructing the facility indefinitely until the time of the construction of the Midfield Satellite Concourse. EI Segundo believes that LAWA would better advance the goal of reducing the airport's noise impacts by providing a concrete schedule for building the GRE.

Dennis Quilliam
November 7, 2008
Page 5
This timeframe should not link GRE construction to the Midfield Satellite Coneourse project. Because that project has been delayed indefinitely, such a hink would provide EI Segundo and other neighboring jurisdictions with no assurance that LAWA will ever build the GRE. Meanwhile, the ancillary facilities presently located at the Midfield Concourse do not provide the sound attenuation of GREs, and El Segundo consequently continues to suffer the noise effects of run-ups. The construction of the Crossfield Taxiway and its accompanying remain overnight parking spots for aircraft presents an excellent oppoitunity to begin planning for the construction of the proposed GRE.

As the DEIR notes, the GRE will be 1000 feet closer to EI Segundo than the Mastex Plan proposal, thus somewhat reducing its effectiveness in protecting the Cify from run-up noise. LAWA could mitigate this reduction with a commitment to a timeframe for building the GRE. That commitment, along with policy or regulations requiring all run-ups to occur in the new GRE, would promise EI Segundo substantial relief.

If LAWA insists on delaying GRE construction indefinitely, we would ask that the airport not designate the future site of the facility as a fifth remain oyernight spot. El Segundo is concerned that if the site were used for aircraff parking during the interim before GRE construction, the users of the site might resist future proposals to fulfill the Master Plan's commitment to building the GRE. The Crossfield Taxiway Project would displace only four such parking spots, so there would be no burden to users if the project provided four in replacement and reserved the fifth exclusively as a GRE site. Moreover, once the GRE is built, it potentially could be used for a remain overnight parking during fimes when no carrier has scheduled the GRE for run-up purposes.

## It is important to note that the Master Plan's provision for GREs has also been

 addressed in recent discussions between LAWA and El Segundo regarding the airport's vaniance from state noise standards. As you know, LAX cannot meet these standards and therefore may not operate without a variance granted by Caltrans. A plan for constructing the GRE now, rather than at an uncertain future phase of Master Plan development, could facilitate the variance process by demonstrating LAWA's commitment to reducing its noise impact on surrounding communities.
## Dennis Quilliam

Novermber 7, 2008
Page 6
Thank you for providing this opportunity to comment on the Crossffeld Taxiway
Project DEIR. Please feel free to contact me, should you have questions about any of the foregoing comments.

Very truly yours,
SHUIE, MHALY \& WEINBERGER LLP


OSA L. WOLFF
oc: City of El Segundo City Council


From: Landlord Solutions
[mailto:Contract\&PerformanceSiteAssurance@sprint.com]
Sent: Friday, October 24, 2008 1:50 PM
To: Cross Field Project
Subject: Unidentified Site
To whom it may concern:
Please see the attached notice rcvd by LLS; this notice does not include the Sprint Nextel site identification number, please provide so that I may submit for processing.

Thank You,
Landlord Solutions
Sprint Nextel Property Services
Mailstop: KSOPHT0101-Z2650
6300 Sprint Parkway
Overland Park, KS 66251
Toll Free 800-357-7641
Fax 913-523-9735
General reminders:

- Changes in Ownership, name, or address need to include an updated W9.
- All requests for documentation must be in writing: on letterhead with signature of current payee or representative.
- All correspondence must have Sprint Site ID numbers, site addresses, and contact information for most efficient and alacritous service.

```
Ma
\begin{tabular}{|c|c|c|c|}
\hline Westchester Granch Lorary Blast Sepulveda Eastway Westchester, CA 90045 & DC Mary Mcleod Betrune Regional Branch Lbrayy. 3900 S. Western Aven Las Angeles, CA bo063 & Culver Cily Libary 4975 Overand Rivenue Culver CIy, CA g0230 & ESegundo Libray 111 W. Marposa Avenue E Sequindo CA 90245 \\
\hline Inglewood Lbraly 101 W Manchester Inglowood, CA po3 & Hawthorne Lbrary 12700 Greviliea Averuve Hawelome CA 90250 & Lennor Lörary 4350 Lennox Boulevard & Los Angules Worid Arpots Websito whw ourdiapog -Projects - Publications \\
\hline
\end{tabular}
```



```
Los Angeies Worid Aluporta. Aliport and Fuolties Plomning - Atenton Demis Ociliam
Comments must be recelived by LAWA no tater Han: 5:00 p.m. Facilic Time, Monday, November 10, 2008
```




``` be made at the workshop. The puble woikshop and parking focites are wheelchair mocossible. Slign tanguage imperinten.
```









ARSAC Alliance for a Regional Solution to Airport Congestion 322 Culver BIvd. \#231 Playa del Rey, CA 90293
www.RegionalSolution.ong

We thank you for providing a copy of the draft ElR for review. We repeat our request that future document discs, like the one you provided, not be password protected to preclude searches and annotations.

For future projects similar to this one, we would hope that LAWA will release the information about project details to the public in a less plece-meal fashion and will hold more frequent Specific Plan Amendment Committee meetings to vet future ideas.

## Wo thank you for the opportunity to comment on this document and welcome your interchange

of ideas
Sincerely,


Attached detail comments-186 pages Copy of the Reference 2 ARSAC Comments


ARSAC Alliance for a Regional Solution to Airport Congestion 322 Culver Blvd., \#231 Playa del Rey,CA 90293

## www.RegionalSolation,org

Dennis Quilliam, City Planner City of Los Angeles
7301 World Way West, 3rd floor
Los Angeles, CA 90045
Re: Los Angeles International Airport (LAX) Crossfield Taxiway Project City of Los Angeles Los Angeles City File No. AD 034-08 September 200B
Draft Environmental Impact Report (Draft EIR) [State Clearinghouse No. 2008041058]
Referances: 1. Comment letter addressing CFTP NOP (City Clerk a AD-11-08)
2. ARSAC Comments letter to NOP No 1997061047 ra: Notice of Preparation of a Draft Environmental Impact Report (SCH No. 1997061047), Los Angelas International Airport (LAX) Master Plan Specific Plan Restudy dated 6-17-2008 to
Herb Glascow, LAWA Planning Herb Glascow, LAWA Planning
3. LaxMasier Plan Program and EIR approved by the Los Angeles City Council Dear Sit.

The general comments in this lettor are supplemented by pages of detalled attachment commonts for specific areas in the subject draft EiR. As stated in the draft ElR, all comments made to the LAX Master Plan Alt. D Final ElR are incorporated by reference. ARSAC maintains our general support for this project as noted in our reference 1 comments, but we have concerns about this EIR and some of the precedents that it is attempting to create about the approval process. The most critical issues not adequately addressed are noise and air pollution.

We acknowledge the imporiance of LAX to all of the region contirue to seek full cooperation with LAWA to develop an airport for which we can all be proud that is not another expansion with greater community impacts. WG also seek a regional notwork of traveler convenient airports.
This subject E(P for the Crossflield Taxiway Project (CFTP) addresses several elements in addition to taxiway C13 and diflers from the NOP which gave far less detail. The NOP included two taxiways. This ER includes additional roadway changes, a new fire station with pollce to World Way West We were originally told that the taxiways $S$ and a would be removed as part of the midtield terminals facilly upgade, but this EAR doesn'l identify any schedules or include associated information.

We have a genaral dispute with the way in which EIR tiering is being utilized as noted in our objections in reference 2 , Section A. The proposed changes are clearly substantial and go well beyond "minor additions' to the Master Plan. All public comments mado addressing the reference 3 document with specifics about the impacts in this EIR are incorporatad by relerence.

## 1. INTRODUCTION






 Enviommanti OUaily Ac (CEOA)!
The CFTP is located whthin the boundafees ol LAX. Figure $1-1$ shows the regoneni location of $L A X X$ and














 intormulton presence in the Lax Master Pan fina elip and provides me aww necastay 0 dessube me soochic envronnenial
In addition to addressing the environvental impacts associated with the CFTP, this Draft ERR describes


 Sludy (SPAS), for which a separate EIR is currentiy being prepared by LAWA, and explains how that study applas to certain improvements within the LAX Master Ptan but not the CFTP.

### 1.1 Summary of Proposed Project

This chapter provices a summary of the CFTP. The profect construction and scheduing are described in grealer delail in Chupler 2 of ithis EIR
The approved LaX Masler Plan includos, annong other ithirgs, the proposed constivetion of a crossfield taxiway between the north runway complex (i.6, Runways $5 \mathrm{~L} / 24 \mathrm{R}$ and $8 \mathrm{R} / 24 \mathrm{~L}$, ) and the south runway
complex ( $e$, Runweys 7 L 25 R and $7 \mathrm{R} / 25 \mathrm{~L}$ ) and an associated connection to and extension of, the exssing Taxiway D As part of the CFTP, a now vehicle sarvics raad would be constucted parallel lo and

Citria Eineman

Summary of Comments on D
Page: 13


 changen athert of the other propeti.
 Towempmodis


CFTP-PC00002

Page: 14
 happened

 tumber 1





## 1. Introduction

Invediately west of the new crossfend taxiway, identiferd as Taxiway C13. Construction of these proposed imptovarments would requiro connoval and polental relocailon of oertain ancillary and suppory
ficimies. To faciliate construction and operation of Taxiway 013 , Wordd Way West would need to be realigned and suppressed below grade at the intarsection with Taxiway C13 and the proposed adjacent sorvics road, roquiting canstuction of iwo bridgo lacilitios (i.e., one bridge structure lor the now taxiway
 construcled adacant to the World Way West allgnmiont Existing remain ovemight (RON) a/crat adjocent to Taxiway C13. A veficle pafking lot would be constructed just west of the main project area to replace bre American Airtines employee partiong lot that currently occuplee the area proposed for the resifualed RON. Also occurring in conjunction with be aforementionad taxiway improvements would bo the construction of a new Ire stationairctaff rescue and fire fighting (ARFF) tacility
Adduional inlomation regarding the characteristiss of the GFTP, atang with tipures daplicing the projor

### 1.2 Relationship to LAX Master Plan

1.2.1 LAX Master Plan and EIR
in Doocomber 2004, the Los Angeles Cily Council approved the LAX Master Plan and related entilitenents for the future development of Lax. The LAX Masper Plan provides the finst major new facilities for, and can be accommodated, in part, through ihe year 2015. The approved LAX Msstler Plan includes aiftield modifcations, development of new terminals, and new landslde facdities to accommodate passenger and employee traffic, parking. and Dravalion. The LAX Master Plan Serves as a broad policy statement guldelinges to be consulted by LAWA as it formulates and processees sate-specfic proiocts under the LAX Masler Plan programi.
The development of the LAX Master Plan was complated in three main chases and included an exfaustive terative propess during which LAWA reviewnd o wide range of altematives betore selecting a preferred development program known as Allemstive D. A brief summary of each of the three main phases is provided below

- Reasanch [Phase in During this phase of tha atudy, completed in December 1995, exsting aippon conditions at that tme wore defined, future domand was ossifneted, and the publc consultation process was indiated. It was estimated that the uncoristrained demand for alr sevvice at LaX by 2015 would be 98 minion annual passengels and 4.2 milion annual fons of cargo. During thits phase, the $\equiv$ 言 he airporf. (Plense also see Chapter 2 of the LAX Master Plan Final EIR and Chopter 3 of the Draft ax Master Plan.)
- Concuot Developmoni (Phaso ilif. Thls sludy phase was inilated in the fall of 1995 to evaluate tacity pastenges and carpo demand. The concept development processs involved policy decisions and design tradeofla that spanned over five years and included dozens ot options in ocder to achieve the bast balance possible to serve the aliport needs of the region and those of the differing stakeholders.
As the process progressed, agency and public meetings and workshops were held to inform concerned parties of the progress and findings of the study and ancourage partuipation in the process. As a resuit of pubicic input, two of the nitas four concepts were eliminated, and othera were oul fonward Three buid aitemalives and the No ActioniNo Project Allamattve were inilatly moved anter edded to the process, folowing the events of September 11, 2001 .
Los Angoles internutional Airport 12 LAX Crossfeld Taxiway Project Drall EIR
September 2008


Page: 17



CFTP-PC00002

Page: 19




Page: 21

 avemer






 saffety and efficioncy issues in that portion of tho LAX airfield, conssisient with approved LAX MJister Plen The CFTP is the second aiport timporvement project to De procosssod undor tho Lax Master Plan. Simiuiv
 now Doing inplememented.
The SAIP and the CFFP are only two or mary aideidd improverients contemplated in the approved LAX ES LaX take into account a number of considentions induang the felialiomanip of a propesed inprovement to exisidigg and liulure fecibees at LAX, in the case of the CFTP, the subjed inprivements will occur in an sadive portion of the existing aiffield that is primarliy occupled by a varioty of simaide and non-sissidy rolatod stiveturos, sorvco foods, and aireraf apron and taxianoeway areas. The midielid portion of the
 Weas Satolitio Concourso" in the LAX Mostir Flan EiR) and adpacent duai cosossteld thawways, and the development of aicraft conlacl gales on the woal sde of TBit and additional passenger holdroorn aroa within TBir. In light of the exsuing and planned facilies within the midieid ares, LAWA is proceeding with the detailed planing, engineering, and desige of the CFTP for inmediate implementation and is
conortinating that
 Descnption, of this EIR and the cfiarecteristics and relationstip of the other midneld improvements are descrioed in Chapter 3. Overview of Pryiec Soting. As descibod iterain, these major improvements la the midfind area have long been contemplated as part of the approved LAX Master Plan and the emvir.
Wrile the najor improvnments planned for the nidfieid area are curfently being advenced into more deisiled planning, engineering, dessign, and construclion, consislent with the approved LAX Masler Plan,
certain elements of the LAX Master Plan are currenty being reevaluated aE part of the SPAS. The SPAS will idently and eveluate allematives to certain elementa of the LAX Master Pian trat ara referied to as "Yellow Light Projects". Based on inpul from the pobllc and the LAX SPAS Asvisory Cummillee, several allemative concspls for the Yelow Light Profects have been lormulaled ind LAWA is curreniy preparing Yollow tight Proied and it is nol anlicipated that the SPAS will materatly alloct. or ba affocled by, ite CFTP, as further explained in Section 3.3.2, LAX \$pocific Plan Amendment Study,

### 1.2.3 Environmental Review in Light of LAX Master Plan EIR

Section $15188(a)$ of the CEDA Guideines provides lor the use of a program EIR to addrass a series of
actions that can be characterized as ons large project and are related either (1) geographically: (2) as logical parts in the chain of montemplated aclions; (3) in connection with ruies, regulations, plans, ar othor general ofieria to govern lhe conduci of a contnuing prograve: of (4) as indwidual activices cartied ou miligated in similan ways. The LAX Master Plan, which provides for a variety of feleted actions witrin LAX thal are under the authorify of LAWA and are govemed by a common sol of citeria (ie., the LAX Speofic Pian and LAX Plany, is partoularity well suited to the CEOA constivet for use of a program Eir.
In the processing of subsequent activites in the program, Section 1516 (b) of the CEOA Guidelines reguires thal the activities be reviewet in light of the program EIR to determina whelher an addilional environnental documeni musi be prepared. In conducting such a review, Section 15162 of Be CEQA One of the criferia pertains to the nuesilon of whether new information of substaritial importance, which

Page: 22

[^4]1. Introduction
was not known at the time of the previous EiR, indicates thet (1) the project will have one of more signifcant effects not discussed in the provious EIR: (2) signicant eflects prevoushy examined wil be substantialy more severa than shown in the provious EiR; (3) matigation measures or alternativee
proviously found not la be leasitie would in lact be feasibile and would sulstantally reduce one or more significant effeets of the project, but the project proponents declino io adopt therr: of (4) mitigation measures of litemalives considerably differtm trom those analyzed in the previous E/R would substantially roduce one or more sigeilicant effecis of the project, but the projeci proponenta dedine to adopt them. As described in greater detail below, the racent dovvopment of dotaled design of the LAX Master Plan ERR. Such now information now allows for a more dataled evalioation of pertain Impacts. paricularty those that are construction-related, and the relatively new pracice of addressing impacts associated with greenhouse gases. These considerations provide the bases for LaWAs detertrination that an addilional EIR is requiced for the CFTP
Where a program-leval environmental docurnent has boen prepared, such as in the case of the LAX Master Plan EIR, CEDA encouragas the public agoncy to Tier subsequent project-level environmental analyses from that document.' Section $15152($ a) of the CECAA Guidelinas dascintes the tering approach as follow:
"Tiering' refers to using ite anailysis of general matters contained in a broader EIR (such
as one prepared for a general plan or pobicy statemend) with later EiRs and negative
rom Ine brovder EIR, and concentrating the Iater EIR or negative dectaration solialy on
the lssues specific lo the later project.
Fiddisionally. Secilon 15168 (d)(3) of the CEOA Guidelines pravides that a program ER can be used to an naw elloots that had mol been monsiderad boforo
Based on the above, this Drati ElR for the CFIP is liered trom, and incompreles by totarmos, inc LAX Mestar Plan Final EIR and focuses on those effects nol previously considered in the Master Plan EIR The LAX Master Plan Final EIR is avaliatie for public reyew al Los Angeles Worlo Aurperts, Facilies an wwwhaxmasterplan.org
As istantified in the Auguss 7, 2008, Rovised Notice of Proparaton (NOP) for mis project-level EIR, LAWA inllially determined, based on an proliminary caview of the CFTP, Thal live categories of environntenta resources could potentialiy be affected by constuction of the project and roquire additional reviow that
was not otherwise provided in the LAX Master Plan Final EiR. These five caliegories of environmentai resources included traffic, air quaily (including human heallit risks), noise, surface water quality, and hazardous matenats/waste. Addtional reviow conducted in confunction with the preparation of this Draft Eir determined thet minimat additional analysis was fequired for the nolse, surface water qualiay, and hazardous malanalswaste e.. Table $\eta=1$ summarizes the results of LAWA's roview of the CFTP in Ight of tha LAX Mastor Plan ERR The subject table briefly summarizes: (1) where within the Master Pian EIR the environmental limpacts of relovance to the CFTP are Considored, (2) whemer the CFTP as currenty proposed poses the potential toresult in new signifcant impads that were not cansidered in the Master Plan EIR, resull in a subslantial incroase in the severity of previously disclosed sinnificant imoacts, or bo sucject to now or subshan ily within the CFTP Drall EIR the subloct impact area is dilscussed. With regard to the last collumn.
```
 4. Cavtorria Pubic Rimurow, Oudn Secion 210sa,
 ANM,
```

Page: 23





envirionmental disabilines thal warrant new analyusis sre induded in Chapper 4. Satting. Environnental impocts, aha relovance lo pos CFTP, is prowided ni Chaster 5. Other Envirorymernal Resouy
 impacts solatiod to surface tromspoctation, ali quatily, and human heelith risks. in addilion, bassed on feeld
 1 mpacts missociated with the proficit have soer addessed in the $L A X M$ Mastor Plan EIR, alltought some oddilonal disonssion of certain operatlonal mancts is prowided in this Elr the one nclathe emample is an anal) wis of chances in greentrouso gas emissions thal mel altritutatle to operation of the CFTP.

### 1.3 Organization of this EIR

This Eir lollows ine preparation and contient guidance providad in CEEA and Be Slate CELA miough 6 are provided in Voluyp 1. Appendicess are inclubed in Volume 2 Lisled below is a summary of the contients of each chapler of the repar:-
Chapter 1 - introduction
This chapter provides a summary of the proposed project components and the relationship of the project
to the LAX Master Plan. Also induded is a summen of the envitronmental analysis. to the LAX Master Plan. Also included is a summery of the environmental analysis

## Chapter 2 - Prolect Description

This chapler presents setailed intormation pertaining to the description of the profect, inclucting be results
 would be addressed by the taxiway limporvements proposed in tie CfTP; the objoctives of the prcoooes project and the specific charadersics of the CFTP. Also provided in this chapter is a description of the intended usea of this EIR as related to specific approvals needed for implementation of the proposed project.
Chapter 3 - Overview of Proiect Setting
This chaptar providos an overview of the existing land use and environmental seiting reievant to the ED CFTP. Thes chapter atso describes other projects proposed in the neartyy area that may, in conjunction with the CFTP. result in curnulative impacts on thal exisling setting
Chapter 4 - Setting, Environmental Impacts, and Mitiqation Measures
The infroductory portion of Chaptor 4 descibibs the analyblal framework lor the onvironmental feview of
the CFIP. The remander of the chapter includes detaled analysis of the ervironmental impacs of the
project on suffece lransportation, air quality, human heallt fisk, global climale change, and biolic
communities.
Chapter 5-Other Environmental Resources

 disclosure ard infomational purposes, because the construcion impacts of the GFTP on these omironimental resources were accounted for and uddressed in the LAX Master Plan Final EIR and Addenda to the Final EIR.

$$
\begin{array}{rrr}
\hline \text { Los Angeles international Airport } & \text { 1-12 } \quad \text { LAX Crossfield Taxiway Project Drafi ElR } \\
\text { Seplember 2000 }
\end{array}
$$

Page: 24










Page: 25


CFTP-PC00002

Page: 31


## Chapter 6 - Alternatives

As required by CEOA, Chapter 8 evaluates the potential for altematives to toe proposed CFTP that cal avoid or substantialy lenson any slgnificant uffects of the project, while also mieeting nost of the basco objectives of the projact
Chapter 7 - List of Preparers, Parties to Whom NOP Was Sent, References, NOP Comments, and List of Acronyms
This chapter provides the following, a list of tha individuals from the Ciy of Lor Angelos and contractioss Thal purformed key roles in the preparation ard development of this Draft EiR; a list of the paries to
whom the EIR Notice of Proparaton (NOP) was sent) a list containing a bibliography of documents used Whom the ElR Notice of Proparation (VOP) Was sent, a list containing a bibliography of documents used
in the preparation of Ihe Drafl ElR; a list of agancies, orgarizatione and individuals who provided in the preparation of the Drall EIR, a list of agancies, orgavizationg
comments on the EIR NOP. and a list of acromyms used in the Drafl ElR.

## 1,4 Summary of Environmental Impacts Related to the Crossfield Taxiway Project



 to the applicable LAX Master Plan commitmenta and miltgation measures, as weil as new miligation measuita that are proposed to reducn or avoid polential anvironmental impacts associated with the CFTP The level of significance following miligation is also listed.

### 1.5 Areas of Known Controversy




 of other Master Plan projects, and implementation of the CFTP is appropriate under the approved LAX Masier Plan; is consisisfent with commen practice for the phased doveloppent ar larga, jorig-term master plan infrastructure projocts: and is in accordance with the provisions of CEOA.
NOP comimients were also recesved suggoating that the environmental revinw, processing, and implementation of the CFTP should awail, and be based upon, the outcome of the LAX SPAS procuss The CFTP is nol dependent on implementation of any of the Yellow Light Projects of aiternatives to th. Yeliow Light Projects that wir be evaluated in the SPAS. Nor doess consituction of tha CFIP comnaif of the CFTP may procood prion to cormpletion of the SPAS process
These concerns are fulfy addressed in this Drafl ElR, but are, neverthelens, likely to remain an area of controversy
1.6 Issues to be Resolved

The issues to be resolved are primarly those summarized above retative to areas of controveray

| Los Angeies international Arpon | 1-19 $\quad$ LAX Crossfield Taxiway Proipci Oralt EIR |
| :--- | :--- | :--- |
| Sopternber 200s |  |

## 2. PROJECT DESCRIPTION

The proposed project is located near the center of Lax, as ahown in Figures $1-1$ and 1.2 in Chapter 1 . As one of the airfield improvements included in the LAX Master Plan, the LAX CFTP encompasse improvervenls to a portion of the existing taxiway system that supports alrctaft access between the nort
nunway complex (1... Runways $6 / 24 \mathrm{R}$ and $6 R / 24 \mathrm{~L}$ ) and the south nutivay complex (1e., Runway $7 / 25 \mathrm{R}$ and $7 R / 25 L$ ). In particular, the propesed projed would provide a new srossfiold taxiway. ddentifed as Taroway C13, and an associated cornection to, and extension of, the existing Taxiway D. In addition, a new paraliol service road along Taxiway C13 would be buth and the axisting alicrath parking localion would be relocaled alongside ha soulh snd of Taxiway C13. A new fire stabion/aicraft rescue
and fire Bghting facily (AREF would elso be constnited as pad of the proled The and fire fighting faciat (ARFF) would elso be constructed as part of the project. The subjed taxiway midfiedd taxoweye relafive to movenoni of aincratl on the ground. and also rofiect the phased implemithtabon of improvements that are inctuded in the approved Lax Master Plan. The proposed ARFF would roplace an existing station thai is severely undersized and. simitar to the taxiway The following further describes the aforementioned shircmit mound movement considerations, Pian. relationstip of the CFTP so the LAX Mastar Plan, the objectives of the proposed project, and the specific characleristics of the CFTP. Abso provided in this chapter is a description of the intended usets of this EIR, including as related to specilic approvals needed lor mplementalion of the proposed project.

### 2.1 Aircraft Ground Movement in Midfield Area

As indicaled above. Lax currently experiances ponodic aircraft ground movement congestion at and riear the existing midfield taxiways, specifically. Taxiways $S$ and $Q$, which connedt the north and south ninway comploxes. The following presents the rusulls of a ground movernent analysis completed by Ricondo os Associates, in consultation with LAWA and a representalive of the LAX Air Traffic Control Tower (ATCT),
which characterizes the pertinent existing condicons and deseritest how frose condilions would be addrassed by the taxiway improvernenta proposed in the CFTP.
2.1.1 Introduction

Discussions were heid wht ATCT Tratfic Management personnel on May 6, 2008 to teview than arcrath ground movement characlenstics in the midfield area and discouss the implicalions of the proposed laxiway improvernents." The discussion, and subsequeni analysis results prasented herein, focised on laxiway queving during west now operations 86 , aifrat artive and depart lowards the westl, which
account for approximstely 94 percent of annual operational poflems all 1 AX loms al LaX
The meeting with ATCT personnel led to discussions rolated to the analysis of peak operating condifions witt change, the need for these operations will remain due to other aiffieid limilatons anduding. boi nol limiled lo, operational hreoughput and gate avaliability
2.1.2 Existing Conditions

The current queuing areas (i.e. taveng aircraf wailing areas) and taxipalls ame depicted graphically in Figures 2-1 and 2.2 . 1 should be noled that olber guwing ateas do exist on the alfield but are not considered to be impacled by the polential development of Taxiway $\mathrm{C13}$ The queuing weas aro
designed to control arfieid movements to manage congestion in the alfield operatrg environment The major queuing areas include the departure quoues for all furways, of which Runway 24 L and Rumwa 25R are the primary departure runways. Taxiway movement queves include the intersection of


Page: 45
 what partio of this we ined in chis enaluationt

CFTP-PC00002

Page: 46
 Indenteminate vmourt of tins torit to be implementens



## 2. Project Description

Tawowy Q and Tabway E, and the intersection of Taxiway $S$ and Taxiway C. Rurway crossing queues
 and $\mathrm{B}+\overline{6}$.
The aloramentioned queues are used during paak operating condfions or heavy traffic interactions to atiow for continued movement of operations on the airfield by imiting the moverients of some airtraft until all conficing frafic has been miligated.
Currently. ATCT stall use the Taxiway $\$$ quauing area to hold ancraft but arive on the nonth rumway complex and are heading to a gate located on the south side of the Central Terminai Avea (CTA), or leave a gate localed on the north side of the CTA and are deparing from the south rurway complex. These alvcraft proceed south on Taxiway S, Conflicts aftise when aircraft that arfive on Runway $25 L$ and cross
Runway $25 R$ are exting the south runway complex at Taxiway P of Taxway $T$ and head east along Taxiway B to the ussigned gale on the south side of the CTA Aircalt destired for a gite on the north side of the CTA heed north Va Taxiway $a$. Congeston is also caused by alicrati departing the south terminal complex vis Taxway C. Taxi rotes are illustrated in Figures $2-1$ and $2-2$. Duting peak periods There is the increased polental and occasional need to hoid aliccall on Taxway 5 to allow for aircraff
exiling the socith rumway complex to clear the rumway environment and aillow alrcrath deporting from the exiling the south cunway complex to clear the rumway environrment and ailow alrcraft departing from the
south lemminal complex to begin taxiing. The resultant queuing may be necessairy to avoid airraft bscking up onto the funway environment from Taxiway $P$ and Taxiway $T$, and to prevvent aircraff from backing up into the taxilanes between the terminals located on the south side of the CTA.
Sirmataly, the altcratt queue located on Taxiway a in used to control the fow of aircrath traveling from the
south and continuing to the north lemminal and umway complex. If the deoarture queve for the north uunway complex inhibits movements for aiccrat traveling to a gate on the north complex, aircratt will be hald on Taxiway O rather than midarg them into the departure stream. Additonally, if the departure departure queve for Runway 24 L is ahortor.
An addilional queve is localed at the indersection of Taxiways E and E10. This queve is used for airchatl That are waung oo their assyned gato io become avalablo.

### 2.1.3 Conditions With CFTP Improvements

The addition of Taxway C 13 and the extension of Taxway $D$ are expected to improve the queuing options available lo ATCT personnet, as depicted in Figures $2-3$ and $2-4$ and described below. According to LAX ATCT Lraffic managenent persenne), artivals from the north nurway complex (primarly EF corntiex, allowing lor an additional queuing point at the intersection of Taxiway B and Taxivay T. The additional inxiway (C13) will also allow ATCT personnel the ability to keep traflic flowing and reduce
congeston on Taxiway S. which can cooun when there are ilcraft translitoning from Tixiway P to congeston on Taxiway $S$, which can ocou when there are alrcraft translioning from Taxiway $P$ to nunway complox from both Taxiway T and Taxiway P along Taxiway B. which heads in an easterly direction.
The Taxoway $D$ extension will miduce the potential for congestion on Taxiway $E$, which is curmently the only available eastl/est taxiway lor the nocth rurway complex Bidireclional Hows along Taxiway E during peak operabonal periods oause congestion west of Taxiway a. The Taxiway $D$ extension will also be used by ATCT staff to stage aircrall wailfg for an avalable gate. Currently aircraft waxing for a gale hold ai the intersection or taxiway E and E1v, which can potentaly lead to sircrant wailng bet.

Los Angulas intemational Airporf $\quad 2-3 \quad$ LAX Crossficid Taxwoy Project Draft EIR
September 2008
CFTP-PC00002

## 2. Project Description

Avfieid ground operations af LAX were modeled using the SIMMOD ${ }^{\text {I/M }}$ simulation moded for conditions
Witt- and without-CFTP tasoway improvemants. The resuits of the moseling found that the west flow average dally ground laxi delay Time for ariving aircraft deoreased from 2,11 minutes to 1,85 minutes, and lor departing alcrath dacreased from 2.39 minutes to 2,07 minules. While this ncrement of reduction nature and does not uccur regulady or in a consisiant manner throughout the average day, these average daily reductions multiplied by the average number of daily aircrall dperations $(1,864)$ will resuit in subastantial reductions in the total dafy aircraf taxiddie limes at LaX. This overail roducton provides for $\equiv$ substanlial benelits rotated to the salely and elficiency of aicrafl ground movemont at Lax, including
reduced aircraft fuel burn and associated air poilutant and noise enissions
Whise the resuits of the airfied operators smuimion modeing descibed above found that there will be a reductian in the laxi delay limes lor aircafl movemeni on the ground al LAX, the model masults indcated
thal there will be no change in the number and overail temporal distibuction of alicraft arriving at. and departing from, LAX, is other words, the CFTP improverients do not directiy affect the throughput of the cunways al LAX or chenge the scheduled limes for antivals and deparflures. The most notable change in
the operational characterstics of the airlield, with completion of the CFTP, will be that the LAX ATCT the operatonal characterstics of the airlield, with completion of the CFTP, wilf be that the LAX ATCT
would have less need to asisign amving and doparting aicrift to temporary -holo' areas belween tre gate would have less need to assign amriving and doparting arcratt to temporary holf areas belween ne gale
and the runway during occasional peelods of congestion around the midfield area. A sucondiry bonefil of the CFTP wils be that, by providing addational improved aircraft accossa between the north nurway comptex and the south nerway complex, the LAX ATCT will be better able lo mandain a belance in alconh amival operallons between the wo runway complexes throughout the day as designated as part of hen alpor's
safety program. During periodic occasions of aircrat ground movement congestion in the midneld aiea, an airccaft artiving on one side of the airfielo that is normally assigned to a gale of runway on the either side of the wriald may be roassignod ty ine LAX ATCT to remsin on its origival side. However, due to subslanlially change the exisling overall daly split in operations between the north and scult runway
comrolexus, nor will il materially change the existing imbalance in the number of heavy aircrat operating in the north and south funway Domptoxes. The assignmant of depering heavy aircrah to a paricular
 evalualing aptions for improvemorits to the north runway complex, wiltin the SPAS process. includng the lengthoring of rurways to address that inibatance issue.

### 2.1.4 New Large Aircraft (NLA) Operations

New Large Aircret (NLA) are expected to enter the market in the near future and include the Airtus A380 and Boeing 747-B. These aircrat are considdered by the FAA to be Airplane Design Group (ADG) V
aircrafl and require additional seperation standards lo operate on the aifield environiment.
Figures $2-5$ and $2-6$ depict the forecasted taxjpathis that are expacted to be used given the courrent aiffield, according lo intarviews with the FAA ATCT. The depided roules are preliminary in nature and availabie taxipaths torecasted for NLA aircratt arriving from the sovth and proceedling to the neth tortinal complex; the firal is va Taxiway AA and the second is using Taxiway S in an opposite direction fow. Taxiway Sis used due to restrictions that do not ailow NLAs to utilize the northbound Taxiway Q Use of Taxiway S by NLA will create an adddional queuing point on Taxiwey E, just west af Tadway S. This queue will be used la hold aircrafl hal aro traveing lo the south torminol complex via Taxiway S. All
aircaft wit be held there unti the NLA has triversed the taxiway to reach the north terminal complox: Because this coald irvolve significant delays and lerther congest Taxiwsy E, ATCT personnel hove advisnd that under the exising condiluns every efror wili be made lo have the NLA arrivals land on the rurway complex nearest their gate. The secondary route avaliable would fequire MAs arfiving on Rurway 251 th laxi west to Taxiway AA along Taxiway C belore luming north onio Taxiway AA Nen east on the noth end of Terminal 2). Additionaly, N(A leaving the north terminol complex and departing from

Page: 55





Page: 56







## 2. Project Description

 procreaing lo the south terminal complex (i.6, Gate 101 at Tirt), ats expoded to ullize Taxway S. USE other aicrath ( 0.9 . speed restrictione). The existryy quwuing local ons for aicrall that have arived and are awaling a gote at the intersections of Taxiway E and E-10 and Taxiway B and E-16 are not available to NLA due to their proximily to the intoand runways, therofore NLA are assumed to be given the highes priority with regard to available gates.
Figures $2-7$ and $2-8$ depict the potential arrival and departuro taxipaiths indicated by ATCT parsonnel for Thi NLA with impledentation of the CFIP. Under the proposod ptan, NLA will be allowed to taxi on from the north nurway complex to the south terminal complex to get to the NLA gate at TGIT (Gate 101) NLA will be able lo utilize both the existing foutes or the Taxiway D extension while taxing wost, which will alliminate discuptions of Rurwoy 24L, and than proceed soulh on Taxway C13. As nolad above, the existing route, Taxiway S has limited use as it has taxi speed resstrictions for NLA and limits the taxiing speed Ior Design Group V aicrall utifing Taxway Q in addition, other alcrall arfiving on Runiway $24 R$ of Taxiwny S , especially when an NLLA Is proceneding either south or noth on Taxiway S. In summary. Taxiway C-13 will provide the ATCT addiborial ground movement management options and will reduct The noed to queue arcraff at key taxiway intersections. NLA arfiving on the bouih rurnway complox wiul able 10 to proceod to Taxiway AA,

### 2.2 CFTP as Part of the LAX Master Plan

The approved LAX Master Plan provides for an exdensive array of improvaments at LAX, including a
variety of improvenvents throughout the siffeld area. As a pradical maher, the $\operatorname{tAX}$ Masier Plen and Master Plan EIR do not idenify by name each indivicual improvement contemplated therein; however, $t$ basic location, nature, and function of various Masler Plan improvements, induding bhe CFTP, cas be 言 F determined in reviewing the LAX Master Plan and Master Plan EIR text, graphics, and supporing,
documentation Addilionally it is mporiant to note that, as the name imples, a master plan" typically documentation. Additionslly, it is amporiant to note that, as the name imples, a "master plan" ypically detals of various improvements are detinod in the proparation of construction-fievel planning, engineering, and desgn
The main elernents of the CFTP, inctuding Taxiway C13 and the portion of Taxowsy D Hhat is being presented earlier, delineates where Taxiway C13 and the Taxiway D extansion ars localed within the airpot concept plan for Altornative D, which was addrassed in ine LAX Master Plan and ultimately setected as the afproved CAX Mastor Mlan, Anfied improvements related to the CFTP are also noted in presented below:

- Construct light and mark new crose-Vield taxiwayn west of the new satelite buildingWest Smellite Concounte" (LaX Mastor Plan Final EIR page 3-82 and Final LAX Master Plan page 2-123).
Taxiway D would be extended approximately 7.106 feet hom the intersection of Taxiway $S$ west to
Texiway E-17 and would be 100 leet wide (Final LAX Master Plan page 2-10)



## 2. Project Description

 Midfiold Avea (Phased) and Midfield Aprons \& Taxiways.
Additonaify, the subject taxiway improvements are acoourted for in the technical aisside arratysis that was complated for Allemative D, which is the basis for the approved Master Plan Specitically, Apporndix E of the Final Lax Mastor Plan prosenis the assumions for, and anatysts of, Whe ainioi operational charateristics of Alemative D. Figures E-11 and E-13 in Appendo E depict the primain
ailfield taxi roules simulated for west flow and east flow operations, sespedively. The sublect figures Include two new crossfeld taxiweys occurring west of the Midfield Satellite Concourse, the westernmosi taxiway being Taxiway C13, and the future east-west taxiway syitem south of Runway 6R/24L, which includes the alignment of the Tawoway D exdension. The airfied infprovennents assumed to the airside analyis in Appencix E or me Final Lux Master Plan, including the subject taxiway inprovemenis, provid tualily, and human health risk analyses heorporated into tha LAXX Master Plan EIR
The new ARFF proposed as part of the CFTP is generally acknowlodged in Section 3.2 .9 of the LAX Rlan Final EIR and Section 2.6 of the Final LAX Masier Plan tex as presented below
*The presence of law enforcement and emergency response teams woukd be entiancad with inçease fire response capabialies . (LAX Master Plan Final EIR page 3-67).

- This new ARFF would be localed oast of the thel farm and nant of the U.S. Coast Guard Faoily $\equiv$ (Final LAX Mastor Plen vage 2-101)
As further described bolow in Section 2.4.1, the location and size of the subject ARFF was rafined lrom Angeles Fir Dignaily envisioned tor the LAX Master Plan based on consultation with the Oty of Los the CFTP.



### 2.3 CFTP Objectives

The objoctives of the CFTP indude the following

* To previde taxiway improvements, induding a new taxiway, which will help alieviate periodic and efficency of diccraff ground movement during such timose, and reduce tincraft taxi tone and delay
- To provide a new crossfield taxiway dessigned to accommodate ADGV) aircreff (Le., N.LA such as the Arbis A380 and Boeing 747 -B). recognizing that limited commercal operaton of the A3s0 at LAX is .
scheduled to begin in October 2008 and is anticpoted to increase substartially by early 2012.
- To implement laxiway imorovements and other related aiffield operations area (AOA) improvements complementary to the systitematic phesoed implementalion of the Master Pran
* To provide for bolth near-tarm and long-term environmental benafits, partioviarly as related to reduced air quality pollution, including grounhouse gas omissions, and peduced fuel consumption


### 2.4 CFTP Characteristics

Consititent with the LAX Master Plan, LAWA proposes to construct a new cosstiold taxiway between the $7 \mathrm{~L} / 25 \mathrm{R}$ and 7 R 25 L ) at LAX. As reflected in the CFTP Objectives presented. above, the new crossliekd

Page： 65







CFTP－PC00002

Page： 66
 me？

## 



tiuntar 4 Aunar Omm Paration


## 2．Project Description

taxway and associated improvements will help reileve exating aircrat traffic congestion and reduce EIS help the dirfeld taxiway systery gocommedato NLA that will soon be operating at LAX．The CFTP is located on arrport property and ancompasses approximataly 82 acres wither the central porfion of the aifield at LAX The propised project shite is cimmenty payed and contains various aiffield and ancillary／supponf facilities．

2．4．1 Proposed Improvements
The CFTP constats of the lollowing components described below and presionted in Figuret 2.9 through
2.11 ．
Now Crossfield Taxiway．A new crossfield（la，．，north－south）taxiway，Taxlway C13，would be conslicied belweer exisling faxiway $E$ in the noth alified and Taxiway C in the soth airield asphatt shoulders on either side．The centerina of Taxiway C13 is proposed to be 167 feet from the west ndge of the existing Amencan Airines High－－Bay Hangar．This new laxiway would be designed
 pounds．The taxiway pavement would include a 12 －inch econocete base and 18 － 1019 －inch Portand enterine lo the edge．taxiway lighting would be installed along the length of Taxiway C．13 and on he centerine．
－Taxiway D Extonsion Exsing Taxiway D，which is 316 fool south of existing Taxiway E（centerine connleriline）．would bo extended westward approximatoly 1,900 leet from Taxiway 5 to lhe proposed rossield Taxiway C13，with a coss－taxiway connection lo Taxiway E，The Taxiway D extonsion俍 Taxiway lighting would be installed along the iength of the Taxiway D extension．
－Connector Taxiways．The airside components of thts project indude three connector taxiways，Ex avement with，with 40－foot wide shcuiders
 Neel wesi or Taxiway C13 would be constructod to provide access
－Realignment of Worid Way West．To tacilate cinstruction and operation of Taxway C13，Wond Way West would noed to be realigned and suppfessied belaw grade at the intersection with Tawway便的e structure for the new faxiway and one bridge stivcture for the new adjachnt service mond） Each of the iwo bridge structures wouid include consituction of wing walts（ie，retaining walis）to㲘 djacent to the World Way West alignment
The exasting aighment of Woric Way West within the project limis is a fourtane divided anteral coad with a two－lane reundabout system al Bue easternmest end af the roadway The projed sise signalized at Coast Guar Road，Hangar Road and al Sky Chers Live just before the roundabout thas a posted speed timl of 35 miles per hour with no on－stinet parkicng allowed．On－street paralei parking is not permitted．however orive approaches connecting parking facilities currently axist and would be maintained as needed．The preiminary alignenent for the relocated World Way West Coast Guard Roadd and then extend east paraliet to the coxisting road for a distence of Coast Guard Road and then entend east paraicel io tha oxisting road for a distance The lotal length of the roadway realignment would be approximaiely 1,200 feat．

| Los Angeless international Airport | $2-22 \quad$ LAX Crossfinld Taxiway Project Draft ElR |
| ---: | :---: | ---: |
| Seplember 2008 |  |




CFTP-PC00002

Page: 73




For tre proposed depression of Wordd Way West, a 5 percent grade would be applied at both ands of The vertical alignomand to allow a rapid depression and recovery benealh the aiffleld sufvicie road and
Taxway $\mathrm{C}+3$ funnels. A minimum vertical dearance of $16^{\circ}-6^{\circ}$ would be provided befveen the roxdway and tumnels to prevent damage to the roof of the tunnels. Pavement gninding and asphat dverrays would be required where lhe proposed algnment meets the existing ailgnment to previde a sambest transition betweon pavements. In additon, the proposed foadway would require is rain concrate ialand at the median to protect oncoming traficic from the mid span tuanel box support
The planned Wona Way West would provide enhanced pedestian teatures that would improve pedestian conneetivity and safely by providing a 6 -fool wide sidewalk along both sides of the
roadway. A 5 percent maximum longitudinal grade would help provide access to the end of the rondway tor disabied pedestrians on the sidewalk. Accessititity to public pedestrian transif lacitites, including sidewaiks and curt ramps, need to be evaluated for compliance with the reyuirements of the Americans with Disabities Acl (ADA) where fuwre connecting driveways are proposed

- Relocallon of Existing Remain-Over-Night (RON) Aircratt Parking. Exasing RON alicrall parking
curruntly locatud wittin the proposed alignment of the new Taxiway C13 would be restiuated to a new location adjacent to and wect of Taxiway C13. The existing RON alrcraft parking incluces four spots hot can each accounmodele ADG V aircraf (ie, Booing 747-400). The existing RON bircraft pariding spots are currently subleased from American Airlines by Qantas. The relocated RON aircraft apron
would be apposximately 1,500 feer in iength and 300 feet in wadin, and would comain up ta five pariong spols, Bree of which would be sized for ADG VI aircraft (is., A330, Boeing 747-8) and bwo which would be sized for ADG V sircrath. The RON layout is illustrated in Figure 2-12. The new parking spots would be equipped with 400 hertz (Hz) power aysterns, to provido aifcratt with an aliernafive to the usse of or-boerd suxilary power units, preconsilioned ar (FCA) to holp ventiate now RON ares would be for aifctall pariong only, with some liniled meinteriances aclivilies, and would not be used for passenger loading and/or unloading
As pert of the new (relocated) RON area, the southermmost alrciat parioing spot would be designated
as being avaiable for construction of a $\$ 0.000-$ qquare-loot alicrall ground runwup enclosure (GRE: en Figure 2-12) A GRE is a "U-shapod enclosure devigned to provide a noise bamer during "ninup" lesting" of aincratt engives, completed as part of senvicing and mainterance acilywies. Fresently aircraft ground run-ups are conducted at unenclosed blast-tence/wall areas situated hear the
maintenance operations for Federal Express. Continental Aarlines, Amencar Airines, Dotta Arrines, and al the former TWA Hangar area. The LAX Master Plan includes the fulure development of two GREs as replacement ancilisry facilibes displaced in coniunction with the future Midferd Satellite Concourse (sse page 3 -82 of the LAX Master Plan Final EIR). Eased on refinements made in conjundlon wilt, the more detalied planning and dusign of Taxway C13, The surenty proposud
alignment of Taxway $\mathrm{C13}$ extends through the locatlon designaled in the Master Plan for the future west GRE (sen Figure 2.8-1 of the Final Master Plan). Nane of the improvements propesed to be constructed as part of the CFTP would eliminate ary of the wisting ground rum-up laciillas or affect their cuirrent noed and operation. The designation of one of the five new parking spots wittin the olocaled RON area as a future GRE area preserves the funclonal intmon of the Masier Plan realative roplacement of andiary facinfies displaced by the future Midfield Satente Concourst-
Development of a GRE witin the subiect portion of the RON arca would mill ailow periodic use of the affected alrorall parking spot for smalier gauge aircrath when not needed for ground run-ap operations.
- Now Airfield Fire Stalion/Aircratr Rescue and Firefighting Facility, in canjunction with the modicalone and mproven.



Los Angeles intemational Airpor	228	LAX Closstield Tronway Project Draf EIR
Soplember 2008		

## 2. Project Description

crossfield taxiway in the midfleld area (i.e. Taxavay O13), a new ARFF is proposed to be constructed as a raplacomern for the existing Fire Staton No. 80/ARFF located on the airfield adjacent to Taxiva 5. Tho proposed ARFF would provide approxinctely 27,895 square Foet of administralive office area and station living quaders within a 2 -story structure. slx bays for amergancey vehicles along with a
service bay, siloraga area for vañous emergency response equipment, and briefing and training
 floor plan for the new facility. The new ARFF would be designed and construded ta provide for LEED.centified (Silver) bullding, By comparison, the existing ARFF is aporoximatoly 14.000 square EED-centified (Silver) bulling. By comparison, the exosting ARFF is approximatoly 14,000 square loet in size with four equipment bays, no notable storage capabaitias, very limited briefing and training
areas, and, having beer constructed alimost 30 years aga, has no nolatle walar/evergy ponservation of sustainabitity fealures. The existing station has 14 fivelighters ( 12 crowman and 2 officers) assignod to each 24-hour shift. Upon complotion of the new ARFK the station ciow would transter to the new lacility and the existing ARFF would pe vacated, to possibly be used tor slorage.
The size. layout. and lacilies proposed for the new ARFF were deternshed through consulation and couordination befwoen LAWA, the LAFD, and the dosign team, which is consistent with the provisions IMasier Plan Commilmerits PS-1. Fue and Folice Faoility Relocalion Plan and PS-2. Fire and Palice Fadily Space and Sitng Requirements from the LAX Master Flan EIR. The LAX Mastor Plan
originally anticipalod the now ARF to be approximately 18000 square feet in size and would be located at the northeast edge of the fual larm. More racent planning. engineering, and design ellorts associated with the CFTP, which meluded consultation with the LAFD, identified the need lor a larger ancity in ontor to accommodato itm sive, voluime, and nature of emiergency fesponse equipment mee ARFF, paticuarly with regand to oquipmant storage area, and to provide approptale living.
admininitrative, Bnd training areas for station personnel. Also, the location proposed for the new ARFF was roved south of the orgininafly envisioned sie, becoming beter sihated relative to the mod points of the oularmest pumweys (Rurway 6U24R on the north and Runway 7RR25L. on the south) consequently besing more centralized relative to responding to emergencies on the aiffield, and alowing construction of the ARFF to be boltar integrated with surrounding land usis and the
The planing and design for the new ARFF to be compieted as part of the CFTP initially idensfied a
 evelopment of the new ARFF due to the proposed reatignment of World Way West, which recuires the demoiltion and removal of the LAWA Records Center buiding that currenty ocoupies the subjert site. Further planning alld engineering design efforts associated with phe CFTP, as well as ongoing coordination and consultation with the LAFD pursuant to Master Plan Commitments PS-4 and PS-2 noukt inis sedtion. Figure 2-9 shows the location or the stid for the feew ARFF

- Drainage System. The mejority of the projoct area-inioluding the incrovenents to Worla Way West. The new taxiways and service road, and the ralocaled ARFF-currenily drains to the canter of the sil drainage trunk line rurning east to wost located in the middice of the alle colsecte runofl wa a piped notwork. This main line flows west coninuirg along World Way West The trunk line increasea in Wae from a 42 -inch diameter pipe al the cast sile of the project area to a 72 -inch dianelar plipe at of the profed area. Runoff trom the relocated pakking site fows to this line. There are minor underground sub-systems scablered throughout the project area. Thore are no kooding problens in or nest the projed aret.


CFTP-PC00002

Page: 79


Since the existing site is fat and covered with impervous surface, which would remuin the case with pattorns. The proposed drainage system is goneraily designed to route surface runoll to a pipmo sysiem with an algnment sirmiar to the existing ctrainage Bystem that would eventually connect to the existing trunk line in World Way West The ane notable exception is thal some of the main lines would need to be relocated to tre north or south of tse future Midfeld Satelise Concourse duc to the俍 swales, catch basins, and underground pipes.
A pump station would be required to drain runatf llowing into the portion of Wond Way West that is loposear to be depressed. The drainage system for the depressed roadway would be designed for design would conform to the Beat Management Practices approved by the Chy of Los Angeles surosu of Sanitation. Where required, oilwaler separalons or cther equivalent means (bioswaies discharging inta the pubici storm drain zystem. Fueling stations would be dessigned to contain nunotif Thus alowing freatment pror fo entering the storm drain syssem.

- Utitities. There are several attity lines located at the project site, including lines byat extend beneath and across . AKT, and LAWA fiber opicc lines, fuef lines and along Wond Way West. Such utilitie sanitary sewer liness ranging in diameter from 4 to 15 inches, the 150 -inch-diameter North Outtail Roplaceme. The sor (approxinatey bo col below sulaca), clectical ines, water ines, and naluna ass linas. The ,

Water Line Relocation - Preliminary angineering for the projeci shows that water lines that cross depressed road In est may need to be rulocalad io allow the construction of raatigned an degressed road. In addition, construction of the propased Taxiway C13 and associated vohicle
service road would internjpt an existing north-south fire water laop north of World Way West. A now consiodion is proposed to maintain the fire water service loop north of Werld Way Wesi South of World Way West another fire water 1000 would be protected in-place and exssting tiydrants would be replacad with slush-mounted types to meel FAA dearance requirements. Th
proposed waler line polocations are shown in Figure 2-14.
Sewer Line Relocation - A sewer Ine lis proposed that would sonnect a new oillwater seoparator t
Fuel Line Relocation- Preliminary engineering shows that an existing $16^{\circ}$ mpeor jet thel is located
under the proposed Taxiway D extension it is proposed that the subject line be replaced with a pow line al a greater depth north of the existing aligement fo allow the proposed improvements The proposed jet fuel line relocation is shown in Figure 2-14.
Gas Line Reloration - A 6 -inch diameter nalural gas line that crossos the locallon proposed for The depressed World

- Communicalion Line Rolocation - Exising underground comemnaicalions cables that rum undemeath Word Way West would need to be rolocated. In addation, a now north-soult communication duad bank would be providod. Proposed telephiane and data communication lines
- Electrical Line Relocalion - The ovestiead elocitical linas that nun along nxisting Worid Way West widd

| Las Angeles international Airport | $235 \quad$ LAX Crosstiold Taxiway Praject Draff EIR |
| :--- | :--- | :--- |
| Septenber 2008 |  |

## 2. Project Description

extension. Figure 2-15 shows the locavion of hose electrical facitios within the airfule operations area.

### 2.4.2 Removal/Relocation of Existing Facilities

Construction of the proposed CFTP impuenents would requie renoval and polential relocation of the Construction of the proposed CFTP impruvements would require rembval and potantal
following anollary and surcoit lacities. The affected faciities are shown in Figure 2-16.

* GSE Facilities. Gmund Service Equipment (GSE) maintenanca facilities operated by Mercuiry Air Services and Eversroen. Aveation are localed in the soultwest coener of the project avea, east of Taxiway C15. The Mercury Operations is proposid to be reilocated to, and consolidated within,
anolher evisting Mercury OSE meintenance lecity at LAX, while the Evempeen operations is proposied to be relocated to tho Anefican Airtines cargo operstions area. The Ametican Artines GSE maintenance operationst located at the end of the High-Bay Hangar would be relocated to an existing sulding at lee United Airlines Cargo Complex
- American Airtines Employee Parking. The existing pratking lat located directly west of the HightBay Hangar is currently used by Amserican Arrlines employeus, including approximatoly $20-30$ aircratf
 for the proposed RON described above. Replacement parting would bo provided by improving and expanding an existing parking area located approximately 1.500 feet to the west, immediately southeast of Where Taxiway AA crosses Word Way Wesi. Figure $2-17$ peovidns an seriai view of the jocation proposed for the replacement parking and. Figure 2-18 delineatas the concapt for how the the site if currenty paved and mostly vacant with the exception of equipment associaled with an existing groundwater remediation syslem (i.e., welf heads spaced evenly throughout the area and a free product recovery compound al the center of the silt), and the westem porfion of the site is unpaved and mosily vacant with the exception of well heads associated with the groundwator
 syatem to continue to operate. Accesss in to and out of the parking lot wodid be via World Way West, which is atsa the case for the existing parking tot
* American Airlines High-Bay Hangar Canopy. The west side entrance canopy of tha American
Aldines High-Gay Hancar located south of Taxiway E and west of Taxiway S would be removed in order to provide the necessary ADG VI Taxiway Objed Free Avea along Taxiway C13. The canopy is primarily an archileclural leature of the bulding and is nol essential to the basic lunction and altected by cmevoval of the canopy no. replacement factity is required.
- LSG Sky Chefa Flight Kitchen. The LSG Sky Chels Might kitchen locatad just north of Wond Way West would require rolocation oulside the project ares. The subjed 隹ht killchen would be consolidated within another existing L.SG Sky Chefs fight Nitchen, located adjacent to the Ametican Airlines Low-8ay Hangat
- LAWA Records Center Building. The LAWA Recoids Center building localed on the north side of Worid Way West at Coast Guard road would be demnolshed in corfuuction with Ure prososed an existing warehouse at the Delta Aifines complex in the northeastern part of the aimport.
- Qantas Maintenance OHfice. The Canlas mainlenance offica, which is housed within a lemporary ulding located north of the LSG Flight Kitchen, would be relocated to the 2,200 square loot buiding Afrines theilly


Page: 85


Page: 87



## 2. Project Description



Wien regard to the area proposed for the new ARFF, it is apron area for alicratit paking and maintenance
 arte sfil avaidabie for arcoaf. As such, no replecement of the affecled apron area is proposed or werranled.
In addition to the spedicic facilifies described above, various utiitien located within the project aren, Including the local perfions of the aiffied drainage system, airfeld iightirg and signage, walar, sewer,
electrical, fatural gas, fuol, and fiber optes, would require relocation and olher minor modilications. This electrical; fatural gas, fuel, and fiber opbes, would require eelocalion and other minot modilications This
includes ufilles ocaurring along the existing alignment of World Way West that would be relocated into includes ufilites occurring along the existing al
the new offidor adjacent to the realigned mad.

### 2.4.3 Construction Phasing

Construction of the CFFP is anticipatod to occur over approximately 16 months. The construction
 nature, extent, and duralion of dismupion lo aipport operatons in and near the project area, and mannging
the costs and logistics of completing substanfal amnounts of work during the nightime, weekends. holidays, and extended work avints. Taking into account these considerationts, and with input from toer LAX ACTC, a consluction phasing schedula was developed that. for Be most par, would nol require any E notable lenporary closures or exasting funwayb or laxiways at Lax duning consinicuon of the CFIP. The taxiways aro boing lied into the existing taxoways. The sequence, approach, and duraton of indvidual construction activities have also been programmed to reduce, where possible, impacts to ine existing airline tenants opera hit one mode of accens at all times for artine terant RON parking in the proiect vicinily.
The generni soquance of construction activitios that is currently antiopsted for the proposed project is

- The initial phase of construction wil focuis primanay on remover al exsing sirucuresiuses, particulaw in area proposed for Taxiway C13 north of Word Way West. This includer removal of the LAWA	Los Angeles International Airport	$248 \quad$ LAX Crossfield Taxiway Project Draft EIR
Soptember 2008		

Page: 92
 to be madel what numwer clowness be requited and when?

Records Center, the LSG Shy Chels Fight Kitchen, the Qantas Mainlenance Building, and the LAPO Bomb Squad Building. Removal of ite former LAWA Police Departmenl Decision Conter may also pccair in this infial phase and operations in the DHL Freight Buillding will be moved to another bulding nearty South of Word Way West, removal of the west entrance canopy at the Arvericar Aviation would coscur Following that, temoval of the American Airines GSE Maintenance, Builining would occur

- The Frist improvement to occar during the intial phasa of construction would be the completion of the American Aurines amplicyee parking lof replacament: followed ymmediately by the clearing and embval of the sxising parking lot. Alsc nocurring in the inilias phase of consiruction would be development of the resigned/supprossed ssogmoni of World Was Wesl and adjacent ullido
- Development of Taxiway C13 would occur in two major phases, with constuction of the sepment proposed velticle gervice road Wibin is lew monilhs following star of construction on the northem segment of Tawiway C13, work on the southenn segment and the bridge structuros ovar realigned Worid Way West would begin. Consitruction of the new RON area would also commence immedintely after start of work on the southom segment of Taxway C13. Construction of the connections hatveen Taring to commencoment of operaliocs on the sobind new taxivaly. phase feading to commencement of operationss on the subject new taxway
* Constriction of ine Taxiway D exterision would begin wfile coinstruction of the niorthem portion of axiway C13 is undorway and would be completed ahorly aftor tha commencement of operations on Taxiwny C13
* Construction of the proposed ARFF wotid commence in fall 200 and be completed in the finai phase of the CFTP
In summary, work on the aforementionad program elaments is prooosed to begin in the second quarter al 2009 and be completed by the tilird quaner 2010. The scheduie for implementation of the CFTP is fully consistent with the conceptual schodv/o included in the LAX Master Plan EIR. which sliows the same
start and end dates for construction of midfeld apronE and taxiways. However, the LAX Master Plan star and end dates for construction of midfield aprone and taxiwayys. However, the LAX Mastar Plan clearing of oll of the midfield area, construction of al midfald taxizays and aprons (whereas ihe propose Clearing of oll of the midfifid area, consituction of al midtiold taxways and aprons (whereas the proposed project only includes the partial extention of Texiway Dand construction of Taxiway C13), consituction of in Concourse, and consifuction of ruplaconmel parking lor Lod C. As currently planned, the ooly project on the LaX Master Plan conceptual scheduie that would occur concourrently with the CFTP is the addition of gates to the west side of TBIT, which the Master Plan concepthal schedule shows as being constructed relatod construction activity would De substantially loss than that anticipeted in the LAX Master Plan EIR.
The proposed CFTP construction staging areas is the same as currently ussed for the SAIP, and is located Construction-related venicle accossa and parking for the CFTP would be similar to that of the (AX SAAIP. Duting the construction petiod for the CFTP, ground tratic (cars, twicks, and construction equipmen would entor and oxit the projed site loom the existing SAlP construction staging area, The SAIP ontractor parking area located at a site north of LAX Parking Lot B on La Clienega Boulevard, to the sast of the groject sile, would be used for project workers, wilh a shuttle to transport workers between the ocrur on the perimeter of the airport, along Imperiai Highway, Parsting Drive, Westchester Parkway, and Avalion Boulevard.

[^5]Los Angeles Internationel Aliport

Page: 93


CFTP-PC00002

Page: 94


## 2. Project Description

Similar to the SAIP, asisting pavernent induding from existing dirfietd apmn aroas that are to be aggregate processing faciify wihin the construction staging area.
Adrationally, the development, application, and enforcomment of canstriction-related mitigaton plans roquired by the LAX Mastor Plan Mitigation Monitoring and Reporting Program and refred Erough the
SAIP experience would be implemented throughout the construction period. Thase measures are describod in Chaptors 4 and 5 of this Drat EiR, and are also noted in the Tattless 1-2 and $1-3$ in
2.4

Airport Operational Characteristics Before and After Completion of Construction
As described above in Sedion 2.1.3, implernemtation of the CFTP will help to address periodic congestion in alicratt ground movement in the midfield area, and will provida an improved taxiway route between the north ruinway pomplex and the south rumway complex for NLA ance schoduled service starts al LAX The
subjiect improvernents will not, however, increaso of otherwise offect the overal operational capacily of the alrpoit. The LAX Master Plan evaluated the ovenali capacity constraints of LAX as a whole. The primary consirast on the airport's practical capacity at present is the limited curbside eapacily of the CTA
at peak hour, which causes the practical capacity" to be approximatoly 78.7 MAP . With the LAX Master Plan imorovements, the airport's practical capacify in 2015 will be approximately the same, 789 MAP, based primarily on the constraints created by reducing the number of airrrat gates at the airport.
The CFTP will nof allen arspace trathc, runway operational characleristcs, or the practical capacily of the airpor ind . When the CFTP is comploted in 2010 , LAX's aboroximate practical capacily will bo the same The proposed project does not allor this constraini.
The CFTP wouid not lead to any procedural changes by FAA for LAX airspace operations. LAX operates in à sale and efficient manner and will continius to do sa during and aftar the propoand CFTP arfield Modificat

### 2.5 Project Alternatives

CEOA requires that an ElR include a discussion of reasonable project alfematives thet would \%easidy
athain moss of the basic objectives of the project, but would avoid or subatantially lessem any significant affects of The project, and evaluale the comparative ments of the allaraatives' (CEQA Guidelines Section 15126.6). As discussod in Chapter 4 , implementation of the CFTP is anticipgled to result in sionificant (0.e., greenhouse gas emissions) Chapter 6 of bis EIR addreesges several altomatives induding an altarnative site, an alternative design, an altemaitive construction approach, and a "no projeor" alternative.
2.6 Intended Uses of This EIR

This EIR will be used by LAWA, the Boerd of Airport Commisslonars, and the Las Angoles City Counoif to evaluate and considar the polential environmental impacts of the CFTP in taking action on the project.
Cerification of the CFTP wodin compiete the project-level CEOA compliance review for the CFTP ais.





| Los Angeies intemational Airport | $2.50 \quad$ LAX Crossfold Taxiway Projoct Draft EIR |
| :--- | :--- | :--- |
| Soptember 200A |  |

whi be subject to the appropriate levels of environmental review, infarmation in ins EIR may also be used by LAWA and the construction loem as input for permil and other approval epplications.
In addition to use of bis EIR by the CIty of Los Angeles, implementalion of the proposed CFIP may require various federal, stato, and local approvala, for which the approving agencies may use this EIR in theif respective derision-making and approval procosses. Provided below is an overview of the actiona and perrits anticipated lo be required for the project.

### 2.6.1 Federal Actions

U.S. Department of Transportation Federal Aviation Administration (FAA)

The FAA issued a Record of Dedision (ROD) on the Environmental impact Statement for Proposed LAX Mastor Plon Improvements. The spucitic federal actions that sre the sublect of the ROD and thal relate to
the CFTP and have therefore recelved federal environmental approval, include the following:

* Uncendthional approyal of the Airpor Layout Plan (ALP), as depicted tor Altammative D, with the axcepton of the collateral development project reforsed to as "LAX Northside?" The components of The ALP related to the CFTP are included in the unconditional approval.
* A determination that the airport development is roasonably necessary for uase in air commerce or in Aifild
- Aiffield improvements included under Allomative D, including the new crosslikid taxiway and an EIR
- Approval of approptigte amendments to the airport certioction manual purstank to 14 CFR Part 139 and any required modifications to the aippoit seccurty plan pursuant to 14 CFR. Part 107. This approval would include any such
construction or operation of the CFTP.
- Approval of the appropriate amendmento to the airvort certificalton manual to maintain aviation and sifield satety purfsuant to 14 CRR Part 139
- Potential esigibility of the Master Plon projecis for federal assiatance through grants-in-aid authorized by the Airgofl and Alrway lmprovement Act of 1982, as amended, andfor for use of revenuas U.S.C. $\$ 47117$

The ROD documents FAQ's linding trat the Final General Conlormity Delermination for Alternativa 0 damonstrates hat Aiternative D conforms to th
Additional FAA actions spealic to the CETP would be needed for either conntriction activilies or for
funding approvals and the FAA may consider the Eiff in taking these actions. These include:

- Approval of a FAA Notice of Constuction or Alteration, lo ensisue safe and efficient operations during The cunstruetion of the CFTP. LAWA and its selocted cantractor woud subimit a FAA Form 7460-1, location, duration, type, helight, and location of construction; and any other information needed for FAA in make its determination.
- Approval of requesss for foderal funding, In order for foderal lunding la be used for the CFTP, FAA
 Airway lmprovement Act of 1882 , as amended. As describod atiove, the ROD indicates that federal
enwionmerial requirements have boen mel to make LAWA eligible io apply for grantin-ald funding for those components of the CFIP to which grant funding can be applied. The FAA would also dertity plans and spectications prior to the award of grants. FAA's approval and provision of grants-in-aid for the CFTP is subject to avaliability of funding.

Page： 95




2．Project Doscription
＋Approval ol requests to use passenger faciity charge revenie for prejoct funding，In order for LaWA to apply revenues coliccted through passenger facily clurges ai the sirpoif．FAA would be requirud
to approve an application from LAWA to impose and une passenger taclity charge revenue for the project．As described above，the ROD indicates thal lederal enviranmental requirements have been meit to make LAWA eligible to apply for approval to use passurgger facility charge revenue for those components of the CFTP lo which auch revenue can be applied．

## Other Federal Agencles

In the ROD，the FAA specifes that consuilations with other federal agancies have teen compleled 三 $三$ NI
through the ElS process．Wits the implementaton of the commidments and miligation measures included
in the LAX Master Plan MMRP and the LAX Mastef Plan Final EIR and the EIS，mifigation requirements
would bo salisfied．Other tran the FAA approvals described above，no other federal agency approvals
would be satisfied，Othor than the FAA ap，
2．6．2 State and Regional Actions
California Department of Transportation（Caltrans）
Permits from or actions by Caltrans required for implementation of the GFTP include，but may nol be limited to：
＊Amended／Corroded Airport Pemit in accordance with Califomie Code of Regulations．THite 21 §
3530 ，LAWA musi submit to Caitrans an Amended／Corectod Arporn Pormit Application（DOA－0103 3530，LAWA must submit to Caitrans an Amiended／Contectod Arporn Pormid Application（DOA．0103
［Rev，04／01））lor approval．The aiftied imprevements associated with the CFTP would be relected ［Rev，04／01））Ior approval．The airield improvements associated with the CFTP would be rellected on the application）
California State Historic Preservation Officer（SHPO）
The FAA cornplatid its consultation with the SHPO，which included tho dovelopment of freaiment plans in the event litat histonc，archaeologica，of paieontological fesourcos are discovered during CFIP corsituction activilies．I／such resources were discovernd，the approptiafe moasures involving SHPG would be followed．
State Water Resources Control Board（SWRCB）／Regional Water Quality Control
Board（RWQCB）
The Californla SWRCB and nine RWOCB5 administer regulations rogarding water quality in the State Pemits or approvals required from the SWRCB and／or RWOCB for tre CFTP inclise but may not be limiled to：
－General Consaruction Stom Water Pemit
－Standard Urban Siomwater Miligation Plan
South Coast Air Quality Management District（SCAQMD）
The SCAQMD is the regional agency granied the mithority lo reguale air pollutant emissions from stationary sourcas in the air basin and has been involved throughout the development of the LAX Master Plan Final EiR，the Firal General Contormity Detormination lor the LAX Master Plan，and this EIR．No new permanent slalionary sourcos，would be added as a resull of the CFTP；Therefore no addilional piece of equipmant is be used far construdion that is not specifically exempt form the pemit requiremant：

## 2．6．3 Local Actions

A number of actions to be takum by dopariments of the City of Los Angoles were identilied in the LAX Master Pian Final EIR relaing to the certicication of thal document，as well as approvai of the LAX Master Plan，LAX Specilic Plan，and the LAX Flan，A number of those actions heve been completod in the

Los Angeles Inlernational Airpoin		LAX Crussield Taxway Project Dratt Eif

Page： 96

[^6]context of the LAX Master Plan．Local actions and approvals that may be required for the CFTP include but may not be limited to the following
－Lax Plan Complance Review in accordance with Section 7 of the Los Angeies international Airpor Specifio Plan
－Centication of the projectlevel iemed Final EIR for the CFTP
＋Submitta of the following to the FAA
Form 7460－1＂Notice of Proposed Constuction or Alleration＂for FAA approval（The solecter contractor would atso be required to submit Form 7460－1．）
－Applicationa for grants－inaic，it such funding is to be sought．
－Applications to apply passenger facilly charge revenue to the profect，it zuch funding is to bie used for the project．
－Plans and specificalions lor the CFTP for cartification by the FAA
－Submittal of a Recycled Water Report to the RWOCB tor the use of recycled water as a dust contro measure for construction
－Preparation of a Project－Specific Storm Waler Mariagement Plan or Standend Urban Storm Water should be consistent with the ovverall Storm Waler Pollution Prevention Plan and associated permita）
－Preparation of a Report of Construction Air Quaity Emistions for subirnital io SCAQMD

## 2．6．4 Miscellaneous Actions and Permits

A number of other actions and permits may be requited for the implementasion of the CFTP．The list of actions and permits is expected to include．but not be limited to：
＊Los Angelers Department of Buflding and Satety Electrical Permit
－Los Angeles Depariment of Building and Saloty Building Pormit for removal，construction，repair，etc of any structura（s）
－Board of Public Works Sewer／Siorm Dran Permi
－Los Angeles Fire Depaitiment Plan Ched
－Possible modification or candermination of cartain exisling onalport leases

Page: 97


CFTP-PC00002

Page: 99


## 3. OVERVIEW OF PROJECT SETTING

 CFTP Morte detalad dastriptions of the evisting satting in the proped vicinity rolated to speadic exisiling physical setting at and around the project site, 1his chaoter describes offer projects proposed in The nenty area that may, in conjunction with the CFTP, resuill in cumulativi impadts on that axisting
 proposed af LAX and explins the rolationshp between ihe CFTP and eacc projed morder to provide the projocts proposod al LAX, induving the CFTP, relate to the LAX Mastlor Plan.

### 3.1 Land Use Setting

As indicated in Chapters 1 and 2, and depicted in Figure 1-2, the CFTP site is locatad near the center of
LAX, within the midtield portion of the aimort The suoped area is and has long been, arfively used foi aifport operstions and is completaly occuppiod and sariounded by alfport facillies. On-site land usai include ailine lenant apron areas, arcran pakking areas, ann fircriatt hangat, mainterlance fackitet, and vanculs airporl/airfield operations buildings
Surrounding land uses include the following:

* The north runway complex to the nort;;
* Taxiways S and $\overline{\text { Q }}$, Tom Bradiey intemational Terminal, and the CTA to the east:
* The south ninway complex to the south; and
- A variety of airportairfield buildings and facilites to the west.

The closest land usess in the project vionity that are nat alpor-related inducte the following:

* The community of Westchester nonh of LAX (over 0.75 mile between the center of the CFTP site and 寅

The nearest point in Westchesterk

* A mik of commerdial, helas, office, and residential uses asas of LAX (over 1.25 milas betwoon the Aner of ine chod ite noarest hotel on Century Boubvard and over 2.5 miles to the wesiem edgo of inglewood).
Residemial, commeroial, office, and institutional uses to the soath (approximately 0.75 of a mile between the ceriter of the CFTP sile and the northeme edge of El Segundo); and
- Dochwoiler State Beach and Santa Monica Bay to the west (over 125 miles between the center of the CFIP sile and Vista Del Mar).
Compatiolity and zonsistency with appicabie federal, state, and iocal requations, plans and polities from operation of
Final ElR.


### 3.2 Environmental Setting

The following provides an overview of the existing anvironmental solting at the project site, noting the is provided in the discussion of each resiource arean in Chapters 4 and 5

* Nolse-Being located near the conter of the very active midfeld area, the existing noise setting is dominated by aircraft adivities, primarlly cormmercial jets, occuiring throughout the day and evening This includes noisp fiore aircrah artving and departing on the north and south numway complexes af
each end of the projoct ste. Forn crossiald aicrall movements on Taxways S and Q . from aircrati

 | Los Argeles iniemationsl Airport | 3-1 $\quad$ LAX Crossfield Taxiway Projoct Dran ElR |
| :--- | :--- | :--- |
| Seplomber 200s |  |

## 3. Overview of Project Setting

 charocterized in terns of Community Noise Equivalent Level (CNEL), at the construction site and staging area range from 70 to 75 dBA CNEL. Thero are no notse sensitive receptors at or near the project sta, ihe cosest rece
above and in Section $5,1,2$.

- Air Qualty-Similar to the noise seting, the existing sir quality setting immediate lo the project site is project sile include ground support eguipment (GSE) operations and maintengencoe, and vahicle (ratfic on and off the Eirfield, however, those polliant soursos are relatively minor comparad to the aircraff amissions. There are no sensitive recaplors at or noar the project silte: the closent recoptors are
locatod in the communifies described in the Land Use Sotting above ocatod it the communities doscried io the Lad Uw Soing above
- Irafic: The exising tratic selting at the projed sife is characterized primarily by vehicles permilted drivers that have satisfadorily completed sperialized trairing and have the appropriate clearancens Irom LAWA are allowed io operato veticles on the aiffield. Non-eifioid raffic in the propect vicinity posirs on Wond Way West, which connacta with Penshing Dive to the west. Reititive lo the existing strest system surrounding LAX, the traffic volurpes on Word Way West and Fershing Dive are
rolatively low and operating conditions are relatively good.
- HuctologyWoter Quaity- With the axception of some ver amall unpaved pockets near Tax/Waye E replacament parking lot. the entire projed ste consists of impervious surfaces induding airfield apron aras, buildings. roads, and the like. The site is relatively flat and surface stornwvetor runof drains to an existing storm drain system that flowa la Santo Monica Bay. Dry weather flows from the project site, as well as the firsi surge from a storm eveot, are caplured by a relention basin and pumped to
the Hyperion Treatrient Plant. Due to its largely impervious nature, the proiod site provides a the Hyperion Treatryent. Piant. Due to its largely umpervious nature, the project site provides a
negligite amount of recharge to the regional groundwaler basin: Existing water quality poistants typically includo total suspended sollds, of and gruase. metals, and fuel hydrocarbors, as associated with aiffeld activios and aircrat maintenance.
- Historical|Archapological Resourcess-None of the buidings al or nitar the CFTP meet the typical culiture, arechitecture, Dr archacology at the nitional, state or local leven). The project stife is developed and the underbling reateials are primanly artificial fil and some altuvium. II is nol expected that
- Biotic Resources- The proplect site is antirely developed. With the excoption of lirrited ornamental the existing taxways to the north and soulth, and an 8-acre dislurbed ares southwest of the crossing of Taxiway AA piver World Way West, the area is krgely devoid of vegotation and relafed biotic resourves. However, one special status plant species, bouthern tarplant (Centromodia pamyi ssp.
australis), a Caillomia Native Plant Sociery Lisi 18.1 specien, was observod on the Americen Artmes austrais), a Caillomia Native Plant
- Vieualíasthetic. Resources- As noted atove, the CFTP site is iocated within the midfield area of the a variety of airpor-related loolifes and uses. The subject area it nol considered to be a scosnic resource and is not amidst any desionatod sconic cortidors.


### 3.3 Development Setting

This seefion idmilifes LAX developnient projects (LAX Master Plan projects and nther LAX projects with indepundont vetity) and non-LAX develo

Page: 100








### 3.3.1 LAX Master Plan Development Projects

As described earlier in Chapters 1 and 2, the LAX Master Plan providas a comprehensive plan for is LAX Master Plan Final ElR addresses the overall eflects of all of the impeavements, essentielly providing a curnulative impucts analysis of air the improvements that comprise the LAX Master Plen, white aloo Identlying the more notable impacts that are attritutatie to specific components, where appropriate
The following describes the LAX Master Plan imprevement projocts, thet, simlar to the CFTP, aro boing asvancedina mplementam and lor which more specific design and cunstuction details are currentily

- TBIT Recanfiguration Project This project proposes the dovelopment of new contad gates on the west side of TBiT that will be designed io acconmodato Group Vl aircraf including NLA such as the
A380 and the $747-8$. The placement of thome gater will require the westward relocation of existing A380 and the 747-8. The plactment of those gater Will require the westward relocation of existing cossfield Taxiways $Q$ and $\$$ as proposed in the approved LAX Master Plan This project also proposes improvements to certan interion pontions or TBIT. induding improvamanis to the ceniral mprovements to the north and soubl conosurses including provisions for addilonal passenger noldroom area. Earier in 2008, LAWA selected various consultant leams for archlictural sevices, desionen, and proparation of construction bid documents for various projects in the midfield ares. design, and proparaton of construction bid documents lor various projects in the midield area of design and construction informelion for this project in support of the preparation of a focisied EIR tiered from the LAX Mastar Plan EIR. II Is antioipated thal the Finat EIR for the TBIT Reconfiguration Project wis be completed in tall 2009. The consifuction program for this project will be designed to have Group VI conlact gates on the west side af TBIT ready for use by 2012 and, if approved, is overtap with the completion of the CFIP, involves the proposed westorty relocation of Taxway $S$ and would include demoition/iemoval) of oxiskng strucluma and apron aroa wiltin the laxiway work area Construction of a porfion of the new (relocated) taxiway may aliso overlisp with completion of the CFTP consluction activities
- Midfield Satelite Concourse Project, This rroject is currently antiopated lo inctudn consimuction or the Midfield Satelife Concourse identifod in bee approved LAX Mastor Plan and the assodatod Cl , and a new Contral Terminal Processor (CTP) in the CTA As indicated above LAWA has eosenty retained a number of consultants to assist in the doiatied engineoring and design of projects in the midfiold portion of LAX, which would include this profect it is anticipated that a focused EIR tiforst lrom the LaX Master Plan EIR will be comploled for ihis project, however, the gpocifics of when The more detailed information for this profect will be resid, in order to prepare the EIR, are sull boing
Consolidated Rental Car (RAC) Facility. This project will provide for the consolidation and
Consolidated Rental Car (RAC) Facility, This proioct will provide Ior the consisolidation and
centraization of rental car oporations at LaX, as conilemplatod in He approved LAX Master Plan. LAWA his selected a consutiant fams to help develoo the detaled planning, engingeering, and dasion informalion necessary lo implement inis projod Similar to above, it is anticipated that a locused ElR tiered from the LAX Master Plan Elr will be complatod tor this project however, the speclics of whan

As indicated above, tho of treser three projects would nol be under cunstivection at LAX during cansituction of me CFiP: hence, those projects, specinaliy te impacts. The only project that is currently antecigatod to stant construction while the developmentl of the CFTP is underway would be the TeIT Reconfiguration Project. Construction of the TEIT Reconfiguration


CFTP-PC00002

## 3. Overview of Project Setting

Project is projected to bogin in fail 2009, which would resuit in a several month overlap wath the CFTP Inat
is projected lo Finsh in mid-2010 The essultant potertial cumbitive impacts are addressed in this EIR.
As indicated eavfier, all of the above projects are pari of the LAX Master Plan and ite environmental impacts of the Master Plan projects are addiessed in the LAX Master Plan Final Eir. To bir extent it is reasonaby foreseeable that implementation of eadr of the atiove projects may Iollow implementation of the CFTP, the combined impacts of all the subjoct projocts, along with othor Master Plan projects. havo
arrendy been addressed and disclosed in the LAX Master Pian Final EiR
3.3.2 LAX Specific Plan Amendment Study

The LAX Master Plan, approved by the Los Angolas City Council in Decermber 2004, is the strategic Transework for future development an LAX. The LAX Specific Plan, approved in December 2004 as part of
the LAX Mastor Plan Program, estabishes procedires to appoval of all projects defined in the LAX Masier Plan Program: The approval procedunes are dillerent tor a subsel of the LAX Master Plan projects. These projects are commonly refarred lo as the Yaliow Lipht Projects. Such projects, as

- Ground Transportation Center (GTC):

三事

- Autornated People Mover (APM) 2 from the GTC to the CTA:
- Demolliton of CTA Terminas 1,2 , and 3 ,
- North Rurway re-confguration, including center taxiways; and
- On-sile road improvernents associated with the GTC and APM2

In January 2005, a number of lawsuits challemging the upproval of the LAX Mestor Pian Progran were subject lawsuits. As the Cily of Los Angelos and plaintlts gave firal approval to a settlernent of the idensify potantiol As part of the Stipulated Settiernent, LAWA is proceeding with the SPAS process to identy potentiar atemative designt, technologies, and canigigurations for the LAX Master Plan Program,
Hat woutd provide solutons to the problems thai Ihe Yellow Light Projects wero designed to addruss, consistent with a practical capacity of LAX at 78.9 million annual passengers, the same practical capacty anendment to the approved LAX Speconc Plan. LAWA is in the process of preparing a Dratt EIR for the SPAS.
Section V.F of the Stipulated Selliement provides thet, while the LAX SPAS is being processed, LAWA may continue lo process and develop projects that aro not Yellow Light Projects. consistent with the LAX Specific Plan Comptance Review procedures. The CFTP is not a Yellow Light Project as idemitied in the LAX Specilic. Flan. Addilionsilly, the location and design of the CFTP as currently proposed are not
dependent on implamunation of any of the Yellow Light projecte or altematives to the Yollow Lioht dopendent on implaryuntation of any of the Yeflow Light projecte or alternatives to the Yollow Light
projects that wil be evaiatod in the SPAS. Consinuction of the CFTP dows not commit LAWA to proceeding with any of the projects thal are currently being evaluated for SPAS, The CFTP will provide a new noth-south taxiway connection between the north runway complex and the south rurway complex. The point of ccannaction with the north nurway romplex is with the current Runway BR/24L; however, that point of connection cous ou moved lo coincide with ary potenlisi ralccation of hal fumway, based or the outcome

[^7]Page: 102









in fecerify


CFTP-PC00002

Page: 103



### 3.3.3 LAX Development Projects Independent of the Master Plan

II is anticipated that a number of other, sland-alone construction activites at CaX that were not part of the LAWA and tenant projects. These projects indude:

* Tam Eradiey International Terminal (TBIT) Interior improvements Program: This project provides for the renovation of interior public spaces within TEIT including the departure lobby, departure concoourse, arrival concourse, bus hold room, "meeter-greeter" ares, in-transit lourge, itbound and out-sound baggage systeris: upgrade of the building's paging syatem and information
Tectnology (TT) avstems; and upgrade of the existing olovators, oscalslors, and moving walks Construction activities for this project began in Felmiary 2007 and are anticipated to be complete by February 2010
- In-Line Baggage Screening Systers. This project calts for Bye cunstiuction of in-tine baggage Secuily Adrimisistration (TSA). The propoct indudes replacoment of the existing airine baggage handiling spacos, constuction of now pacgege screening rocms, repiscemant of the oulbound mechines The pmoject also includes Explosive Trace Delection work stationk, On Screen Resolution Confrol Roome and Closed-Circuit Television syatems. Construction activities foe the installation of indine baggage sconening systoms wiltin Teminal 3 Degan in Autpuat 2007 and are anticipated to be complete by January 2010 Simiar projects within Tarvinats $1,2,4,5$ and 6 will be implementod by
tenants. It is antiopated that imporovements within Terminal 4 could be underway in eafly 2000 ,
 assumed that work in all of ihose terminals would occur within the timetrame of tre CFTP construction.
- Aiffield intersection improvements - Phase 2: This project provides for improvementis al various aiffield intersectiona and assodated modifcations to certain service road locatons in order to provide safe taxing routes for current large alicraft and future NLA. In particulat, this phase of aiffield intersediocis includes widaning of several intersections in the north arfield compdax and the south project includes intersection pavement and shoulder reconstruction and associated relocafion of affected tueiway lighting and signage. Construction activites for thts profod bogan in Juy 200 a and are antcipated to be complete by August 2009. The whbject improvements wal be canducled on an intorsectionby-ntersection tases within imilad working hours in ordor to minimize the number and dispersion of exnsirudion equipment on the arield al any given lime. As such ine intonsiry ana any given day duting its overali constiuction duration:
* Airfietd Operating Area (AOA) Perimater Fence Enhancements - Phase 111 (World Way West): inariong approximately 5 milos of AOA perimeter fonce along Worid Way West Fance mprovaments include the constiuctionvplacement of a concrete "K-rail' al the fence tase, above which is a green light-mest metal sedion for a mivirum height of eight feel, with a V V.shaped barbed-
wire top. Conatucion activites for ints prolect are anticipated to occur between October 2008 and Ocinber 2009. Sirmiar ta the alifield intersedion improvemients described above, the natura of this project substantially limits the infensily and location of construcilon activity lypical for any given day during the 1 -year construction duration. This is due to the fact conctruction and placoment of the new lence sections will occur divecty adjacand to the existing fonce, which ints the ares or active consitruction activilios in citer to mostanlly maintain TSA secuiriy requirements for LAX

- AOA Pecimeter Fence Replacements - Phase IV. This project is a continuation of the LAX link fending witilin a 9.22 -mile section of the perimeter around the cargo areas along 1 mpherial

| Los Argales Inlernational) Airport | $3-5$ | LAX Crossfield Taxoway Propect Dran ElR |
| :--- | :--- | :--- | :--- |
| Soplenber 2008 |  |  |

## 3. Overview of Project Setting

Highway, Aviation Bovievard and Cenlury Boulevard The fence wilf indude a concrete foundation. porimetar kighting, and heavy duty crash gates and acooss control. Construction is anticipated to cocur from July 2009 to uily 201 , As win the Phase ili (Worid Way Weas) project, the intensity and locallon of constivation activly typical for any given day during the construction duration will be
focused. Because construction and placement of the new fance will occur directy adjacent to the existing tence, the aroa of active construction will be limfled and will requite cortain measures be Taken at bie begrving and end of each days consiruction acdivitios in order lo consienily maintain TSA security requirements for LAX.

* Terminal 1 Finish Upgrades Project This project provides for interior design concepts and theme dessign al individuel passenger ferminals within Terminal 1 :
* North Airfield Waterline Ropair This projed invalves the replecement of a 12 -nch dameter water line beneath the norh airfeld nurways (Runways $24 \mathrm{R}-6 \mathrm{~L}$ and 24 L -6R) just west of Taway AN . occur by "packing" (i.e., pushing) segmerits of pipe (12-inch diameler pppe within $30-\mathrm{inch}$ diameler casing) through the ground beneath the paved surfaces. As such, the construction activities would be generaty imited to the jackingliecuiving pil at each end of the pipeline foute and the needs for, and use of, construction equipment would bo very linited (i.e, jacking machine, pickup fucks for small
work crew, periodic delvery of pipe segments periodic removal of accumulated soil. elc.) The work on this projedi is anlicipalidd to begin in party 2009 and take approximaloly $8-10$ weoks 10 complete.
Airport Operations Center (AOCVEmergancy Operation Center (EOC), This proioct is to buid
 consolidate LAWNA's various operationt centers into one location and to serve as a centralced emergency marragerrent focation during an indident, The new $A O C / E O C$ will house state-of-the-art facilibest and will have increased robust oporational and emerjency marugenent capabilites for resoutces coordination, data collection, and information proossaing. Project design has not yet been
completed, bul it is anticipated that the project will requite the configuration of the existing buiding and could involve the construdion of up to 10.000 square leet of addifional building space. Construction is anticipaled to caminence in Novenber 2009 and take appruximately one year.
- Korean Air Cargo Terminal Improvement Project. This projed would include addilicnal warchouse and office space, as well ess.a more efficient trudk loading and docking area at the oxising Korean Air facility at LAX, which is located on West Imperial Higtway wilhin the South Cargo
Complex Easl Speofic improvementa include the addation of 16350 square leek of warehouse Complex Easd Speofic improvennents include the addition of 16,350 square feet of wareinouse
space, the addition of 8,800 new square feet of office space, and the conversion of 6,657 square feet space, the addition of 8,800 new square leet of office space, and the conversion of 6,657 square leet
of existing office space to warehooise space, for a letal net increase in warehouse square footige of 23.007 and in office space of 2.143. Upon cornpietion, the focity would have a square footage of 183,506 , a net increase of 25 , 551 square feet. In addition the project would inctude the remodal of the existing lruck docking area. At Mis time, $I$ ss estimated thal construction would thegin in early la
mid-2008 and extend for approximately ono year.
- Westehester Golf Course Three-Hole Expansion Prolect: LAWA s planning lo add threo holes io the existing 15 -hole Westcheste Goir Coursi, locatod in the northem portion of the airport property eary 2009. The mosi notable construction activities, including demoliton of existing pavement and rough grading and trenching, would ocour within the firat two weoks of constriction. This would be fallowed by appyoxinately ning weaks of hine grading, These activies are generally anticapabd to Westchiosler Golf Course Three-Hole Exparsion Project will be used lor hydruseoding and ptocmmen of sod, grower and maturation of the courso, and for fnish work, such as lighting instalation. Bosed on the nature, location, and timing of the Westchester (Bolf Course Three-Hole Expansion Project construction adivilies, relalive to trose of the CFTP, il is not anflopaled that the projed would
contribute to curnulative consifuction-ralated impacts contribute to cumulative consiruction-ralated inpacts


CFTP-PC00002

Page: 105


- Miscelianoous Construction and Maintenance Activivies: As part of ongoing conatruction and MBintanance at LAX, and in accordance wilth its Capital improvement Program. LAWA expects to
undertake a number of projects within the CTA, the airfied, and other portione of the aimort These projects consisf of foutina upgrades and enhancements to existrig facilities, and are generaly smallor in scala than the othar profects identified in this section.
In addition to the projecia idenuliod above, there are several projeds in the planning shagos lhat may
occar on Lax oroperty bat are not related to the airpor and are being undertaken by independent agenclas ar parties. These projects are described below.
- Westchester Rainwater Improvement Project. This project would traat urban runoff from the 2,400-acrid watershod that nimently Nows. Moto the Argo Drain and uitimately to Dockweler State Beach and cosstal waters. The projed would add slomwater treatment facillies on LAX property near the intersection of Pershing Dive and Westchesfer Parkway. Propect componenter would indude facilitios Eial would romovs buclerias and other pollutants. such as rash, of and grease, meials and pesticides, from urban runoff. Construction of the project is antiopated to begin in May 2009 and extond until approximaloly March 2010.
- Metro Bus Maintenance and Operations Facility. The Metro Sus Mainlananca and Operaions Faciay s proposed to be located on a 24 -acre parcol winin tho boundaries of Lax. The parcol is on the west side of La Cienega Boulevard near Lennox Boulevard. The haclity will house a bus divistion It will also support bus storage, fualing and rolated noutine maintenance oporations activity. in addition, apprmximataiy 525 parking spaces will be plowided for employees, non-revenue vehicles and visitors. Consinucion of the projed is not antiapaled to th
not contibute to cumulative corsfruction-related impacts.
- OceanWay Secure Energy Project: Woodside Natural Gas inc, is proposing to pring natural gas inlo Southern Caliorna using spociaty dasigned Lquafied Natural Gas cartiers and undorsea and
lanc--based pipelines. Natural gas would be shipped to an ofiahore facilly, repasified at sea, and anc-based pipeines. Naturat gas would be shipped to ant olianore facilty, regasifed at sea, and
delivered to land tirough subsea pipeines. Once onshoro, the natural gas would be transterred to two onshore pipatines, which would run appraximately 4 rilies lrom a localion on LAWA-cwnod properfy Within the Los AngelessEl Segundo Dunes, benasth the north airield and dity streess, to a
reveiving and cuslody transter localion localed several miles north of fre airport This pmiect has nof
 project would coincide with constinution of the CFTP; theretore the project would not contrbute to cumulative construction-selsted impacts.
In addition to those profects. there is a progect parmently boing considered by LAWA thal, while not resuit in oumilative impacts when combined with The CFTP. Sidiectly affect Law Nay A Arpon Noisier Aircraft Phaseout Project proposes to prohibil certain operations al Van Nuys Airport by alccial that exceed specifed takeoff noise levels. Van Nuys Aiport is a general avation municipal airport located approximately 22 miles north of Lax 11 is anilicipaled that the phased implotienialion of that project, तf including, but not limited to, LAX. Eassed on a survey of the potentiatly affected operatons regarding which other regional airpoits would thoy Mikely use instead of Van Nuys Airport, it he estimatod that a total of approximataly 31 nghts, representing 31 landing and takooff oporations (LTOs) or 62 total operations, would go to LAX per year. This equates to a daty average of approximately 0,2 adddional fights at LAX, As noted above, the Van Nuys Arpori Noisier Arcrah Phaseoul Project does nol involve any consirudion when combinod with the CFTP and the other projects desmibed above. It does, however, present the potiontiol for operabionsrolated impacts at LAX that may relate to those of the CFTP, specifcally as related to aivcratt operations. As descobbed in Section 2.1, Implementation of the proposed CFTP will, by LOS Angoles intematonal Arport 3-7 LAX Crossield Tawoway Project Draft ER


## 3. Overview of Project Setting

lawing operations will aftect the amount of air polltant emissions from aircratl engines. Inasmuch as the Van Nuys Arport Nolsier Aircrall Phaseouil Project could aiso affect air pollutant Emissions assocoted Wat luuter aircratt operations at LAX (i.e., additional nights at $L A X$ ), there is a potential cumulative


### 3.3.4 Non-LAX Planned Development

Pianned development projects in the Chy of Los Angeles and neighboring comminities within the vicinny
of ihe study area are fisted in Table 3-1. The list was prepered to documpent end descrive all known local
area devolopment projecta thai may contribute traffic to the CFTP study area. The fist is based on
consuitabon with representatives of the Los Angeles Depaitment of Tramipontation (LADOT). Culver City, 三 El Segundo, Hawthorne, Inglewood, Los Angelas. County, and Marhattan Beach. The eonstruction
schedules and speofic dates of occupancy for most of the developments were not provided.

Page: 106


CFTP-PC00002

Page: 113

4. SETTING, ENVIRONMENTAL IMPACTS, AND MITIGATION MEASURES
This chapter describes the analylical framework for the environmental review of the CFTP, incuding a descriplion of (1) progran level versus project level environiriental reviow, (2) the baseline lor deternining whether the potental impacts of the CFPR would be significant (3) the metcod by which mitigation measures and LAX Mastor Plan commiltments have been, and wir be, incorporatod into this project tevel
analysis and as conditons of approval to the project to avold or minimize potential impacts of the CFTP. including potentially signilicant smpacts, (4) the cumulative impacts analysts that wass conducted for the CFTP, and (5) the peak perlod of construction acivity that was analyzed for the CFTP.
Program Level versus Proiect Level Environmental Review
As descibed in Chapter 1, in Apni 2004 LAWA published a Final EIR thal analyzed the potential environmental effects associated with the impliementation of camprehansive lang-term plans lo modernize
LAX (the LAX Master Plan), including the processing of "program lovel enfitiomerts, such as a gerveral plan amendment and zoning rugulations (the LAX Plan and LAX Specific Plan). The LAX Master Plan Included the CFTP as an implementing projed of the Plan, and thus the Master Plan EIR analyzed tre potental impacts of the CFTP to the extent leasible and appropriato at that thre
As discussed under Section $15146($ b) of the State CEOA Guidetines, an EIR prepared lor program leval entillaments, "need not be as delailed as an ER an the specfic construction projects that might foliow, The CEOA Guidelines incorporate the "ulo of reason" and advito publc agencies to avoid "speculelive
analysis of ervironmental consequences for future and unspecified development."
Consequarilly, the LAX. Master Plan Final ElR addressets the more general level of detal that is required lor program level-entilernents under CEQA in an effor to be as cumprehensive and thorought as
possoble, the Final EIR nonetheless also contains extonsive project level analysil that is beyond the levol of detail normally found in a program lovel onvironntiantai docament.
Where a program leval environmental document thas been prepared, CEOA ancourages the pubbr agency to "Der" subanquent project level environmental analyses,
Secton 15152 (a) oI The CEOA Guideinas describe this approach as follows:

Thering" refers to using the anslysis of general mattiers contained in a broader EfR (such
as one prepsared for a general plan or policy statement) with ister EIRs and negative
 the issuos spacific to the later project.
Because the CFTP was atailyzed in the Master Plian EIR, this Draft EIR is "liered" foom, and incorporates
ty rolerence, the LAX Master Plan Final EIR." To avoid a rapelifve dischission of issues. This Draf ElR by relerence, the LAX Master Plan Final EIR." To avoid a repelifve discussion of issuess. Me Draf Eir provides project-specific intormation on the development of the CFTP, focusing on potenlially signicasst As identified in the Augusi 7, 2008, Revised Notice of Preparation (NOP) for this project-eval EIR LAWA siniaily detemined, based on an preliminary reviaw of the CFTP, that five categones of environroental resources mould polentially be atfeched by construction of the propect and require additional review that was not chombep provided in the LAX Masler Plan Final hal these five casegones of envionmenlal
$\qquad$





| Los Angelas international Airport | 4-1 $\quad$ LAX Crossfield Taxoway Projeci Draft EIR |
| :--- | :--- | :--- |
| September 2008 |  |

CFTP-PC00002
4. Setting, Environmental Impacts, and Mitigation Measures

### 4.1 Surface Transportation <br> 4.1.1 Introduction

Ey wey of packground, the LAX. Master Plan Final EIR analyzed futuro coadway traflo impacts for the enlivety of the Master Plan inciuding a peak construction year of 2008 , when it was ortiginaly anticipated hat many of the Mastor Plan projects would be under constivcion, and for operational conditions at
Master Pian bulldout, originally anticipated to be in 2015. The Master Plan ElR analyzed trafic impacts associaled with soveral allermatives considered for the Master Plan, including Atternative D. which was soledod for approval. In conijundion with the evaluaton of traffe impacts. The Final EIR proposed
numenous Mastor Pian conmiliments and mitigation measures to address potential trafic impacts associaled with construciion and operation of the Master Plan. The LAX Master Plan Final ERR providet a programmatic evaluation of the overall impacts of the Master Plan, understanding that a more detalad analysic of impacts particular to individual ppojects within the Master Plan can be better evaluated at the crora delailed tevels of projed planning. That is the case here retalive to the CFIP. The traffic analysis
presented in this section addresses the impacts specific to the CFTP that were nol otharwise covered in presented in thia section addresses the impacts specific to the CFTP that were nol otherwise covered in
the Mastur Plan Final EiR. The analysis presented herein focuses on constructon-reated fraffic that would impaci oflesirport roadways along the west and soult sides of LAX, as described in greater detail below.
The information provided in this project-level liered Eir wak prepared to axamine. at a greator lovel of datiil, the polential surfaca transportalion impacts specifcaly associated with development of the CFTP.
This CFTP analysis fier 'rom the LAX Masler Plan Final EIR's analysis and findings Tois CFTP
 publication, For example, procedures and certain assumptions used for this analysis ane based on the
tratic study prepared for the South Arfield Improvemnenl Projed (SAIP) EiR, which was puthisted in 2005. The SAIP was the finst Master Plan propect to be constructed and the EiR for the SAIP was tiered from the Master Plan Final EIR Given the mary simiarilles between the SAJP and tha CFTP, in lemts of boith of therrt being alifield improvervent projects antiapated in the Master Plan and bolth having the same locations for conslrudlon staging area and emplayee parking area, some of the assumptons and
methodologies used for the SAIP study were also applied to the CFTP tratic analysis. Updated data and methodologies used for the SAIP study were also applied to the CFTP Haffic analysis. Updated data and
assurmptions have been developed as necessary and appropnate for the CFTP based on current condellons and the partcilar charicteristics of the project.
This surface transportation analysis assesses the antiopated frallic umpacts at infersecions, that would experience tratic from construction emiployee vehlcles, construction dalivery fucks, and oither
 LAX Master Plan commitments and ritionton muassures consisleni wilh the Master Plan Miligalion
Monitoring and Reporting Program (MMRP) have been incorporated to mifigate potenfili constructionMoritoring and Reporting Program (MMRP) have been incorporated io mitigate potential construction--
relafed impads. Applicatie Master Pian cormitrents are incorporated into the CFIP and thiss anatyzed relajed impacts. Appli.
as part of the projoct.
This analysis addressies, in particutar, the impacts from construction-related fraffic that would ccour during
the peak period of The peak period of project construction. This is considered to provide a conservative impact analysis, in
tral project-related traffic dufing periods when consinuction activiles ave not as intersive would result in lesser tratic impacts than presented herein. The analysis focuses on consituction-rolated impacts because cormptetion of the improvements proposed under the CFTP would not materially affect the operational characteristios of LAX as repated io surface vehide tratio. The proposad lantway improvements would change the laxing characteristics of existing aircraft ground movaments, but that
does nol generate any new velidele tips or allar the traticic patterns outaide of the aifieid. White the proposed project indudes deveiopment of a new fire station/ARFF, complation of that new facilly would be accompanied by closure of an toosting station/ARFF nearby and transfer of the existing staffl from the old station to the new slation Similarly, construction of a new veticie parking lot is proposed as part of the project, but this would only be a replacenvent for an existing parking lol neatby which would nol aller
vehicde lafic patioms wilhin the oll-aiporn faadway syatem. Again, as further described below, the focus

Page: 117




## 4. Setting, Environmental Impacts, and Mitigation Measures

of the CFTP trafici impactis analysis presented heroin is on construction-related tratic, particularty during the poak construction period

### 4.1.2 Methodology

### 4.1.2.1 Overview

As noted above, tris study focuses in ponstruction impacts reatated to the CFTP. The analysis metthodology is based largoly on Be appreach used lor the SAIP, which is generalily sinnlar in pature.
scope, and location to the CFTP. New data were collected for the CFTP stidy, however. many of the assurnplions used for the CFTP and documented harain were assumed to po the same as those used for Phe SAlP trallic study. Koy assurnptions used for the SAP pertaining to construction period peak hours and vehicle circuiation rovtes were considered valid for this study because of the close similarties
 the same lime of day limitations on employee and consivuction vehicic arrivels and departures
The CFTP study area is comprised of a focured area that inctudes those intersections and roadways that are anticipaled to be directly or indrectly aflectod by the construction of the CFTP. Given the simitarites
between the CFTP and the SAIP, the geographic limits of the CFTP study area and the polenlialy affected intersections are the same as the geographic Inits used for the SAIP, which were determined through oonsultation with LAWA and LADOT. During the scoping of the SAiP traffic study, LADOT indicated that no traffic study was requirpd because there was "no requirement lo assess the lemporary impacts of a profed resuiting from construction activites. Thus, the proposal to prepare a trafic study is traffic study is usetuli in order to provide a full assessmemt and documentafion of the potential impucts ithat may be generated by the construction of the CRTP. Furthermore, Under CEQA and NEPA GVen temporary trafic impads may be considered significant. Therefore, LaWA provides ihis CFTP traffic study to determine the significance of the oroposed project's tralfic impacts. The study area is comprised of those facilites inat woud be most likely affocted by employee and truck traffic associated with the LAX Master Plan Finai EiR traticic study and, subsequenty, the SAIP tratic study. The procedures are also consisjen) with the inlormation and requirements defined in the document, Los Angeles Department of Transportation ILADOT Traffic Study Policies and Procedures. Revised March 2002.
The following ateps and assumpluns were used to develop the study methodology:

- The study area (explained in detail below in Sedion 4.9.3.1), was defined aocorting to the travel paths that would be used by construction traffic to access the projeci sile and oquanment staging management plan, The proposed CFTP improvements are localed in the cantral and western portions of the aitport and construction vohido accesss would be striclly to and from the west via offairport mads adjacent to, and south of, the arport. CFTP construclion venides would not accoas the ronds to the north and east wers not enalyzed.
- Intersection traffic volume data were coilected at the key study intersections in August 2008 during
 These data were then adjusted to represent peak hour volumes that would eccur during (a) the a.m peak intound hour for construction employees and delvenes and (b) the p.m. peak outbound hour for construclion employees and deiveries, Pursuant to the mitigation requiroments set forth through the would not be setheduled to occur during the morning commuter peak and the aftemoon commular peask pariods. The estimated peak hours for construction-rolated traffic were delarmined by reviewing the astimated bourly construction-retated trip activily. The a.m. peak-construction hout was

$\begin{array}{llll}\text { Los Angelas international Airport } & \text { 4-5 } \quad \text { LAX Crossfiald Taxiway Project Draft EIR } \\ \text { Soptember } 2008\end{array}$

Page: 118

[^8]4. Setting, Environmental Impacts, and Mitigation Measures
determired to be 5:00 ta 5.00 a.m. and the p.m. peak conativation period was detarnined to be $3: 30$ to $4: 30 \mathrm{pm}$.

* The study analyzud key off-aippori intersactions, includng infersections wilt freeway ramps in Ve proposed study area. Anslyset of roadway segments and ireeway inks, typically required to be construction-related traffic activity is antiopatod to occur during periods thal do nol coind de with peak commute periods.
In general, the analysis prepared for this stucy tiens from, and or complements, the assumptions and analyses included in the LAX Master Plan EIR and the SALP EIR, however, addlitional data were colliected In order to prepare techrical analyses that (a) incorporate ime most current avalisble data, (b)
accormmodate a more focused study area, and (c) analyze altemalve peak hours that were not spocifically modeled or anulyzed in the LAX Nester Plan EIR (f,e, constiuction peak hours speocific to the CFTP construction).
The following desontes the methodology and assumptons behind the various types of tratio conditions considered in Bis traffic anelysis, and how the project's direci and indirect (oumulative) impacts were


### 4.1.2.2 Determination of Baseline (2008) Traffic Conditions

The Easefine describes and documents the existing conditions within the profect traftc study area at ine uming movement volumes colleded in August 2008, which represent ine most current comprementivive sel of traffic pounts completed by LAWA, wore wsed as a basts for preparing the vatfic analysis and steps wera taken to develop the Baseine (2008) traflic conditons information:
Prepare Model of Study Aroa Roadways and intersections-A traffic model of study area roadways of capacily and operatonal characterisics of interseccions likely to be impacted by project tratic). The model was developed using TRAFFIX, a commercialiy availabie lraflic analysis program designed for preparing lraffic forecasts and analyzing intersection and roadway capacity. Tre model uses widely accoptod tratic ergineering methodologies and procadures, inclualig the flansportation Research Board Critcal Moyoment Analysis (CMA) Cricuar 212 Planning Mehod, which is ine requi analysis methodology for tratic impact studies conducted within the City of LOz Angeles.
Off-Airport Traffic Data Collected in 2008-The intersection furning movement counts for Baseline conditions were collecled churing a.m, and p.m, peak commuler hou/s in August 2008, which is
considored to be the poak montt for airoont-olatod traflic around LAX: theretore, uddilional seasonat adjustrnents were not required to convert volumes to peak manth conditons, However. in order to obtain an estimate of background trafic activity sluring the peak construclion pariods, a was necessary to convert tis data lo represent tratic thal would occur durng ve clock hour hat dirediy procedas he peak LaX Mester Plan Fingl EIP the scheduling of construction work hours is requind to avoid peak comme

[^9]Page: 119





## 4. Setting, Environmental impacts, and Mitigation Measures

* The 2008 Baseline volumes defined previousty were multopled by a growth factor of 2 percent per year to account for local bnckground traflic growth throught 2008 This assumption was deened to be conservative given thal roadway traticic in the study arsa has generally de
2008 (reter to the Annual Growth Pattems piscuasion in Soction $4,1,3.3$ ).
- The location and ting goneration crastactenstics of approved non-arpont development projects that would be in place by 04.2009 were reviowed and incopporated (reler io Section 4.15. 3). The trips associated with ine consiruction of the Westichester Rainwater improvement Project were induded in area, if was delermined thai the eflects of tratho generated ty assodited traftic activity would te indirectly included as part of the assumed 2 percent growth factor.
- LAx projects that were undeway durine indfic data coliection used for this project are induded in the

 Vrips generated by the TBIT Reconfiguration Profect and the Kocean Air Cargo Teminal improvervent Project which will be underway in 2009 were also included.


## Cumulative Traffic at CFTP Peak (Q4 2009) With Project

The protochrelated (2009) traffic volumes descrbed in Section 4.1.2.3 were added to the Without Projuct troffic volumes described in the previous section This is a realistic traflos soenario thal a intended to fepresent bee estimaled CFTP peak hour trafic volumes (comprised of backgound leafic, during the peak period of CETP construction during the tourth guartay of 2009
Cumulative Traffic at Overall Peak (Q2 2010) Without Project
The TaIT Reconfliguration Project is schieduled to commence in late 2009 and Is expected to overlap the Iinal phases of the CFTP construdion period. This necesssitaled an anatysis to canfirm that the comulative eflect of the concurrent constricilon of both projects would not result in addilional impacts
obter tlan that which could paientally cccur during the peak construction period lor the CFTP Uoon other than thal which could palentally cecur during the peak construction periad lor the CFTP. Upon
raviaw of the schudules and construction activites for bols prolects, it was determined that mavinum combined construction activity will take place during the second quarter of 2010. In order to analyze gclivity at this point in time, the Cumulative Traffic at Overall Peak ( O 22010 ) Wathout Project were developer to provide for this aditional basis of companison. The vatho volumes gecorated by the TBIT
 The demands generated by the TBIT Reconfiguration Project were determined by analyzing a resource loaded scheduie for that project identifying estimated employee demands by week nver the course of constuction. The general methodology is siritar to lie process described previously for the CFTP peak
construction period.

## Cumulative Traffic at Overall Peak (02 2010) With Project

The Cumulative Tratic at Overas Peak (Q2 2010) With Project tratfic condition was developed to Treasure the traflic impacts due to the combined offects of the CFTP and the TBIT Reconfiguration was found to be occurning in the second quater of 2010 . The estimated tratfic generated by the TBilt Reconfiguation Project was alroady included as op part of be (Q2 2010 ) Without Project Volumes. Based on a review of the resource loaded schedule for the CFTP, the tratfic ganeraled by CFTP during
the second quarter ot 2010 was estimated to be approximately 10 percont less than the traficic gonetaled during the CFFTP project poak in the fouth) quarter of 2009. This projoct trafic was then added io he (C2 2010) 'Without Project tvaffic to produce the Overal Peak ( O 2.2010 ) With Project tratic volumes.

Los Angeles international Airport 4-10 LAX Crossfinid Taxiway Project Dratr EER
CFTP-PC00002

Page: 122



4. Setting, Environmental Impacts, and Mitigation Measures

### 4.1.2.5 Delineation of Impacts and Mitigation Measures

The following steps were conducted to calculate intersection levela of service, idenulyy impacts and dienlily polenilial migafion measuites, if nexusay.
Propare Level of Sorvice Anatysis-Levef of servicer anatyses for me study exea intersections and roadwaye woro prepared uaing TRAFFIX. Intersecilon lovel of nervice was estimaled using the Cntical
Movements Analysis (CMA) planning level methodology as defined in Transportation Rosearch Board Cirailar 212.10 accordance with Ihe LADOT Trathic Studies Pollcies and Procodurses Gundelinos, Revised March 2002, and the LA. CEQA Thresholds Guide, 2005. Intelsection level if sorvioe was analyzed for

2008 Baseine

- Baseline (2008) Phus Peak CFTP
- Cumulative Trafic at CFTR Prak (O4 2000) Watiout Project
- Cumulative Traffic at CFTP Peak (O4 2009) With Project
- Cumulative Traific at Overall Peak (Q2 2010) Wiltoul Project
- Cumulative Traflic at Oyerall Peak (OA 2010) With Projact

Identify Project impacts-Projed-rolatod impacts associsted with censtryction of the CFTP were were identlied according to the criteria established in the LA, CEQA .Trreshoids Guldi, 2006. Impacts were deferriined by compating the level of socvice resuls for lhe following condtions)

- Baseline (2008) Plus Peak CFTP compared witr Baseline (2008)-This is a measure of comparsion requited undor CEDA to iololate the polential impacts of the project.
- Cumulative impacts-Cumbative anpacls ware dolermned using a two-step procese. An inital conparition Was made comparing the cumulative With Profoct conolion agains the 2008 Basclina deemed aignilicant it if exceeded the allowable threshold of significance dofinod by LADOT in their Guidelinea. If a cumulailive impact was determined, then a second comparison of ine "With Project conaiderable conntitufton was resuiting from the CFTP.
Identify Potential Mitigation Measures-Tha taffic analysis approach included provisions to identily
 applicable Master Plar commitrments intended to addrest construation-related impects.


### 4.1.3 Baseline Conditions

As indicated in the Meithodology discusalon above, the Baselne descibes the taciites and general condifions that existed the month in which the NOP was publashed.

### 4.1.3.1 Study Area

The braitic analysis sludy area is depicted in Figure 4.1-1. The soope or the study area was detemined by identifying the intersections most likely to be used by construction-reatad vehioles accassing tha arca is genorerally bounded by the t-405 freeway to the eass, the l-105 freeway and lmperia Highway to the south, Pershing Drive to the west, and Century Boulevard to the north. The stidy aroo includes the CFTP conatruction site, which would be acceased Vas a gate located on World Way West. Constriation Via a driveway from La Clienega Boulevard located north of the intersedion with Lennox Boulevard. Alirport Pubjic Parking Lot E and the Airporl Employee Parking Lot E are located south of the proposid

Page: 123


CFTP-PC00002

Page: 124

empioyee construction parking fot and are accessod via defveways locased on $111^{10}$ Stroet between Aviation Bowdevard and La Clerega Boulavard. These existing public and employee lots would remair operatonal during the consifuction of the CFTP
4.1.3.2 Study Area Roadways

The principal freeways and roadwaye serving as access reutes wittin the traftic analysis study ares
indude the following:

- 1-405 (San Diego Freeway) - This north-south freeway genernily forms the eastern boundary of the traffic analysis study area and provides regional access to the airport and the study area. Aocass to
the study area is provided yia ramps at Contury Boulevard, L-105, imperial Highway, and three locations alang La Clenega Bouiavard
+ $1 \mathbf{1 0 5}$ (Glenn M. Anderson or Century Froeway) - Along with imperial Highway (described below) Dis east-west freeway forms the southem boundary of the trelfic analysiss sludy area, and pxtends rom the San Gabriel Freeway (1-605) on the east to Sepulveda Boulovard on the west Access to the study area ia provided via ramps at Sopulveds Bowlevard and along Imperial Highway.
* Aviation Boutevard - Aviation Boulevard is a narth-sevth, fouc-lane readway that bisects the study area.
Contury Boulovard - Century Boulevard is on ejph-lane divided roadway that serves as the primary entry to the LAX central terminal area (CTA). The roadway also semves as access to off-airpo he firporl CTA and I-405.
- Imperial Highway - Imperial Highway is an eas-wesi roadway thal is located al-grade and beneail much of the elevatiod 1-105 Iroeway, Tiue facitity varies in tane width trom six-lanes east of the merge with --105 lo lour-anes wesi of the merge with thos
La Cionoga Bouleyard -La Cherluga Boulevard is a norn-south roadway nar would sarve as the primary accoss route to the proposed constiuction employee parking lot. The facilly varies form four o six lanes.
- Pershing Drive - Pershing Dive is a narth-soulh, lour-lane divided roadway thal foms the westerm Soundary of the rrafici analysiss study area. Tuis roadway would sow conistruclion-roialed tratic accessing the CFIP site via Worid Way West.
- Sepulvedi Boulevard (Stale Route t)-Sepulveda Boilevard is a major north-soith, six-lane Boulevard is located in a lunnel section boneath the south airfield rurways.
- $111^{\text {th }}$ Street - This east-west roadway has one lane in each direction separated by a palinted median This roadway provides access to the alipporíg Public. Parking Lot B, Alport Employee Parking Lof E, and other bosinesses in the study area.


### 4.1.3.3 Existing Traffic Conditions

## Study Area Intersections <br> Intersection Locations

The anticipatod rovies used by constructiontreialsd vehcles, were reviewed to idently the intersections ikely to bo used by vehicles accessing the project construction site or the constiuction employoe parking ol off of La Clenega Boulevard. Based on this review, The Koy intersections to Bo analyzod for this study . Impertal itwy- and Peratiming Dove
2. Impertal Hwy - and Peraing Drive 3. mbenai HMy, and Sephivede Biva 4. Imperid thwy and Nash street 5. Imperiel Hivy. and Dovplas Streal 7. Imperial fivy. and $1-105$ tranos eos Los Angeios intemational Airport
4

Intersection Control and Geometry
All of the study arba intersections isted above and depided in Figure 4.1-2 are signaltes. In addition, an of the intersections are inclused in the Antomated Traffic Surveillance and Control (ATSAC) system,
 operaled by LADOT provides for monitoring of traffic conditions at intersections and the flexbibily to adfust the fratic wignal liming to react to current condivions.
Intersection geometry for the intersectons listod atove is provided in Appendix $\mathrm{E}-1$
Traffic Activity
Traffic data collecled to support the trafic, analyses required for the CFTP are summatzend below.
Peak Month Actlvity
A review of monthly tratic data at LAX over the past eight years was canducted fo identify the typicai peak month of traffic acllvily associated witt airpor operations. The average dally lamic (ADT) volumes accessing the CTA by morth for the period January 2000 through December 2007 are provided in Table 4.1.1. As indirated by the Average Daiy Traffic Volume values shown in boid type, GTA trattic for airport fondwiy traffic activity followed cosely by July. Given the influence of alipont activity on the study area roadways and intarsections, it was determined that the analysis of bachground trattic stould be based on peak Augusi conditions.

Table 4, 1.-1   CTA Average Daily Trathic Voturne								
Mon!	2000	2 O 01	2002	2003	20		200	2007
Ishury	E2,120	50,663	65,135	66, 339	51,7215	69.55	5. 721	$6{ }^{61599}$
	79707	87.569	61.145	50.868	50.802	60. 780	83.715	${ }^{05,339}$
Moci	56, 227	${ }^{20,186}$	6e.734	50.327	80,.23	63,743	60.34	58.30
	peted	06.566	68.164	80.434	8,164	64,771	89230	70,2es
${ }^{\text {Mor }}$	psos2	20,341	70.007	64,305	68, 156	88, ${ }^{\text {cos }}$	70.303	71.539
	102328	101535	72282	65.4000	7,650	T5EPa	12,647	73.6
suy	106405	105,8d2	78,433	74,047	${ }^{78,674}$	${ }^{15635}$	${ }^{78,095}$	78.3
	100.77		${ }^{78,427}$	76.550		79.45	76,236	82.193
Suefientar		${ }^{319297}$	-		${ }_{\text {cos. }}^{60.205}$	${ }_{6}^{68151}$	66.781	
${ }^{\text {O }}$ Ocober	м6.30	56,579	52.263	39.94	50,829	68200	10,206	72000
Decomber		00,049	71855	names	73,407	70,700	71,978	
tacruas	\$.135.12	999,605	[88,155	777200	224,90	83204	343,263	857,250
Average Dity Trame								
$\frac{\text { Veer }}{\text { Averapo Dabl Taitic }}$	2000	2001	8002	2005	2004	5		
	94092	D2384	6,	84,774	हुपण	20.335	70.870	T1438
3, Amulocrey		+225\%	1703	59\%	047	${ }^{0.95}$	134	17\%
	073	05.6	38.2	850	50.7	515	61.10	01.8
		-6,3\%	-9.8\%	21\%	1045	137	0 an	Ss
1 CTA twane pred mavity ytane in boid hree								
Soutce: Dival Lor Angoun tragcation an:	Cas Angelei at. Juncury	wand Ap 4. 2 CCD	ath, Ground	Tasesport	Pinaring	and Oesion	Sacton,	

Page: 129


CFTP-PC00002

Page: 131


Page: 135



CFTP-PC00002

Page: 138



## 4. Setting, Environmental Impacts, and Mitigation Measures

As ahown, it is estimated that 208 construction employees would aconss the CFTP constivction site on a daly basis during the peak period of conuituction. Using an assumed vehicto cocupancy reclor or t. the sturdy area.
In addition 10 ernployee vetide thips, I was estimaled That approxinalely 153 construction-rolated truch delivery trios would enter and exit the site during the peak day. Using an assumed passenger car oquivaiency (PCE) Fectar of 25 per vehicle and distributing theso volumes in actordance with the per day would enter and exit the study area during the peak construction period
For purposets of the intersecilon analyses, ail tripa have been converted lo a "passenger car equivelent (PCE) lo account for the additional impact that large vetides such as defivery trucks and shutile busses muitsplied by the folowing PCE factors consisfont with the assumptiona from the LAX Master Pian Fina ER

Vehiche Type	PCE FActor
Construction employees ${ }^{27}$	1.0
Construction delivery trucks $^{\text {Employee shutie buises. }}$	2.5
E	2.0

The estimeted projoct-related construction trips (in PCEs) CETP construction peak during the fourth guarter of 2009 are sumenarzed by hour in rabie 4.1-6, This hable indudes construction -amployse vehicie trips, employee shuatie buss thips, and conatruction delvery fuck trips. As ahown, during the arming. consliuction employess are arsumed to aerive duining the $5: 0010$ ni.00 a m. time period to begin俍 the peak construction tratic was added to the 5.00 to $6: 00 \mathrm{a} \mathrm{m}$, background traflac activity. During thic affernoon, the scoond-shift employaes are assumed to artive during a halilhour peniod from 3.30 to $4: 00$ p,m. to begin the second shith at $4: 00 \mathrm{p} . \mathrm{m}$. The first shiff is assumed to end at $4: 00$ p.m. with most
 p.m.

The simemary of volumes diring the consinuction a.m, and construction p.m. peak hours are summaized at the botion of the tablio. During the construdion am, peak hour approximatoly 208 equivalant poak hour ( $3: 30$ to $4: 30$ p.m.) approximatoly 247 equivalent passenger car tripa would uee the atudy aroa
intersections
4.1.2

CFTP Construction Traffic During Cumulative Peak (Second Quarter 2010)
Based on the curfenlly proposed construction schedulas for the cumnulative propocts, the cumulative peo
Is expected to occur during the second quarter of 2010 . It is anticipated mat the curmulative peak 1,756 amploycess of this, CFTP constucton employeas would comprise 1,120 amployees waith the 1.756 amployees. Of this, CFTP constructon employess would comprise 1,120 amployees win the
remaining taj employees generated by the TeIT Reconfiguration Project. Assuming a 6 -djy work week. if estimated that 187 CFTP construction employees would access Pie CFTP construction site on a dally basis during the peak period of construction. Using an assumed vehiclo cocupancy factor of 1.15

 Cos Angeles Intemational Alrport 4.26 Lax Crosstiedd Taxiway Project Dratt Eife


Page: 139


Page： 142


## 4．Setting，Environmental Impacts，and Mitigation Measures

－Airfield Intersection mprovements，Phase II－The estimated consthiction coat is $\$ 30 \mathrm{~mm}$ ilon Consituction bogan in July 2008 wilh completion meticipated by August 2009.
＊Airfield Operating Area（AOA）Perimoter Fenco Enhancements－Phases ill \＆VI）－Phase ill is a者 projed are anticipaled to ocxur betweve Odober 2008 and Odober 2009 ．Phase IV provides an adotional 5 miles atong imperial Highway，Aviation Bovievand and Centay Boulovard，to be activity typlcal for any given day during the construction duration will bo very limited due fo the lact construction and placement of the new fence sections will ocour dirsctity adjacent to the existing lence，which limits the area of active ponstruction and requires certain measures be taker al the beginning and end of each day＇s consinuction activibes in order to constanty maintain TSA security requirements far LAX
－Korean Air Cargo Terminal Improvement Project－This project witr include the oonstriction of
additional warehouso and offico space．amono olher improvements in was assumed imal additional warehouso and offico space，amosp olher improvements．II was assumed itat
construction would begin in mid－2009 and extend for approximately one yeat，It was estimated that this projod would generate 13 worker trips per day and 12 delivery trucx trips per day．
In addifion，il is anticipated that the Followihg LAX Master Plian project would also be under constructiont
＊TBIT Reconfiguration Project－Constaction iss schoduled ta begin in the fourth quarter of 2009 and extend beyond the completion of ine CFTP．
The construction of the first two non－Master Plan projects listed above（TBit Interior Improvements GFTP．Therefore，construction volumes associatod with these projocts are directly accounted for within the trafic data coflected for inis study．The Airfield Iitersection improvernents and Perimeter Fance Enhancements construction profects are relatively small as comparod to the first twa pinjeds．
 the general growth cale assumed for rackground trattic．Estimated consstruction tratic

The traffic activity associated with the TelT Reconfguration Project has been calculated for this sludy and has been directly incorporated into this arralysts．Basod on the current level of planning and ine
anticipated iming for other Master Plan projects，It is not antiopalod thai cither LAX Master Flan projects would be under construction during the construction period for the CFTP．However，as discussed previously，the assumed conservalive growth in oackground tralfic is antiopated to produce a
conservative fralfic volume scenario that would accounf for the eflects of adfitional consituclion－rolated consorvative iralic volume scenario that would account for the effects of additonal consiruclion－related
traffic in the event that additional LAX Moster Plan construclon projects were to be imiated during the tratfic in the event that additional LAA．
time horizon evalualed for Bris study．
The bocations of constiuction slaging areas and general orculation potterns of consifuction－rulaled vehice activity for the TBIT Reconfiguration Project，TBIT interior improvements Program（i．e．，TBIT
Renovalions）In－Line Bagiagn Screening Systems，and Aiffid Intersection Improvements proiects ite depicled in Figure 4．1－5．As shown in the figure，the TBirt Interior lenprovements Program staging area is locited in the same general arela as the staging area for the CFTP．The staging ares for the TBIT Interior mproverients Pregram activilies is localed on The west side of the aliport acosssed Via Word Way West
（easi of the ontrance to the CFTP sile）．Materials would be transporiod from the （easi）of the entrance to the CFTP sile），Materials would be transporied from the staging area to the
project site via Word Way West and across the secure airside for both the above proiects．The staging area tor the in－Line Baggaga Sureening Systems and Aifield Intersection formovevements project compononts is assumed to be locatod on adjacent paroels noat the northeast quadrant of the intorsection of Westchester Acilevard and Pershing Drive．It is assumed that materiais would be transported from the staging area to the project site via World Way West．

| Los Angeles international Aiport | $4.32 \quad$ LAX Crossfied Taxiway Proiect Dratt EIR |
| :--- | :--- | :--- |
| Seplember 2006 |  |

Page： 144



Based on proinimary consifuction planning lor the TBIT Reconfiguration Projod，consluction employees for that project are anticipated to paik on the east side of the airport in the construction employee parking Iot adjacunt fo La Clenega Boulevand．The employees would use the employee shuilles to access the
staging area on the west ilde Vehicle trips associated with the constructlon of the TPIT Reconfouration Project are prosented in tabular form．Table 4．1－8 represents the vehice tript assodiated with the TBil Reconfiguration Froject during the CFTP peak（lourth quarter 2009）and Table 4．1．9 represente the venicle trios associated with the TBIT Reconfiguralon Project during the cumulative peak（second quarter 2010）The locations of the TBIT Reconfiguration Project construction enployen paiking lot，and other relevant foaturos of the project are depicted in Figure 4．1－5 As thown in the figure，detivery trude are
antiolpated to use the regional freway system fo limperla Highwy to accoss the project site located ort Wordd Way West．The estimaled fiow paltis issed by the employees are documented in Appendix $\mathrm{B}-4$ ． Consinuction employees for the other liwee of the non－Master Flan projects ate assumed to park in their respective construction staging areas．The TBeIT Intorior Improverrients Program and In－Line Bagagge Screening Systems constiuction projects were already underway during the tratic data colfoction in August 2008 and are，thenefore，considered to be included in the＂backyround＂traffec data for the Baseline 2008 condition．Al of the listed construcilon projects are antiopated to be undonvay during the
CFTP consituction phak tharing the fourth quarter of 2009 ．Furthermora．it to anticipated phat the
 projects will be in their ending slages during this pariod．Therefore，it is assumed that the construction tralfic generaled by all lyroe projects is not expociad to be any figher than during the August 2008 data collection bime frame and，berefore，the esimpled volumes would be consecvative．
As ghown in the tablas，the peak construction－relatod moming fow was assumed to occur botwoon 5：00 and 6.00 am with appproximately 65 equivalent passenger car trips generated by the TBiT Reconfiguration Project during the CFTP peak，and 118 equivaient passenger car trips genersted durng．
the cumulative peak．These peak moming trips will be combined with the 6.00 am． 107.00 a m ．roadway
 vipe to the consivuction $6: 00$ lo $7: 00 \mathrm{am}$ ．volunes would provide for a consenvalive volume estimata thal is higher than the traffic volumes that would result from adding the consiruction－related volumes io the $5: 00$ to 6.00 a．m．＂background tratic volumes，This assumption is conservalive because i would potentialy rasult in more pryject－reated impacts than wouid evaluation of ine 5.00 to 6.00 a．m．Iime period it is antsipaled that the analysis would be repressentative of achuai c．
construction scheduing provides employes shif start limes doser to 7.00 am ．
During the conitruction employee p．／．m．peek hour（ $3: 30 \mathrm{p}, \mathrm{m}$, to $4: 30 \mathrm{p} . \mathrm{m}$ ），the TBIT Reconfiguration 137 equivalent passenger car tripe during the cumulative peak Note lital il was conservalively assumed that entering and exitng employee trips would overiap during the $3: 30$ to $4: 30$ poak hour．Employee trips intering the sile would be cormprossed into a 30 －minule periad from $3: 30$ to $4: 00$ p．m．and amployees exating the sita would leave during the 30 －minule period from 4,00 to $4: 30$ ．Delluery vehicle trips $3: 00$ to $4: 00 \mathrm{p} . \mathrm{m}$ ．period plus all of the trips Irom $4: 00$ to $5: 00$ hoor（which are assumed to access the site from $4: 00$ lo $4: 30 \mathrm{pm}$ ）．
For pupposes of distribulirg traffic on the study aroa roadway notwork，I was assumpd that consiruction pomployes and doivery vechicte tripo would originate from geograghic locations in proportion to the regional information obtained from the LAX Master Plan Final ElR and the 2001 Air Passenger Survey and
 oornpleted Eased on a reviow of the survey data，It was determined that the fravel patiorns and regional population distribution has not materially changed as compared with the data obtained in 2001 ．
Therelore，tha distritulion pellem assumptions used to distribute construction emplayee and construclion tselivery ligs on the sludy area tosdway network rentains unctianged from the 2005 SAIP EIR．

Page: 156
4.1.7 LAX Master Plan Commitments and Mitigation Measures

The folowing transportation-motiod Mastor Plan iommitments itenitied in the LAX Mastor Plan Migalion Monitoring and Reporting Program are app:
the project for the pupposes of ervironmental review:

- C-1. Ground Transportation/Construction Coordination OFice, This offibe will coordinate doliveries, monilor frafic condfions, advive motorists and thosa making doliverios aboul detoura and congested aroass and monitor and entorce dellivery ylimea and foutes. LAWA wall periodically minalye tratic conditions on destgnated roules during construction lo see whether there is a need to improve condifions through rignage and other means.
The Ground Transportation/Construction Coordnation Oflice, which was used duing the SAIP, is located on airport property on World Way West near the construction staging area.
- C-2. Construction Personnel Airport Orientation. All construction personnel will be required to altond an airport projocr-specific onentation (ore-construction meeling) that includek where to park
- ST-9. Construction Dolliveries. Consfruction dotiveries recuiring lane olosures shall receive prior
approval from the Ground Trantiportation/Construction Coordination Offici. Notification of delliveries asprowal from the Ground Trantporfation/Construction Coordination Office. Notifcation of delive
- ST-12. Deslgnated Truck Dellvery Hours. Trudk dellyveries shall be bnoouraged to use nightifrne hours and shall avoid the peak periods of 7.00 to $9: 00$ a.m. and 4.30 to $6.30 \mathrm{p} . \mathrm{m}$. This measure provides guidelines for controling the srival and departure times of construction
related traffic during peik commuter periods, and served as input for developing an estimated
schodute of CFTP consifiction deliver activity. schodule of CFTP construction delivery actvity.
- ST-14. Construction Employee Shif Hours. Shitt nours thal da not mincide weth the heaviest
 and necessary.
This measure provides guidelines for controlling the arrival and depariure limes of construclion employees, and served as direct input for determining the employee traffic activity associaled with the CFIP. Traffic andelysis was simited to weekday traffic conditions to provide a conservative estimato of polential impacts given thal woekday frailic adivity is typicaily algnifoanlly higher than during the weekends.
- ST-16. Designated Haul Routes. Every effort wili be made to ensure that haul roultes are located away trom sensititye noise receplors.
- ST-17. Maintenance of Haul Routes. Haul routes or oflairport roadways wal be mainlained periodicaly and wal comply wih City of Lor Angeles or other appropriate prisd dilionalationitements provided as needed.
* ST-18. Construction Traffic Managument Plan. A complele constructuon traffic plan will be developed to designate detour and/or haul routes, varable message and oither slon locations, comminication methods with airpor passengers, construction deliveries, construction employee shin hours, construction erpployee parking locations and other celevani lactors;
- ST-22. Designatad Truch Routes. For dift and aggrugate and all other malerials and equipment. truck delveries will be on dealignsted routes only (freeways and non-rasidential atreets). Every effort
will be made far routes to avoid feesidential frontages. The designated routes an Cill of Los Angeles streets are subject to approval by LADOT's Bureau of Traffic Mansoanent and for the CFTP are plamned to includa, but wir nor necessany be limiled la Parshing Dive (impernal Highway to the project site al World Way West): Impenal Highway (Fersting Drive to 1 -105): (-405; and )-105.

Page: 159



Page: 162
nat

4. Setting, Environmental Impacts, and Mitigation Measures


### 4.2 Air Quality <br> 4.2.1 Introduction

The LAX Master Plan Final EIR analyzod future air poliutani smissions and proposed millgation
mwasures to address potential Master Plan-related programimatio air qually impacts. The LAX Master
Plan Firal ERR documents polential pollulant ervistons lor tho assurtied peak construction year for
 of this aì quality analysis is to examine, at a preater level of doctall, potention al quality impacts assocated specifcally with the consliuclion of the CFTP. As descibod in Section 1.23, this EIR for the CFTP lierts
trom the arnalysils and findrigs documented in tho LAX Master Plan Final EiR. This aralyzis hea been trom the arialysls and findirigs documented in tho LAX Master Plan Final EIR. This aralysis hea been would be ultized and apiporf activity levels during tie construction of the CFTP.
The air qually analysis conductod for the CFTP addresses emessions from consfuction activies (e.g. in-stire and offsile construction equiproent. fugtive dust) that would occur during the ternporary consivuction period. The analysis describes conditions ocouming tuyng the I-quarter construction period. Off-airport ground accoss vahicle trafic not diredty associaled with the constructian acilitity was not eveluated as part of this analysts because the CFTP is expected to have a negligible effect on nonconstruction ampor-rolated vehicde mips. In adddlion, following constinction actvilas the CFTP is ard delay tmes for airciaft movemments between the north and south aiflields (see Section 2,1,3) The
 Section 4.2.6. and in tems of greenhouse gas reductions discussed in Section 4.4. Global Clintate Charget
The criteria pollutant emission inventories were developed using standard indistry software/models and federat, state, and locally approved methodologies. Resulis of the emission inveniories wore cympared lo datiy and quarteriy emissians inrestiolds established by the South Coast Air Quality Management

### 4.2.1.1 Pollutants of Interest

Six cmerie poilutants were evaluated for the CFTP, including suifur diopode ( $\mathrm{SO}_{2}$ ), carbon monoxide ( CO ), paricuiate matter wilh an aorodynamic diameter less than or equal to 10 micromelers (PM10), particulate matter with an aerodynamic diameter less than or equal to 2.5 mivrometers (PM2.5), sitrogen dioxide $\left(\mathrm{NO}_{2}\right)$, and ozone ( $\mathrm{O}_{3}$ ) asing as suirrogates feactive organic gases ( ROG ) and oxides of nitrogen ( NO ,) These polutants were anatyzed because hey were arown io have signicanrimpacis in the air qually pollutant, it was not evaluated in Inis EIR boceuse Donstruction of the CFTP would have a negligble impact on lead emissions of the Basin.
Folowing standard industry practice, the evaluation of ozone was conducted by evalualligg enfasions of ROG and $\mathrm{NO}_{2}$, which are procirsors in the formation of ozone. Ozone ia a regionul poilutant and ambient cancentrations can only be predided using regional photochemical modets that accounl for ail souroes of precursors. Therefore, no photochersical ozone modeling was conducted for the CFTP Addalonal intormation regarting the six orieria pollutants that were evalisted in the air qualify analysis is presented oviow

\footnotetext{



Page: 169





CFTP-PC00002

Page: 173




## 4. Setting, Environmental Impacts, and Mitigation Measures

Or-road onsilo equipmen lypes wure substituled wilh vehicde fypes corresponding io CARB vohide
ctasses. Emission factors for gasoline-powered vehices wore derived from EMFAC2007 Burden Model classes. Emission factors for gasoline-powered vehides wore derived fromt EMFAC2007 Burden Model
 vehicler Were based on the Heavy-Hoavy-Duty Diesel Truck (MHDT) amission faclors from EMFAC2007 Burden Modal.
EMFAC2007 emissipn laclors, expressed in pounds pur mile, were used to caikulate emissions in pounds per day. The EMFAC factors account for start-up, funning, and Iding, In addtion, the ROG emission factors incude darnal, hot soak, nunning, and resting amissions. and the PM10 and PME.5 factors include lire and brake wea
Arnual and quarterly on-rosd on-sile emiasions were calculated fiom the daily amissions estimates and
ine projecta constuction schedule.

## On-Road Off-Site Equipment

On-raad off-site trip types identified in the construction schedule include personal venicles used by for me batch plant, taxiway base material, and miscolimeous materiat, and hauling away of cut materief site, and miscalianeous malarial. site, and miscalianeous malerial.
On-road otf-aito vehicle emiessions were calculated by determining lotal vahiclo miles lraveled (VMT) by poch tapes of vehicde par day. EINFAC2007 wats used to calculate emission factore (all sixx criteri 5) tor oftroad off-sla vehicles

Total emissions for on-rond offeste equipment were caloulated using Ble same methodology assumed for on-road onsite vehides. Is general, the EMFAC2007 emissions factors were multipled by the lotal VMT
for each yehicte type to obtain emissions in pounds per day. Quarterly and annual emiasiont were then cakculated using the proposed construction scheduie. Data lor on-road ofl-sile vehicde arvissions. including yehicle substitulions, YMT and emssions factors, are presented in Appandix C.

## Fugitive Dus!

Additonal sources of PM10 and PM2.5 emissions associated with construction activiles are related la

and PM2.5) were calculated using the LRBEMIS model." USEPA's AP-42." and SCAQMD's CEQA Air
Ouality Handbook. Dally Ivgitive fiust emisssions were calcuiated for each plece of constructorn equipment or construction activity, from which annual, quartarly and peak day tuglive duat emissions
were detemined.
Fugitve dust emissions for venices travaling on paved roads were calculated using the paved roasd dust actor lor high average daly tip (ADT) roads under average conditions developad by Mowest rosoarch
stifute (MR1) Al All
Fugitive dust emisslons from on-site construcfon activities (grading, crushing. loading, heuling, and sloroge) were calculalod from the AP-42 and URBEMIS





Los Angeles International Airport	4-61	LAX Crossfield Taxiway Project Draft EiR
September 2008		

## 4. Setting, Environmental Impacts, and Mitigation Measures

Fugitive dust emissions associalerf with the operation of a concrete batch plant at the slaging area were quantified as part of the air quality anslysig, Basud on the expecled operating hours lor the rock crusharas well as the amount of concrete and asphatt pavemem to be crushed, fugitive dust emissionit fiom oparation of an on-sile rock ousher were calculaled Vsing emission factors from AP-42 Section 11.192 ,
Table 11.19.2.2. An overal emission factor was derved by summing emiasion lactors for the following cousting activites: fertiary crusting, fines coushing, and screening. Fugitive dust emissions from the onsite poncrele batch pland were calculated basmd on tha methodology described in Section 1112 (Concrete Batching) of AP-42. Emission factors were oblained from Table 11.12.4. The batch plant wis assumed to operate using a central mix method.

## Paving and Painting

Consifuclion malenals that can be spurces of ROG emissians include not-mis asphall paving and runway/taxivay stribing. ROG emissions ftom asphall paving operations result from the evaporaton of the petfoleum distilate solvent, of divent, used to liquefy asphall ofment Asphat paving emissions werre
calculated using the SCACMD rocommended apprpach included in the URBEMIS model. The URBEMMIS model is recommended by SCAOMD for estimation of construction and operation emiasions from land use dievelopiment projects.
ROG emissions from paind striping were calculated based on tive projed's maximum daly painl usage of 175 gallons, a worst-case paint ROG content of 100 grams per iltor, ${ }^{\text {, }}$ and the proposed construction

### 4.2.2.2 Operations

As deserbed in Seciion 2.1.3, the complefion of the CFTP would have a slight benelicial impact on the laxi/die times of aircran that need to move batween the north and south aifields at LAX. No other operational source would be affected by the CFTP, and only tasinde emistions from aircraf would be inpacied (reduced) by His proiect Therefore, aiccrafl omissions during taxijide modas on the airport lypes used in alipoort simuistoct modeting with and without the CFTP are listed in Table 4.2.1. The simulator codes and activity levels represent the 2005 scenario considered in the LAX Master Plan Final EIR. The airtraft descriplons and engine assignments are based on the detaults provided in EDMS Version 5.0.2. thus are not ensiraly identical to those used in the Master Plan analysis which was developed using EDMS Version 4.2.

## Table 4.2.-1

Ailcratt Codes, Descriptions and Engines Useet ie Airport Simuianion and EOMS Modeling

Simulation Alronaft Code	EDNS Ammaticote	EOMS Airchar Description	EDMS Engine
300	ascosh	Anuir Azovetron Seriar	
319	A39.1.	Natua A M19, 000 Stahos	CFMmesan
320	$\mathrm{Az02} \mathrm{\%}$	Nitsa A320-200 Ssines	vasias
321			${ }^{\text {Pashath }}$
717	87172	Booing $717 \%$ aco serier	
127	E1272	Basing 727-200-5mas	sreo-aty minier
83	${ }^{\text {er }} 3773$	Aoving 7770300 Senas	Crnsoubl
735			comstions
31	¢13/-1	Boing	Jreant

Page: 174


Page: 176
Numar I



## 4. Setting. Environmental Impacts, and Mitigation Measures

### 4.2.3 Baseline Conditions

Baseling mandiions discisssod norain nofer to caloncar year 2006, the last fuil calendar yoar for which exisling air quaily data was avalable from SCAQMD wherr the air qually analyss was prepared. The anporn is located within the south Coast Air Baaln of Calisomia, a 6,745 square-mie area encompessin all of Orange County and the non-desert porions of Los Angeles, Riverside, and San Berriardino
4.2.3.1 Climatological Conditions

The meteorolagical conditons at the arpor are hesvily infuiunced by she proximily of the aimport to the
Pacic Ocean to the west and thio mountaing to the noff and east This location lends to produce a gular daily reversal of wind direction: onshore (westerly) Comparativnly warn, maist Pacoific ar masses ditiling over cooler air resalting from constal upweling of cooler water aften form a bank of fog that is generally swept intiand by the prevaling westerty winds. The
"trarine layor' 'is generally 1,500 to 2.000 feel deep, extending only a ahort distance intiand and rising duing the morning hours producing a dock of low clouds. The air above is usially restatively werm, dry, and doudlass. The prevalent tempenature itversion in the Basin tends to prevent vertical miving of atr trough more than a shallow layer.
A dominating factor in the weather of Cullfomis is the semil-permanent high-pressuro area of the norih
Parilic Ocean. This pressure cenier moves northward in summer, holding storm facks well to the north and minimizing procipitation-. Changes. in the circulation pattern atow siom centers to approaid The Los Angeles repion recarves on average of 10 to 15 inches of precipitalion pet year, of which 8 es percent cccurs during the months of Novernber through March. Thunderstorms are loghi and introquent and on very rare occasions, trace amounts of snowfall have been reported at the airport
The annual minimum mean, maximum mean, and overall mean tempetalures at the airporl are $55^{\circ} \mathrm{F}$ $0^{\circ} \mathrm{F}$, and $63^{\circ} \mathrm{F}$, respedively. The preveling wind direction al the alrport is from the wost-southwest with an average wind speed of roughly 8 knots $(9.2$ miles per hous (mph) or 4.1 moters per second ( $\mathrm{m} / \mathrm{s}$ ) Maxumum recorded gusts range from $27 \mathrm{knols}(31 \mathrm{mph}$ or $13.9 \mathrm{~m} / \mathrm{s}$ ) in July to $54 \mathrm{knots}(62 \mathrm{mph}$ or 27,0 is) in March. The monithy avernge wend speeds range fiom $5 \mathrm{knots}(5.8 \mathrm{mph}$ or $2.6 \mathrm{~m} / \mathrm{s})$ in December

### 4.2.3.2 Regulatory Setting

Air qually is requiated by federal, state, and local laws. In addtion to nules and standards contained in
 The rilus and ragualions establistied by CARB and

## Foderal

The USEPA is responsible for implementation of the lederal Clean Air Act (CAA). The CAA was first enacled in 1955 and say been amended numprous limes in subsoquanl years (1968, 1985, 1967, 1970. 977, 1990, and 1997). Under the authority granled by the CAA, USEPA has estabilshed Notionai Ambient Air Cualify Standards (NAAQS) for the following ofteria politants: CO, PO, ND, tozone, PMMO, PMZ.5, and $\mathrm{SO}_{2}$. Table 4.2-2 presents the NAAGS that are currunliy in effeci for citteria air nollutants. Ozona is a secondary polutant, meaning that it formed from reactions of "precursor" compounds under ROG and axides of nitrogen NO..


Page: 177

Number 1 $\qquad$    Cantw 12 2/20008 634.36 AM        

Page: 179

SCAOMO's purisdictón and cevers an area of 6,745 square mles. While ar qualily in this area hias improved, the basin requifes conslimued diligence to moet air quality standarta.
The SCAQMD has adopled a series of A/P Quality Mansgement Plans (AOMPs) lo meet Ihe CAAQS and NAAQS. Most recenty, SCAOMD and CARB have adopted the 2007 AOMP and have subrritted it to
USEPA tor approval. These plant require, among rathe emissons-feducing activities, control tectinology for oxisting sources. control programs lor aroa sources and indirect sources, a permilting syaterm designed to ensure no net inctense in amisslons from any new or modilied parritited sources of
emissions: transporation eontroi measures; sufficient tonirol stratopies to achieve a five percent or more emissions, transporfalion control measures; sufficient conirol stratogles to achieve a five percent or more
annual roduction in emissions (or 15 percont or moro in a threeyear period) lor ROG, NO, CO, and annual reduction in umissions (or 15 percent or more in a threeyear period) for ROG, NO, CO, and
PiMio; and demonstration of compliance with CARB's established reporting periods for complance with al quality gooels,
The SCAOMD also adopts rules io implement portions of the AOMP. Al least one al thesa nules is
 dust amissions from on-sile earth-moving activilies, constructionidemoilion activiles, and constuction equipment travel on paved and unpaved ioads

## Southern California Association of Governments

The Southem Caitornio Association of Goverriments (SCAG) is the matropoltan planning ofganization for Los Angoless, Orango, Ventura, Riveribde, San Bernardino, Bod tmporial Counties and seves as a
forum for the discussion of regional issues related to tranaportation, the economy, community development, and the anvironment. As the federally dosignated metopolitar planning orvarization
(MPO) for the southom Califonia rogion. SCAG is mandatied by the fedoral governmentio reseach and (MPO) for the southem Califonia rogion, SCAG is mandated by the fedoral govervment to research and develop plans for transportation, hazaritous waste managoement, growth management, and ar quanity.
SCAG plans, and progranis with applicable ar quality plans.
In the Basin, the City of Los Angoles, CARB, and the SCAOMD have adopted or proposed addtional
 particulate trass and thal they use ulta-lowsulfir diesel fuel. CARR adoptod a Risk Reduction Flan for duspl|-uuled engines and yehieles. The SCAOMO has proposed a series of rules that would require fie use of clean fued technologies in on-road school busos, on-road beavy-duty public fleets, and street
sweepers. To be consislant with Ihe aì quelity analyses conducted lor the LAXX Mastor Plan Final EiR sweepers. Ta be consisfant with the ar quelity analyses conducted for the LaX Mastar Plan Final EiR
and the Final General Conlormity Determination, recost plans and polcios addlussing ground mccesas vehislo empssions have nol boen incoporated into the air quality impact arialysis described below. The emission reductions that would be associated with implementation of SCAQMD's dean fiuel nies are not incorporated into the CFTP air quality analysis; therofore, the estimate of ground accoss vehicie emiasions is considered conservative

### 4.2.3.3 Historical and Existing Ambient Air Quality

The SCAQMD maimains a network of air quality monitoting stations localed throughoul the Basin. The
 The Southwest Coastal Los Angoles Monitoring Staton. Through 2003 , this staton was located at 5234
West 120 S Sireel (Hawthorne), or aboul 24 riles southeast of (he LAX Theme Buiding and 0.75 mile southeast of the southeast comer of the airport: in Aprit 2004, the slation Was moved to 7201 W . Wesichester Parkway (Westchestef), mughty 1.5 miles northwest of the Theme Building and less than 0.5 mile from Runway 24 R (northernmost LAX runway). Tha station montors ozone, $\mathrm{CO}, \mathrm{SO}_{2} \mathrm{NO}_{2}$ and
PM10. Data availabio from this monilioing station wen summarized for the 2007 in Tabla 4.2-4. In general, the measured concantrations at these locations are beilow many of the other monitors around the Basin It does appear thal 2007 showed some increases in several pollutants compared to 2005 and 2006, elpondiliy the PM10 measurements. These PM10 concentrations may


## 4. Setting, Environmental Impacts, and Mitigation Measures

 presentod in Table 4.2-7, are expected to turther reduce construction-reiated emissions associatiodwilh he CFTP. Other leasible miligation measures may be defined in the final LAXMP-MPAQ, which will be completo prioc to implementation of the CFTP,

Table 4.2-6.	
Construction Related MRigation Measures incorporated into Construction Emissions invantories	
Mingaion Moasure	Potential Emisuions Reduation by Equipment
Meary Duty Diwsel (Of-roed)  	
Fugitive dust caused on and uff-ite vahicie trios      Wasaring (our SCAOMO Ruse 403)	E3s PMiv and 635 PM2. 63\% PM 30 and $63 \%$ PM2S
Source CDM 203 Sa	
Table 4.2.7   Construction-Relaied Air Quallity Mitigation Measures	


Measto	Type of thasure
Post a publicly visible sign with :hw felequisue nember and pertan to    comedive action wititing 24 hours.	Fapone Diner
Pibe to tral sccupancy, fee anolave dermuratrans pat ai grcuind surtacos are covered octrasted suficersy io ronimise figitice duat rinisolons.	Puptive Dast
    	Fugown puee
	DnReod Mactis
	OnRosd Mable
Prohbil staping end pawing af contivcion vericiex Onduding workeni vericies) on zrents aclacent to sensiline rccepters such as  	Morroua Meem
Pronet construricon venice iding in excens of tan merumes.	Norrinad wevin
	Nonesand Motiol
Spocily coritinstion of aiectricic form power poles and potataie    and exnaust entastion cotrole.	Satosay Point Source Commis

Page: 182


CFTP-PC00002

Page: 184


## 4. Setting, Environmental Impacts, and Mitigation Measures

### 4.2.6 Impact Analysis <br> 4.2.6.1 Construction

Uncontrolled
Uncontrollod CFTP peak daly, quartory, and annual Construdlon orissions inventoress are presented in he fugtive dust contras Riters requirod under ine CBA. Defais of the construction eristision input parameleters and results aie presanted in Appendix C. As shown in Table 4.2 .-8. the peak daly emissions of $\mathrm{SO}_{\text {, }}$ and the peak quarteny emissians of CO, SO, and PM2.5 lor thie CFTP wovid nol excued the SCAQMD donstinction PM2.5; and peakid quarteriy emisstins of ROG, NO, Naak daily enissions of CO, ROG, NO, FM10, an the SCAOMO consturtion emisseions threshoids. Therefore, uncontritiod CFTP constucton emssions of CO, ROG, NO, PM10, and PM2.5 are shanifican


Los Angeles international Aüport 4-72 LAX Crossfield Taxaway Project Drath EIR

Table 4.2-11						
Cumulative Construction Projocts Emissions Estimates						
	Puak Dally Embseions, buvidy					
Construction Project	CD	Rog	$\mathrm{NO}_{3}$	50,	Ptase	PM25
Thlue limage Sorening Syien',	${ }_{60}^{46}$	5 43	${ }^{18}$	${ }_{\text {-1 }}^{0.00}$	$\frac{1}{2}$	$\cdots$
	${ }_{61} 8$	23	$\stackrel{15}{71}$	${ }_{0} 08$	is	,
10 P	2			0.00		${ }^{4}$
	\%		${ }_{13}^{919}$	${ }_{0} 004$		$\frac{3 n}{2}$
						2
		5	58	-904		
Total fram Oiher Construction Projects. Ihatday	734	$2 \pi$	1.105	1.24	134	53
OTP Poax Dati, Etrssons. Evieat?	suc	270	, MaE	129	420	4
Total Curnuiative Consitruction Projeri Emissions, tiss/day ${ }^{2}$   SCADMD Centhiction Emileion Sgificerice Threeholds, bsityy	1,390		$\underset{\substack{2,302 \\ 100}}{ }$	2.53 10000		106 $\$ 6$
         sovicim no to trae phasa.                    						
Savoee COM, 2 OOA						

The nine construction projects included in Table 4.2.11 represent the planned developinert projects most relevant and proximate to the CFTP air qualty analysis, for which detaiced information regorcing construction piatrs, sucth as the nature and timing of consatruction acilvities and the associated
construction equipment, was avalable. While Table 3-1 in Chapter 3 identifles a numiter of pther developrient projedts pianned in west Los. Angeles and in other cities around LAX, there was not comparable information avaiable tor thase projects, particutarty wath regards to the timing, intensity, and duration of construdion activities. Nolwithstanding the absence of construction program informstion for he majority of the projects in Tabie 3-1. At can be rassonably anficipated that construction activitiss for some of trose projects would overtap with those of the CFIP, adding to the cumutative amount of excesedances of the significance thresholds for CO, ROG, and NO, and, when combined witr CFTP confrolled amissions, would cause cumbelive exceedancrs of PM10, and PM2.5. It is very unikely, owever, that the curnulative ernissions of 50 , would uxcued the theeshold of signiticance, based on the
act that existing fuels used in construction equipment in Calfornia contain very litie suifur.
The cumulative impacts to air quality resulting from profects at LaX with operational emissions, such as from the in-Live Baggage Screening Systom, TBiT intexior improvements Program, TBit Recontiguration

Page: 187



CFTP-PC00002

Page: 189


### 4.3 Human Health Risk Assessment <br> 4.3.1 Introduction

The Human Heath Risk Aasessment (HHRA) addreasses potantial inpacts to people expased to toxic ai candaminants (TACS) anficipaled to be released duting the corstruction period for the CFTP Like other lacilities that accommodato vohicloc and oquipmome tuat consume vol, aciviles af LAX may foleas equipmand (GSE), construction activilies, and other sources. Polential impacts to human heailh associaled with roleases of TACs may include increased cancof niske and increased dironic f(iong-tomn) and acute (shon-temt) non-cancor neath hazards from inkalation of TACs by people working, IVing ecreating, or attending school on or near the airpol
The LAX Master Plan Final EIR ${ }^{4}$ previously examined incrementas haalh risks due fo ithatalon of TACS from operational sources assocated with four build alternatives and the No Actor/No Project Altemative EIR Because project level details were nol tavilable regurdirg corstuadion phasing the progr mive EIR. Because project levol details were nol watable rozurding, construcion phasing. The program-teval
LAX Master Plan Final EIR did not address tealth nisk associated with construction activities of any of the indvidual Master Plan components, including the CFTP. Health risk associzied with ponstruction activitias ware addressed in the Final EIR prepared for tha firs LAX Master Plan projoct that was construcled the Soutt Aimeld improwement Project (SAIP) Because SAM consifuction required that Rurway 25 L be shuldown for an extender period, the HHRA for SAIP also addressed health risks
assodited with operatonal changes, Based on the nature and charactenisics of the CFTP, releases of TACs during proposed construction aclivities would ocevr and need to be evaluated: however, the CFTP would be execuled in a inanner, that would nol atlect currant aipport oporations. Therelore, na change is
anticipated in operations during construction of the CFTP or after completion of the CFTP except that the anticipated in operationsis during consituction of the CFTP or after completion of the CFTP except that the CFTP is expocted to help relieve existrog aircran tallic Dongestion on the crossfied taxiway system.
Thus, only numion heeith riakz associaled with canstruction oclivilios associated wift the CFTP are evaluated in this EIR.
Possible impacts to human heallt were assessad Urough an HHRA, as required under State of Caiffomia Envirormentel Protection Agency (CaiEPA) and U.S. Environmental Frotection Agency (USEPA) guidance, ${ }^{\text {6t }}$ ta consisting of:






2r Alopet2003.




| Los Angelos International Aipport | $4-77 \quad$ LAX Crossliald Taxway Project Draft EIR |
| :--- | :--- | :--- |
| Septeinter 200a |  |

 summanizad selow. Detains of the metrodologios ame provided in Appendax G, Alt Dualily and Appendir

### 4.3.2.1 Methods for Estimating Possible Project Impacts to Human

 HealthThe CFTP would rolieve airfield congession and reduce operational enissions once corrpleted. The LAX Master Plan proiects; were addressed in bre LAX Master Pian Final EIR, as noted above. Therofore, this HHPRA addresses only errissions of TACs trom construction sources.
Cancer risk and choonic and acule hazard assassments for tifis HHRA consisted of moo components (1) astimation of emissions of TACs associaled with projiod constructon, and subsoquent dispersion of those amissions to downwind recoptor locations, and (2) estimation of incremental health risks associated with
those emissions. Specifically, this HHRA estimatad possible future emission rates associatod with CFTP construction. These estifmated fulure emission ratos were used, along with meteorological and groographicin infomation, as inpuis to an air dispersion model. The
Because only construction impacts are evaluated, baseline concontrations were assumed to bo zero; in
other words, II the CFTP did not move forward, no consifuction emiasions would occur, and therefore baseline conditions would not indude construction-related TACs in ambient air. Thus, total calculated construction emisisions represent the lotal increment over existing conditions, No baseline concentrations of TACs needed to bo idenilled and subtracted from the TAC opncentrations pror to using these concentrations in calculations of exposure, and cencer nisk and chronic and acute health hazards. An itresholds.
For the assessment of possible cancer risks, and chroric and scute non-cancer hazards, 120 grid nodes in the sludy aroa were selected for quanitative assessment. These nodes are localod on the LAX
property lino whero maximum concontrafons of TACs wore predicted by the air dispersion modeling (Figure 4.3-1). Since Ine fence--ine ia the closest location with unrestricted accoss to CFTP consituction emission sources, concentrators al Ihese locations can be used to evaluate exposure to a MEI and thus provide a celling for fiske and hazards for olf-airport residential, commercial and student rocaptors. Nodo, locations for sonsitive recoptors (sccioois noar Lax) were also idenifined for the accee analysas io provide edditior to fence-line nodes, five representative locations on the airport where on-airport workers might be exposed were aso ovaluated. Projoct-elated concentrations for TACs from me CFTP associated with construction sources were estanated using the air dispersion model (AERMOD) with the model oplions for arnual and 1 thour maximum concentrabons selected. Changos in airport operations are not expected included is the incremenial TAC estimates. Chronic and ncute luzards lor the CFTP were estimated al
 TAC5. RELS lor many TACs of concem in emissions from the airpor wore developed by Cat EPA's
Office of Envienmental Healin Hazard Assessment (OEHHA). Cancer risks were calculated from annual Office of Ervironmental Healit Hazard Assessmeni (OEHHA). Cancer risks were calculated froert a
concentrations and the cancer slope factors for each TAC emited from CFTP construcfon sources.
As discussed in the LAX Master Pian Final EiR ${ }^{\text {" }}$ " actoviein is the TAC of concem that is responsible for essentialy all predicted chronic non-cancer heailh hazards assocsaled with LAX operations. This TAC is


Los Angeles Iriemational Airport 4.79 LAX Cressfieid Taxiway Project Draft ER

Page: 191



Page: 193






Sering, Environmental impacts, and Mitigation Measures

SAIP Final EIR. ${ }^{\text {Hen }}$ Osiliand International Airport - Airport Davelepment Program (ADP) Drafi Supplementa EIR, and Orange County CMminn Revse of MCAS Ei Toro Draft Supplemental EIR of concern for the CFTP was bused inlially on TACs of concern for LAX operations idenified during EIR. Some of the poliutants of concem that had been identified for the LAX Master Plan HHRA were then eliminated, based on the review of the LAX Master Plan programmalic anelysis, which domomstrated tha they would not contribute significantly to potential healith impacts, as well as rosuits presented in the Oakiand and E Toro ElRt and communication with CARB. This iss of TACS was luther refined to TACs not indluded in this list are discussed farther in Appendix D. Lack of quantitative analysis of thase latter TACs is not anlicipated to affect the conclusibns of the risk asseistment. The resulting list of TACs of concern lor the CFTP BHRA is identified in Table 4.3-1.


[^10]Page: 197


CFTP-PC00002

Page: 203



Table 4,3.5Acute REL for TACs of Cencern	
TAC	
Acriein	0.19
	${ }^{1} 3.300$
Finmuchyor	13,0009
TJuinse	37,000
xymers Tolal	22.000
Sorme	21.000
Mank ( Alishl	23.000 13,000
Methy Etom Ketoce	8, 13,200
Avmenia	3.300
${ }^{\text {Ansishis }}$	0.18 0
${ }^{\text {Comber }}$	210 180
Mersioy	18
Notel	5
Verated ${ }^{\text {V }}$	120
Soutes CDM 2000 ,	

Risk Characterization
Methodology for Evaluating Cancer Risks and Non-Gancer Health Hazard
Cancer fiske were ostimated by multiplying oxposure estimutes for carcinogenic chenicals by
corresponding cancen slope factors. The reault a a risk estimate expressed as the odds of developing corresponding cancer slope factors. The reault is a risk estimate expressed as the odds of developing
cancer. Inoremental pancer fisks were based on a 70 -year exposura duration Non-cancar hazard estimates were calculated by dividing exporure estimates by reference doses. Reforence doses aro ostimates of highest exposilire levels that would not cause adverse henth, effects even of exposures
continue over a lifetime.
Maximaliy Exposed individuals (MEI)
For the CFTP, approximataly 120 qrid points were analyzed along tre airpor fence-line (Figure 4.3-1).
 cancor hazard estimales. These calculations wero usod lo idenoly the localion with the maximum cancer hisk. Nearest land use designations (somimerciat, posidential, etc.) were ised to identify reosplor type associaled with lence-ine grid points for informational purposes. Since recreplors of all types were
assumed to exish at all fenco-line locallons, actual tand use was not faciored into the risk and hazard asyumed to
calulalona
Fenceline concantrations of TACs are likely to tepretent the highest concentrations and potential 三 impact for residents, workes, and schoor chloren. Thus, hisks and hazards estimaled for mie Lax areas.

## 4. Setting, Environmental Impacts, and Mitigation Measures

Projected ar emsssions for the proposed project after mitigation were modeled and the risks and hazards affer miligation were estimated As shown in Table 4.3-10, chronic risks and hezards after miligation are lower than under the unmiligated scenario. Misgation measures only address PMto emissions therefore, under the mitigated scenario, concentrations from ROG emissions remain the same as the the miligatud CFTP were 2 in one millon and 07 in one million, respectively. Total estimated incremental cancer risks for a young child through, adulthood (aduit + chld) at the fance-line location wilh maximum Cancer risks was 3 in one million. Cancar nisks under CFTP anher miligation due to construction impacta are sull almost ontirely due 10 predicted expasure to desel particulato matter conitibuting - about 98 under the miligated scenario are eslimaled to be 0.06 in one million-

Table 4,3-10		
Incremental Cancer Risks and Chronic Non-Cancer Human Hesth Hazards for Maximally Exposed Individuals for CFTP Censtrvolion - PostMiligation		
fucepter type	Unmitigated	tarigated
Chuar Ferident Smont Crid Agul + Orac Reisdonc Asult Rovident	A	0.7
	$\stackrel{0}{0}$	$\stackrel{0.06}{3}$
	4	2
incrementat hion-Canoer Chronic teareoss		
Chal Restident Fustum Chid	Unmiligata	
	$\begin{aligned} & 0.062 \\ & 0,106 \end{aligned}$	
exposed his comparad to bimelina convisions. Al estimates ave raunced to ove agnitiant flaue		
\% ncuberepowr io		ansolv
- Hicard indese ace nevmertal A azant	ThCs shat may at sentially equal to the	ory symam. nce.
Gorme com, 2000		

Chronic hazard indicess for achatt residants and child ressidents living at the ferce-line location with naximum cancer risks under the miligated condifioes are estimated to be 0.004 and 0.01 , respectivel incremental HIs for MEI school childerer are 0.001 for construction impacts under the mitgated CFTP 41 percent. formaidetyde contifitess 38 percent, chlorife contribules 7 percont. and aceataidetyda contribules 6 percent.

### 4.3.9 Level of Significance After Mitigation

The TAC emissions inventory developod tor the CFTP, which formad the bessis fo, tha heath rek characterization, is based on the esssumption that cartain air quality mitigation measures idenilfied in the
LAX Master Pian Final EIR and Mirigation Moniloring and Reporting Ptopran would be in place of the
 miligation measures assodated with LAX Mastar Plar Nitigation Measura MM-AQ-2 were assuirned to be

	4-102	LAX Crossfield Taxway P	Los Angeles Internationai Arport

Page: 214



 apenions

CFTP-PC00002

Page: 221



### 4.4.2.1 Construction Sources

The paramelers used to develiop construction GHG emissions are the same as those presented in Section 4.2. Air Duadly, for construdion criteris air poltulant amissionsa. Essentially. $\mathrm{CO}_{2}$ is emitied from the combustion of suels used in on-site construction oquipment, material delivery bucks, and worker vehides. Details regarding the sipecific types of equipment and operating assumptions ard included in
Appendix. C .
The unissions from oif-road consitudion squipment are basod on $\mathrm{CO}_{2}$ erninsion rates developed by OFADMD tor the Souah Cosst Air Basin using the Catifornial Air Resources Board (CARB equivalunt engines) were calaulated from $\mathrm{CO}_{2}$ emission faclors (grams/mile) doveloped by SCAQMD of the South Coest Air Basin using lhe CARB EMFAC2007 model.
The analysia pontext considered in the evaluation of GHG emissions from conatruction sources generaty dudes the omaipon ateas where consitucion equipmani would operate and the off-alipori or

### 4.4.2.2 Operational Sources

## Building/Lighting Operations

Inplemientaition of the CFTP would include the remnaval of sevveral uxisiting buildirgs, which directly and arictiy generate GHG emissions, and the conatruction of a new building - the ARFF, The natural gas and olocricity usage in each building was essimated from tho building's area (square feel). Nalural gas usage lactors from the Urban Emissions (URBEM15) aie quality model. Version 9.2 .4 were used for all 1909 Cemmarcial Buldings Energy Consumption Survey (CBECS) resuils by the Enengy Informalion Administration (EIA). Electricity usage lactors were obtained from the CBECS for all buildinge. In addifion to buildings, operational sources of energy consumption for this project incluce the high intensity scharge lighting ( $/, 0$. . noodights) appliod in apron aress such as the RON ares.
Emission lactors were oblained from The Climate Repisity's General Reporting Protocol (Myy z008) for poliutants with the excepplion of CO , from olectricaly. The CO , electricry emiasion faccor was notained Sinoa the LADWP Uses a higrer percantage of coal inan the rest of the state in its elcctricty (Lenernt is maltod producad a more accirale estimate of amissions than using the detaul tectors from The Climate Registry.
The analysis contexi concidered in the analysis of GHG emissions from building operations was generaly
 consluclion. Those siructures are described in Section 2.4.2. W

## Aircraft Operations

The complation of the CFTP would have a stight beneficial imoad on the taxilide limess of aircraft that ced to move between the north and south airfields at LAX. Thase alrcratt would not have to either wall aiport to crossi: As described earilier in Soction 2.1.3, no other operallonal source would be affected by

acconsed hon 17,2pus


AbiN TT, 2000 a
Los Angeins internationai Alrport $\quad 4-709$ LÁX Crossfield Taxiway Project Drant EiR
4. Setting, Environmental Impacts, and Mitigation Measures
the CFTP, and only taxi/idie emissions from airctaff would be impacted by this project. Therefore, only aircratt emissions duing taxi/ale modes on the airpor foilowing compleion of the protoct are analyzed for ure CFTP. The airrall types and used in alport simulation modeling with and wiffoul the CFTP ar


Page: 222
 Axtrapolath to fuyire


Page: 227



Table 4.4.3		
Construction-Related GHG Mitigation Measures		
		Type of Measare
		Ooricod Matie
		Onfioud Moso
		Narenad Mobite
and minimize eff-stis fluck haw thics.		Nocrous Mobie
apprecriatis horsepewec raing for intendied jub).		Noble are Stichay
Regwe that el conathution siquemert working on-tion is propery maresined (inouiting  		Mosas and Sesticnary
oontion dumess.		Mocion and smitrary
   and imeatigalions of conipitints.		Ansidetasive
Soures comi, 2008		
The following Master Plan cormmitnent designed to address impacts to solid waste disposal, and which aso addresses related air quality impacts from truck haol trips, is applicable to the CFTP.		
* SW-3. Requirements for the Recycling of Construction and Demolition Waste. Tris ineasure requires that contractors recycle a specified minimum percentage of waste materials generated during construction and demoltion. The percentage of waste materials required to be recyched will be specified in the construation bid documents. Waste materials to bo recycled may include, but aro not limited to, asphait, concrete, drywall, steel, aluminum, deramic tile, and architectural detalls. Tris measure was sucpeassfully applied on the South Airfield Inprovemani Project (SAIP) relative to the use of an on-site rock crusher to recycle demolition waste (old concrete and asphalf) into aggregate base material. This reduced both the need to export demolition waste and the need to import aggregote base. In turn. the arnount of truck haul trips, with associated foel cansumption and greenhouse gas generation, was reduced. Similar to tho SAIP, the CFTP is well-suited to this type of on-sito recycling.		
4.4.6 Impact Analysis		
4.4.6.1 Construction Emissions		
The constaction source $\mathrm{CO}_{2}$ emisslons, by calandar quarter, are presented in Table 4.4-4. The peak quarteriy entissions by general equipment or vehicle calegory are summarized in Table 4.4-5. Over the duration of the project, the on-sita construction equipmenf generales just under 60 percent of the projod consarfuction $\mathrm{CO}_{2}$ emissions, and deiveries of construction materials primarily for the batch plant generate alenost 30 percant of the projoct donstruction $\mathrm{CO}_{2}$ emissions.		
Los Angeles international Airport 4-115 Lax Crossh		field Textway Project Drall EIR September 2008

## 4. Setting, Environmental Impacts, and Mitigation Measures

### 4.4.7 Cumulative Impacts

The construction source $\mathrm{CO}_{2}$ emissions from cumbiative projects are presented in Table 4.4-7, The curnulative consitruction projects ithat occur at LAX concurtently witt the CFTP include: (1) TBIT
Recioniguration Proied, Taxiway S and ARFF demotion, (2) TBIT Intefior Improvements Program, (3) Reconiguration Project, Taxway S and ARFF demidaion, (2) TBit intenor improvements Prugram, (i) Syslems, (6) Perimeter Fance Projects, (7) Korean Air Caryo Terminal Improvernent Project, (8) Airport Operations Center (AOC)Emargency Operation Conter (EOC) and (9) Westchester Rainwator Irmerovenneli Proied. Calculation shoels for inase omissions are induded in Appendix E. Altachment 1.


### 4.4.8 Mitigation Measures

The long-term operatonp-elatod GHG reductions assoctated with the CFTP far exceed tho tomporary ocostructon-refated GHG errissions. The project includos mitication measiros to reduce construction equiprene constradions-etatod GHG emissions other than Brose already identified above and in the Section 4.2, Alf Qually.
In that royard, Table 4.4-8, Evaluation of Polenlial GHG Miligatior Measures, prosents a cormprehensivig list of suggested mitigation measuras for new dovelopmonl profode throughout the slato of Caliomia.
This list ia prepared by the Callomia Office of the Attomey General relative to addressing GHG emissions. This liat in prepared by the Callomia Olfice of the Attomey General relative to addressing GHG emissions
and climate change impacts within an EIR. The table below descries how the proposed projecl relates

To each of ithe apolicable mitigation measures. As indicated in the table. the proposed projed resuonds io 10 each of the applicable mitigation measures. As indicated in
those measutes that are within the scopelcontrol of the project.

Table 4.4-1	
Mensan	Discunsion
Transportation   Coordinato controled Irnersections se that ratso pasmas mave etliciertly through congresied areat.	
Set specito linitm on iding time for conmencid vetiche, notiding delvey and constraction webiciet.	
Promote ride shating programs R.g. by deegrating a pertain perplotlage of porking spaces for high-ocoupanty whiclas, provifing laigue pansing spaces to accommiodval want used for nobe-shaing.    areas, and providing olectronic meestage boant afince for coortivering nider:	
Crata canahaing programs, Accommacebons ior such prograns include provising parkint seacer far the car -mant vavides on converventificationa accatribla by piolic Fiesisootation.	
Oreato andicr expand exating voilide buy-osdo proyrams to nolvida yelidet wen high greanhouve gat timiswions.	WA- Brymet the sespencondei al hie prijuc.
	LawA has an exteting pelicy reaning vetides over 0.500 pourios gross weghti, inciudry smailiey trueting What weight requirnert, to de atomalve fiowed.
Deveisp the repositary infertructuro fo oncourigo the uas of stiprethe Nuil vehicles (eg, alectric vehide charying harables and cawerwniry bocest athemstive forieng atationy).	
Incteate lhe coit of diting and panary privale volious by impooing tulto, parkrg lews, and residertal paring permitimita.	
tranit	NA. Beyonelle smpeforstrea tre proed
modes intarseot	
Enowuragn the use of puble trasit syibens by enhacokrg salety and chanlosas co yeticies and in and around stofont.	NA - Bivased the secoseicentria in the popac:
Assess transporintion infert lees on new develypmenlin uniter to boibse and incrases putict transif service.	
	A stuibo mil be uned fo trimsport conctuction torkes    profect soe The stiuttio roule trawis along limberial Holiwey wid passes drecty by ine Morro Grien Las       Theit waik commule.
Oller pubict famel ficontives	
Los Angeles international Airport $\quad$ 4-119	LAX Crossfield Taxiway Project Draft EIR Seplember 2008

Page: 231
 ant they be definet of asessiod
4. Serting, Environmental Impacts, and Mitigation Measures

### 4.5 Biotic Communities <br> 4.5.1 Introduction

The LAX Master Ptan Final EiR evalualed polential impacte on biotic camnurities ${ }^{104}$ and propased mitlgation measuros to address potentlaly ssgrificant impacts. The analyas of blotic communitits impacts on bietic communilies associated with construction of ihe CFTP. Operalonsal aspects of itc CFTP and thest potential to impact biotic communities have not changed from what was addressed in the LaX Masler Plan Final EIR. Therolore, the potential operational impacts on tiotic communities
associatod with ine CETP are nof further addressed hercin.
There are two key findings and potenlial impacts and mitigation measuras from 5 uction $4: 10$ of the LAX
Master Plan Final EiR that rilato to fiais soction and the CFTP.
Canstruction activilies, including staging and stookpiling of materials proxamal to the Lor Argatas/E Segunde Dures, Including the El Sogundo Blue Butiefly Hablitat Resioration Area, ware donabiod as having the potentiai to resuit in depoation of fuggitive dust within state-designoted sensitve habitat. The
 Hatitat withio and Adjacent to the EI Sequndo Blue Butterfly Habitat Restoration Area, and MMM-ET-3, EI Segundo Blue Butterfy Conservation: Dusi Control, was rocommended to raduce these polenlial fugifivid fust mpacts to a locs than aigniicant ievel.

No significant indirect impacts dua to increased ambient light. noise, of concentrations of ait poilutants were idenslied às a result of implementation of the LaX Master Plan.
The purpose of this analysis is to exanime al a more preose project-leval of dotai the potential for CFTP construction activities to impact biotic commmenitess In addifion to direct impacts associated witb ponstruction activilies, potential indifect contrituction impacts from light emissions, air amissions, and
noise are also assessod.

### 4.5.2 Methodology

Existing sersitive biolic communities and plant and animal communilies were identifed through a series
Exisung sensilve biolc communiogs and plant and ansmal comimunilies were identhied through a senies 7 of the LAX Master Plan Final EiR.) For this Draft EiR, blologists conducted a gereeral assessment of the biolic communites within the unpavedlandeveloped portians of the CFTP which may contain sensitive biofic communaies: the consiruction slaging aree and the American Ablines amployee parking fot
relocation site. On olocation site. On Juy 31, 2008 and August 6, 2008, on-aite surveys ol the proposed CFTP stoging area docurnent exasting biological resources and map regetation for each of the two areas. Prior to the surveys, the Cailfomia Native Piant Societys (CNPS) Inventory of Rara and Endangered Vascular Plants of Callornia and the CDFG's Cailornia Natural Divarsily Daia Base (CNDDE) were reviewed to idenlly spebial elatus plants, widilfe, and habitats known to occur in tho wiority of thusd sitas. The rosult of the
BonTera biological resources ssivey are incuded in Appendx F and descrbed below.

### 4.5.3 Baseline Conditions

Descriplions of exisuing conditions rolaive to biotic sommunities uns prusented in Section 4. 10 of the Lax Master Plan Final EIR and Section 2.2 of the Second Addendum to the Final EIR. This information $\frac{15}{}$隹 the LAX Master Plan Firal Eif io incorporate the results of the recant surveys.

Las Angeles international Airport 4-125 LAX Crossfinid Taxiway Projact Dratt EIR

## Page: 237



CFTP-PC00002

Page: 242


## 4. Setting, Environmental Impacts, and Mitigation Measures

4.5.5 LAX Master Plan Commitments and Mitigation Measures
 Soliowing are applicabile to lise CFTP and considered in the biolic communilies analy yish

- MM-BC-f. Consorvation of Stato-Designated Sonsitive Habitat within and Adjacent to the EI
Sogundo Blue Butarlly Mabitat Restoration Area. MM.-BC-1 topures the inplementation of
 Restoration Avea. The goal of Mticiation Moesure MMACA., in corfiunction with Milgation Massure MM-ET-3, is lo reduce lugilve dust aniissions by 90 to 15 poricant.
- mm-ET-3. Ei Segundo Blue Butterly Conservation: Dust Control. The gioal of Miligation parcent through the implementation of ofrst contiol measures.


### 4.5.6 Impact Analysis

 austailis), was obsonved on the Amencican Artines employee parking lot rolocation sito. Southem tapoliant is a CNPS List te. sposis. Constriction of the CFTP would diractly impact 29 socithem latplant individuasts which mowid toa a signilicantli iripad
Consituction of the CFTP, induding staging and stockeiling of natetalale in dlase provimity io the tos
 The implementation of mitigation measures specified In the LAX Nasster Plan Final EIR. Implenientation of

4.5.7 Cumulative Impacts
 inplemenentitian of MM-BG (CFTP)-1 describod below, impacts to the southem lapplant would be reduced
 southem lapplant would ocour

### 4.5.8 Mitigation Measures

To addresss the potential significani Lugtive dust impacts on sensilive biolio communilios, Mastor Plan Megation Measures MM-BC-1, Consevation of State-Designated Senilive Habitat wittin and Adsacemt to tive EI Segundo Blue Butterly Habilat Resloration Area, and MM-ET-3. EI Soquindo Bive Biaterfiy
Consevalion: Dusi Contol would pe applicable to vee CFTP.
The followng project-specific miligation measure is proposed io address impacts to the southern tarplart:
 southem tarplant indivicuaisis shail be miligated through seed coslection and seeding into os suitable

A quaifed Seed Calestor shal monitor the tarplant phenolegy to determino the appropriate iiming for



CFTP-PC00002

## 5. OTHER ENVIRONMENTAL RESOURCES

This chapter provides an assessment of envifonmental impacta associated with ihe consituction of the
CFTP, with the excepion of irnpacts associated with surface transportation, aic qually, human health 可
risks, global climate change, and bletic communitiea which are addressed under their respective sections. in Chapter A. Potentially signilicant effects related to the operation of the aifport after the completion of the CFTP are largoly addrossed in the cax Master Plart Final ERR As descibed in secion 12,3 of his EIR, in accordance with Sedions $15152(a)$ and 15168 of the CEOA Guidelines, the information presented In this chapter is primanly for disclosure and inlormational purposes, because further feview commirms that
the construction impacts of the CFTP were accounled for and addressed in the LAX Master Plan Final EIR and Addenda to the Final EIR. No neW significant impacts have been identifed. Certan Mastor Plan cominilments and miligation mossures delinoattod in the LAX Master Plan Final EIR are applicable fo the CFTP, as described below lor each environnartal respurce area. Some or he measures previously delined at parf of the Master Plan Fingl Eir call for the preparation of more detailed mitigaton plans that apply alpontwide. As such, this soclion also includes some new matigation measures reated to
archaeolopical and paleontological resources, refiecting mitigation plans that wern adopled by LAWA subseçuent to tre approval of the LAX Master Plan. For the environmental resources addressed in this: crapter, no othar mulgation messures are required beyond (hose arsocialed with the LAX Master Plan Final EiR, as rellected in the LAX Master Plan Mitigation Moniloring and Roperting Program (MMRP) Overall construction impacts were addressed al a programniatic lovel of dotal in the LAX Master Plan Final EIR and reeated technical reports and appendicos. Each environmuntal catogory in tils chapter is reviewad to detormine the applicabity of the LAX Master Plan commitments and milgation mossures then made as to whether the evaluation and miligation of conatruction impacts presented in ine LAX Master Plan Final EIR for a given resource are adequaile to address the impacts of the CFTP.
Each of the 15 anvironmental categories presented in this chapter is sel forth in separate subsections.: The lollowing headings a/e included wathin sach atbibectian:

- The Introduction describes the resource category and incurporates by reference releyart seclions of the LAX Master Plan Final EIR, Addenda to the LAX Mastar Plan Final EIR, and relatod lechrical
- The Setting briefly describes the existing anvimonment as if relales to the respective resource

The CEOA Throsholds of Significance are quantiative or qualitafive measures used to detarnine whelher a stignificant environnental inpocd would cocur as a fesulf of the CFTP. This subsection of the cholce of thiesholds is provided by federal, state, and local quidelines, partioularly the
 Thresthofdy Guide," published by the City of Los Angeles.










Los Angeles International Alcport
1 LAX Crossield Taxiw

Page: 245


Page: 246
 1 ther $2 \rightarrow 0$




## 5. Other Environmental Resources

The LAX Master Plan discussion summarans construction impacts that are relevant to the CFTP as Ientifiod in the LaX Mastor Plan Fival ElR and Addonds, presanls LAX Master Plan cormunilment associsted with the Master Plan that would romain signilicant after mifigmion.

- The Crossfield Taxiway Project dicoussion evaluales the potential for additional impacts not addressed in the LaX Master Plan Final ElR and Addanda to Pe Final Elf, and, when necessary जrther defines appacts presented in the LAX Master Plan Final EIR and Addenda to the Final Elia associated with the CFTP. These inperts are then evabuated to determine whether addivional LAX Mosters Plan to address the project-relefted construction impacts of the CFTP. This Crossfield Taxlway Project discussion also identifies any consituction and/or construction-reloled impacts that would

5.1 Noise
5.1.1 Introduction

This section addrossos noise impacts from CFTP construction traflic and equpment on noisis-sensitive, EB
ses within the communizes surrounding LAX. The deteminations and assessments made in this ection are based primarlly on informaliong contained in:

- LAX Master Plan Final EIR, Section 4.1, Noíse, April 2004
- LAX Master Plan Final EIR, Technical Report S-CI, Supplamental Aircraf Noise Technical Roport (which also includers road trafic noise data), June 2003
- LAXMaster Plen Final EIR, Section 4.20, Consi/rudion impects, Apni 2004


### 5.1.2 Setting

Tho existing setting relative to construction equipment and traffic noise is provided in Sections 4,1 and ,20 of the LAX Master Plan Final EIR and is incorpprated herein by relerenco. In general, as briefly felated uses inclufing airouft and ground equipment. The existing alicraft nolse levels at Lax are comparable to those feflected in the LAX Master Plan Final EIR, as con be saen by conipaning the ailport noise contours for the year 2000 (sene Figure F4.1-5 of the LAXMasiar Pian Final EIR) Io The aiporl noise acant roport on www lawe, upg).
There are no noise sersitive usos innnucliate to the project site $\overline{j . a}$., withir $1,000+$ toet of the projects several major highways induding (-405 and b -105, and several mejor atterial roads including. but not united to, Imparial Highway. Sopulveda Boulevard, Century Boulevard, and Lincoln Boulevard. Noiso sensitive recoptors in proximify to LAXX include residential uses in E Segundo to the south, Inglewood and Lernor lo the east, and Westchester to the north Of these sensitive noise receptort, retidential sile, and approkimalety D.47 mile from the closest point of the site, which is southern edge of the Taxiway C13 cunstruction area. Daytirno ambient noise lovels in Ei Segundo nexd to the aiport are estimated to be 66 daA $L$ _ or higher, owing to both road trafic and aircraft noiss, and nightime noise lovois would be bout 5 dBA lower than diving the day

## 5. Other Environmental Resources





 heve to ingrase 16 -VIlad ove the
The construction routes for the LAX Master Plan would bo intentionally designaled for frewwas and


 for substan
significant
signican
Mastec Plan-related construction activities located within the vicinity of noise-sensilive uses include the Revelopment of aipport propenty norin of Weslctiester Parkway and west of Sepulveda Boulevard, the
RAC, the ANMP acquastion ares (Befferd)) The GTC (Manchester Square), and in-sito cargo locivies near the airport's southem boundary. The CFTP was not considered to be a constuction project near rise-sersifive uses.
Land uses polentially afecied by stgnifcant consirvection nolse levels wovid be those primanly locited to the south of tre sirport in El Segurido and to the north of the airpord in Wesichestor. Even witr Master Fan Mifgation Measures MM-N-7, Construction Noise Control Plan, MM-N-B, Construction Staging, MM$\$ \mathbf{4}$, Equiprnent Replacoment, and MM.N 10. Consifuction Scheduing, LAX Master Pian construction in higher then ambient levels neer sunsilive resideotial areas and achoois. This as a algnificant and navoidablo impact.
5.1.4.2 Relevant LAX Master Plan Commitments and Mitigation Measures

MM-N-7, Construction Noise Control Plan
MM-N-8. Construction Staging

- MM-N-S. Equipment Replacement
- MM-N-10. Canstruction Schedulin
- ST-16. Designated Haul Routes

ST-22: Designated Truck Rouies
5.1.5 Crossfield Taxiway Project
5.1.5.1 Impacts
$\mathrm{K}_{5}$ refoeted above, the information, analysis, and Master Plan mingation measuras provided in the LAX Mosier Plan Final ElR adequately addreass polential construdion traikc and equipment noise impacts due io CFTP construction activities. Unilike improvements included in the LAX Masier Plant thal are iocsived within 600 feel of noise-sensilive land uses. The nearest noise-sensilive land use is residenifil development in EI Segundo, with the nearest residence over 2.500 feet from the southernmust edge of the CFTP construction area. As indicated abiove, a construction noise level of $8 \overline{0}$ dBA $L_{2}$ at 50 feet from he souroe would drop-off to 70 dBA La at 600 leet. AI a dilstance of 2,500 feel, which is the dosest point be 00.5 diBA Laci. As discussed in the ervironmental setling. noise lovels in $E 1$ Sogundo during the day

Page: 277

(e.g. gasoline and diesel) supples were anficipated to be avaiabie through 2015. The following discussion provides updated information on electricty, nalural gas and transportation-eiated fuel suipplies since pubitication of the LAX Master Plan EIR.
 Angeles, including LAX. The City used approximalety 24,000 glgawalthours of eloctrclly in 2006 iw Projections prepared by LADWP in 2007 indicate that tha olectricity demand for Los Angeles will be approximatety 29,000 gigawatt hours in 2025. 121 LAOWP' 2007 integrated Resource Plan (IRP)
provides the framework for assuring that future anorgy needs of the City of Los Angoles are relaby mot
 As described in the 2007 IRP in order to meet liese objectives, LADWP wil aggressively pursue the Renewable Porlfolio Standand of hsving 20 perrent of is energy needs met by renewable sources of energy by 2010, reducing greenhouse gas emissions to 35 percent bolaw 1990 lavels by 2030, and and soler programs, Forecasts in the 2007 IRP indicates that there will be adequale electricily rescurces to meat the projected City electrical demand through 2025.
The Southern Cailornia Gas Company (SoCaiGas) supplies natural gas to nearly all of Southern and Central Califorila, including the Cily of Los Angeles. SoCailGas obtains the majority of its natural gas trom out-ol-stafe scurces, in 2007, approximately 2,700 mifion cubic foet (MMCF) of natural gas per day
wats consumed in the SoCalGas service area. SoCalGas projects gas demand for all its market was consumod in the SoCalGas service area. SoCalGas projects gas dermand for all its market
sectors lo grow al an annual avorage rato of just 0,02 percent from 2008 io 2030 . Demand is expected lo sectors lo grow al an annual avorage rato of just 0,02 percent from 2008 io 2030. Demand is expected to
be viftually flat for the next 22 years due to modest econiomic growth. Calfornia Pubic Ufilieg
 induslial dompand, and continued increased use of non-utity pipeline systems by entanced oif recovery customers. The outlook on nalural gas supply avilability continues to be fovorablo and future supplies
of natural gas are antiopaled to be adequate to meet profected demand itrouvh 2030 . 1 . of natural gas are anlicpaled to De adequate to meet projected demand through 2030 .
As indicled in Seclion 4.17 .1 of the LAX Mastor Plan Final ER, supplies of transportation-related fuals. such as gasoline and desel, are dependent on anergy reserves, boith domestic and intemational, and available relinery capacity. Projocions prepied by the State of Calforla indicate that market lactors,
 petroloum luels will likely increase over the next decede or so, requifing an expansion of the capablity to accommodate additional imports. ${ }^{\text {(1)2 }}$

### 5.8.2.2 Natural Resources

Information regarding the sources of mineral, petroleum and aggregate resources is provided in Section mo no

[^11]Page： 286


## 5．Other Environmental Resources

CFTP site is visible as a distant leature friom i－105 and the upper stories of hotels and businessen located CFTP sie is visible as a distant leature from $1-105$ and the upper stones or hotels
elong the norih side of Century Bouievard and the south side of Imperial Highwey－
Lighting for facllties in the CFTP arsa includes rool petimeter and parapel lighis，atieided and directed down，that genoraly do not spill over 30 feet onto the surrounding areas．Interior light coning from
hangars and other faclites does not generally spel over beyond the hanciar doors or immediate facility grounds．The existing aiffiefd lighting system within the project area corsisla of laxivay edge lights． laxiway canterfine lights，and guidance signt．Aurfeld lighting in the midfeld areatif generally fow to the ground and iow in inlensity Rurwayntaxiway lighls are typically directed to the diveclion of the runway of
 residential rocoplors and，as evidencad by Wghting measuraments al these sites，cause no light spillover in residential areas on the south and north perimeters of the sipporl．

The surfounding artea along the southem boundary of LAX that would have the most direct neves of the CFTP site had not materially changed from that analyzed in the LAX Master Plan Final ElR．
The sovthwestem portion of the eliport，east of Pershing Drive has iftle develooment，and is is meinty limited to aiffieldropen space．Subsequent to publication of the LAX Mastor Plan Final EIR，a constructon stasing area for the SAlP was established east of Pershing Dive and souil of Worid Way West．This area contirues to be used lor construction stoging adilities ascociated with SAIP construcfor，and atso the proposed CFTP staging area．Residential areas on imperial Avenuo west cons Vista stoe have vews of the soulves in Street aro blocked by graded fill berns：both sides of lmperial Highway are bordered by a combination of wood and steef utlity poles and lines．

## 5．10．3 CEQA Thresholds of Sianificance

The following CEOA theshoids of signicicance were used in Ine analysis of aestholic and lighr emission
Impacts for the LAX Mastor Plan and are also applicable to the CFTP aesthetic and light emitssfons impacts analyses
Aesthetics
A significant aesthetic or view impact would orcur il the dired and indirect changes in the enviranment that may be
condivars．
－Introduction of features that would detract from the existing valuod acstretic quaily of a neighborthood，comumunity，IF localzed area by bonflictingloontratting wier important nesmeuly an inconsistency walt applicables（sustign as a a thenemines．
Removal of one or more features that contribute to the valued aanthetic charactor or image of ithe neighborhood，communily，of focalized area such as domoition of structures，streit trees，a strand of rees，or other landscape festures trat contribute posililyoly fo the valued visual imgage of a communty
－Obstruclon，interruption of diminishiment of a valued focal or panoramic view or view from any designated scenic highway，comidor，or parkway
These thresholds of signilicance were utilized because they address lhe polential concams relabive in俍 contained in the LA．CEQA Threshoids Guide that are televant to this project．

## Light Emissions

Algnificant ight emissionis impact would occur if the direct and indirect changes in the envioninient that may be caused by the pmpect would potientialy result in the following future condation：
Los Angeles letemational Airport $\quad 5-42 \quad$ LAX Crossfield Taxiwary Project Draft ElR
Soptember 2008
mios installed within or very close to the pavernont．Such laghline would not result in visual impacts off－site sensifive receptors．Siminer to the existing RON aictraf parking that would be remove sufficient visisility 日round the aircrat to be parked in Inis localon．Neverthelass，given the dislance of these lights to the nearest sensitive receptors，an increase in ighting intensity of more than 2 tootcandles as measured al the property line of a residenlial property would nol occuur and，therefore， hiss impact would ba less than significan．Leghing for ino roloculod Avrorican Airlnos omploye and given the distance of these lighls to the nearesl sersilive macaptors，no significant light emission impncter would occur．

## 5．10．5．2 Mitigation Measures

No significant impacts matated to aesthelics would accour as a result of CFIP．Therelore，na mitigation －

## 5．11 Earth and Geology

5．11．1 introduction
This saction addressea the potential for construction of the CFTP to increaso the consequances of
 Hope stability，and oil field gasses and causo polental unpacts such as substanlial damage to structures Infrastructive，and exposure of people to substantial risk of injury resulting from a geologic hazard．
The determinations and assessments are bssed on information presented in：
－LAX Master Flan Final EIR，Section 4.22 ．Earth Geology，April 2004
－LAX Mastier Plan Final EIR，Suction 4 20，Consiruction lerpacts，April 2004
＋Lax Master Plan Firal EIR，Technical Report 12，Earth／Geology Techncal Report，January 2001
5．11．2 Setting
Desciptions of existing cundiliors relative to the geologio setting including toppography，gaodogy，lauite and other ooological hazarde are prosentod Soction $4: 22$ of bo LAX Mastor Pian Final EIR This intormation is incopporated by relerence herein．LAX lies on a relatively level area at an elevation of bout 100 feet above sea｜evel．The only notable lopograptic lealire is localed at the west end of ine that were subsequently rempoved dive to noise impacts from LAX，this area still retains some of the original sind dune landform charedel，with sand eidges runging from 85 to 185 feel above sea tevel and dosed geologic：leatures on－site．The LAX Master Pian EIR identifed the following geociogical fazzards associated with LAX：seisnivcrelated，seitiomerilexpansion of loundatlon soils，slope slabitity，oil held gasses，and orosson heyarda．Conditons related to geological hazards in the Vionity of the CFTP site Fin

## 5．11．3 CEQA Thresholds of Significance

The folowing CEOA trushoids of signicance were used vo the analygie of earingeology impacts for the AX Master Flan and are also appleatlo to the CFTP earthgeology impacts analysis Asignilicant carthigoology imbad would occur if the diect and indirect changes in the environment itial may be caused by the project would potentally result in one or more of the following futuro conditions

Page: 289
Mariber I


CFTP-PC00002

Page: 290


## 5. Other Environmental Resources

- Subslartial damage to structures or intrativuduro, or axposure of people to substansal risk of milury 58 a result of the creation or acceleration of a geologlc hazard.
- Sediment funoff (erosion) that could not be conitained or controlled onsile
- Destruction, permanent covering, or material and adverse modrication of one or more distinct and prominent geologic or fopographic fealures.
Those thresholds of significanca were ytized because they addeess polentiar concoins reative to geologic hazards and landform alleration associated with the LAX Master Plan, namely soismic hucards
 settiement, expansive solls, slope stability, ou feld gases, and erosian. The threstholds rellieci those
contained in the LA. CEQA Threshoids Guide trat are retevant to this projech, as well as relevant issues identified in Appendix G, Environmental Chackliat Form, of the State CEOA Guideilines.


### 5.11.4 LAX Master Plan

### 5.11.4.1 Impacts Identified in the Final EIR

Development of the LAX Master Pian would nol adversely alfect any distinct or prominenf geologic or lopographic tealures. Table F4.22-1 of the LAX Marter Plan Final EIR Idenffied the following goological consideratons related to airfiedd lacilies: septimmemt, axpansion, faull surisce nupture, ground shating, consideralions Jor implementation of the LAX Master Flan would include grading and earthwork activities. grading-related changes of topography, arosion, stabilly of temporary constuction slopes and
 and $1,400,666$ cubic yards of fill, resulting in a disposal of $1,456,390$ cublc yards of vill.
Site-specifc geotectnical investigations would be performed that wouid provide recommendations for subject to agency review and approval. Compliance with requirements to condud site-specific geotechnical invesifalions during project design and to design and implement remedial and protective construction measures would ersure that the potential tmpacts associated with geoologic hazards
idenified in the LAX Master Plan would be less than slanifcant.
5.11.4.2 Relevant LAX Master Plan Commitments and Mitigation Measures
No Master Plan commitmants or mitgation measuras for earth and geology were identifed in the LAX
Master Plan MMRP.

### 5.11.5 Crossfield Taxiway Project

5.11.5.1 Impacts

The information and anolysis provided in the LAX Master Plann Final EIR adequately address the potential (or geologio hazards due to CFTP consitruction acilivitios. Construccian of the CFTP woild require grading and excavation. Constiuction of the CFTP would involve 218,775 cubic yands of out and 42.730 cubic
 for fir based on its characteristicas; In addition, some of he malerial would consist of contaminated solis,
which would be remediated on-site or sent offisite for treatment andor disposal. A site-specific

Los Angelea intarnational Airport 5-45 Lax Crossfeld Taxiway Project Dratt Elf
CFTP-PC00002

## 5. Other Environmental Resources

## Risk of Upset

A discussion of exsting conditions relative lo risk ${ }^{101}$ of upsel ${ }^{* 2}$ is provided in Section 4.24 .3 of the LAX Master Plan Finat EIR, and incorporated dereein thy rofference. Four lacilitios at LAX handle large volumnes the CNG Station mate materials: the Central Uwilly Plant (CUP), the Fuel Farm, the LNG/CNG Facility, and
 could potenlially be affected in the everit of an upset at one of these fadilities. Sensitive receptors are -aimport land uses that could be most affected by a risk of upset, suct as public and private educational (acilities for pre-schooters through high school grades, general acute care hosplas, longterm health care faciales, and nearby residential populations.
The ribk of upset andysis for each facility focused on the reasonably-foreseenbie, wors-case accident scenario, as these acoddents are likely to pose tha highest nisk to people of property. These scenarios are highly unlikoly and have never occurred at LAX. Further, regulatory and coprational sefoguards aco In place at esch of the four facilifes descofbed abave to prevent an upset or minimize its effects.
The CUP is located near the Central Teminal Area The raasonably-toreseeable worst-case scenario for the exigting CUP is the potential release of suiluric acid caused by a line bresk between ine sulturic acd tank and a variable stroke injector pump that feeds suluric acid to the cooling tower. This would resulf in $\equiv$ 目 the release of suifuric acid into a waler-filiod berm, and subsequent formation of a doud comprised of
diluted sulluric acd vapors. As shown in Figure F4.24.3-2, of the LaX Masier Plan Finas EIR, the Thazard footprints," or potential areas of effect, exterd to Eome of the roadway. public, and terminal areas of the airporf. No residerices of othier sersifive receptors would be affecied. No sucti incidtents have dosured at the existing CUP
The LAX Fuel Farm is located on World Way West, Immediately west of the CFTP site. Potential releasse scenarios at the LAXFUEL Fuel Fame include a major Neel rolease withoul subsequent gignion and a major Liel release with subsequent Igivitor (pool (ros). As indicalod in Flquere F4.24,3-2 of the LAX Master access raad near the operalions center and al adjacent fuildings, including those occupied by Dothe House, Marriot Corporation, and the Los Angeles West Terminal Fuol Corporation (LAWTFC) No residences of othor sensitivn chicuplors wevid bo affocled. The lignition of surmunding structurts is not expedided to occur. No such incidents have oocured at the existing fiel lamTwo facilitias af LAX currently store and dilispense LNG or CNG fuels a LAWA-operated LNG/CNG
FAcilify on World Way West near the Coniliental Alfines leasehoid. Immediately north of the proposed Amierican Aurlines employee parking lot felocation sile, and a CNG Stalion on the United Airfines leasehold operated by ENRG (formerly Pickens Fuel Corporation). Both LNG and CNG consist orimantily
of methane, a hammable hydrocation that is lighter than air, but behaves like a dense gas during a releask. CNGG and UNG are boik gaseous af room temperalure, allhough LNG A slored alhight pressures Io mainiain liguid form in the vessel. A CNG release could form a vapor cloud of gaseova methane and a LNG release could form a boiling liquid vapor pool or a yapor cioud of gaseous methane. Ab indicated in
Figure F4.24.3.2 in the LAXXMaster Plan Final ElR. in the wvent of a warst-case incident at ine LNG/CNG Figure F4.24,3-2 in the LAX Master Plan Final ElR, in the event of a warst-case incident at Ihe LNG/CNG Faclity, individuals may be injured along Worrd Way West, and at adjacent bulldings, including those
eurtenily occupied by Continental Aifines and LaWA offices. No residences of other sensitive receptors would be affected, In the ovent of an incident at the CNG Stavion, individuals on the United Airines leasehold may be injured. No such incidents have occuured at the existing LNG/CNG faciltes.
These condzions regarding the location of the facilites mat handie large volumes of toxic or flamimuble,
the reasonatly loreseable worstcase scenarios and associated fazard foolprints have not changed
$\qquad$

[^12]Page: 292


Page: 295


Risk of Unset
Under the LAX Master Plan, the existing CUP would be the same size and at the same location as under baseine condifions whth the same hazard foolptint. Thus, the nisk of a sulfuric acid release under the
Under The LAX Mastor Plan the LAXFUFL Fuel Fam would robin ts uxieling capacity and would oin
in its existing location, but the overall fuel farm site footprint would be reduced; however, the hazant lootprint would be the same as under baseline condifions because the secondary conlainnent area wrould be the same size. As indicated in Figure F4.24.3-18 of the LAX Master Plan Final EIR, in the event of a pool fire at the LAXFUEL Fuel Farm, individuals may be infured on the acciesa Ioad near the opermions center, and at adjacant buildrings, including those courenlyy occupled by Dobbs House, Marriolf
Conporation, and LAWTFC. The ignition of surrounding siructures would not be expected to occur. No residences or ofher sensifive receplors would be aflected. Due to the numperous satety loatures curienty in place and cornplance with all applicable saback and regulatory requiernents, The risk of a poof fire at the LAXFUEL Fuel Farm would be low. Because ine likelhood and corsequences of a pool fre under
 scenario would be less than significant.
Under the LAX Master Plan, the LAWA LNG/CNG Facility would be the same size and at the sama location ats under curfent conditions with the same hazard footprint. Due to the soloty-related project
dosign features ond plamned cempliance with all opplicabie sotbacks and safely requirenents, the ikellhood of an incident at the LNG/CNG Facility would be low. LNGICNG facilifies are highly regulated in order to prevent rolcases and miahaps. Because the likelihood and consequences of an LNG of CNG incodent at the UNGCNG Facidy under the LAX Master Plan would be the same as under baselfe
conditons, the nik of upset impact of this sconaino would be lass than signilicant.
Under the LAX Master Plab, the CNG Station woudd ba relociated to the southeast comer of Arbor Vitae Street and Avation Boulevard The relocated CNG Station would be the same sze wifist the saine overal capacty as under baseline condilovs. Therafors, the hazard footprint would be the same as wel Final EIR, in the event of an incodent at me relocated ONG Station, individuals may be injured along puble: streets (Arbor Vitae Street and Avistion Bowievard) and at adjacent uses (a law schook, rontal car siorape, and a gae station). The ignition of surfounding sifuctures would not be expected to oocut. No residences or other sensstive recepions would be altccled. While the hazard looppint would be locatedin another area, thè consequences would be sumiar to toseline condilions. CNG lacilites are highly
regulated in order to provent roleases and mishaps. Dup to the planned satety leatures and oomplanco with all applicable setback and salety requirements, the likelihood of an incident at the relocated CNG Stallor would be low. Betause the likethond and consequences of a CNG incident al the rolocaled CNG Station under the LaX Mastor Plan would be similas to boseline condibions, the risk of upset impaci of this
scenario would be less than significant.
5.12.4.2 Relevant LAX Master Plan Commitments and Mitigation Measures

- HM-1. Ensure Continued Implementation of Existing Remedialior Efforts
- HM-2. Handling of Contaminated Materials Encourtered During Construction

G-1. Establishment of a Ground Transportation/Construction Goordination oins

- C.2 Construction Personnel Airport Orientation
- St-9. Construction Deliveries
- 5T-12. Designated Truck Delivery Hours
- 5T-14. Construction Employee Shift Hours
- ST-16, Dosignated Haul Routes

Los Angeles international Airport $\quad 5.51 \quad$ LAXCrossfield Taxiway Project Dratt Eif
Soptember 2008

- LAX Master Plan Final EIR, Technical Report S-roa, Supplemental Water Use Tectinical Repot, June 2003
- LaX Master Plan Final EIR, Technical Ropori S-10b, Supplemental Wastewater Use Technical


### 5.13.2 Setting

### 5.13.2.1 Water Use and Facilities

Descriplions of existing c्andilions, relative to water use and conveyance are presented Section 4.25 of the LAX Master Plà Final EiR. This inlormation is incorporated hercin ty meference. Water consumplicin within the LAX Master Plan boundaries was astimated at 2.230 acre-feet Tor 2000 . Existing essinateg Final ElR. As piesented in Seclion 4.25 .1 , water is supplied to the aipport triough a 36 -inct trunk line in Sepulveda Boutevard lisal distributes water to a combination of 12 -nch and 16 -nch transmission Enes along the airpon perimeler. Whin the CFIP proper area, walar daintouton facinies include two wish lines thal cross benfialh World Way West and a north-south fire waler line located west of the proposed Taxiway C13
Section 4.25 of toe LAX, Mastor Plan Final ElR indicated that, according to the City's 1995 Urban Wator Management Plan, there would be adnguate water supply lo mout Cty-wide demand, including demmand
associsted with the LAX Master Plan, through 2015. The lollowing provides updaled information on the City's water supply pubished since certification of the LAX Master Plan Final EiR. In 2007, the City recognized thar existing tradivionar waler supplies are being stressed due lo a number of laclors, including the lowest snowpack on record in the Eastern Sierta, the driest year on recond in the City, a Federal Court nuling that limits exports from the Sacramento-San Joaquin Detta by as much as one-third , Cay
envirommental commitments, and contamination in Uie San Femando Valley groundwater supply ${ }^{\text {is }}$ in response, the Cify has drafled a water supply plan, "Socuring LA's Water Supply." ${ }^{\text {"M }}$ " which provides a blueprint. for ensuring a reliable water supply for the future of Los Angeles. The Clity's strategy for meeting projed future water domand is o multi-pronged approach that includes: investments in slate-of-the-arf lechnology, a combination of resates and incentives; the instalation of simarn spenikiers, afficient washers and urinals, and long-term measuess such as expansion of water recycling and investmend in
cleaning up the local groundwater supply. She premise of the Citys Wator Supply Plan is that the City
 conservation and water recycing. il is estimated that by year 2019, half of all new dermand wall be filbod by a siox-fold increase in recycled wator supples and by 2030 the other half will be met through ramped up consarvation efforts.?
At LAX, 35 percent of all landscaped areas at LAX are imgoted by redaimed waler. Much of the imigation system al LAX is monilored and controiled through a contralizod computer inipution control cantor, Iurther conserving water resources. LAX is working with LADWP to expand reciaimed water distinbution lacities and the CTA. ${ }^{\text {IT }}$. portions of the airport along limperial Mighway, the Seputveda/mpeninl galeway arem and he CTA."

[^13]Page: 299



Page: 300


### 5.13.2.2 Wastewater

Desconptions of existing conditions relative to wastewater generation and wastowater conveyance and
treatmenf are presentod Section 4.25 of lhe LAX Masier Plan Final EIR This infomation is incorporatod realment are presentod Section 4.25 of the LAX Masler Plan Final EIR This inlomation is incouporatod herein by referenco. Wastewater genortion within the LAX Master Plan boundorios for tho Year 2000 Was estimated at $1,936,861$ gallons per day, "Ts Existing estimated wastewater generation has not 4.25 .2 . three malor sewer culfals, tho North Contral Outail Sower (NCOS). North Cutfall Relier Sewor (NORS), and the Central Outfail Sewer (COS), and other sewer tines andofle LAX Winin the CFTP


Section 4.25 of the LaX Master Plan. Final EIR indicated that, accovding to projecions in the Cty/s
 capacty in 2020 . The following provides updsilod intomation on the Cily's water supply pubbished since cartification of the LAX Master Plan Final EiR. The 2006 City of Los Argeles, integrated Resources Piant
$\left(\mathbb{R P}^{P}\right)$ Final Environmental Impact Report (EIR) (IRP) Final Environmental impact Report (EIR) ${ }^{\text {ivt }}$ analyzed the impacts that would occur from
 documented in the Cly of Los Angeles integrated Resourcas Plan, Volumes
Plan the The TRP Fadities Plan integrates planning far the three intartapendent water systoms: wasiewater, recyeled water, and stornwaler. The IRP Fachlies Plan based thure (20z0) wasiowaiter needs on flow model projections developed by the City (based in part on tie sounerm Cais Plat reviewed the water and wastewator needs of the City of Los Angless for the next 20 years and idenbled necessary infrastructure improvements and policy recommendalions.
The IRP EIR evaluated tour nitternatives that would meet the future citywdo wastownter needs. of the four allematives evalualed in the IRP Facillies Plan and in the IRP EIR. Allemafve A way the stalf
fecommended atternative. Aternative 4 includes expanding Talman Water Reclamation Plant (T)ilmanito 100 million golions per day (migd); adding new collection gystem sewers (Northesst Interceptor Sewer $11 /$ Glendale-Burtanik Inlerceptor Sewer, and Valley Spring Lane Interceptor Sewer); adding atorage la Tilman and the Las Angoleas-Giendale Water Rectamation Plant (LAG); and adding a truck-loading Gocity, digosters, and secondary ciantiars to the HTP. In addtion, Alamative 4 volutes increasing hin sctools ind govirient pimpertes, and neiatibortood-scale percolation at vacant lots and at parks/open space in tho eastorn San Fornando Valloy.
The scheduife for implemening the componemis itat comprise Allarrative 4 will be leitiated by moritoted triggers that include populatoon growth, increases in wastewater flow. regulatory changes, and policy Tocsions including the docsion to propaed with groundwaler feplenishment of recycted waler from for discharges to the Los Angmies River, future regulations for the use of recycied wates, andor policy. docisions for the use of watar for groundwater replenistment. Thereby requiring coordinaton between the Also, if reguelory pemili requirements tesulh in a noed for advancad treatment to discharge to the Les Angeles Rever, Then advanced treatrient could be added lo LAG at its exjsiling capacily, which weuld require parthership and coordination with the City of Glendale.



Lot Angeles intemational Alrport 5-56 LAXCrossfield Taxiway Project Dratt ElR Seplember 2008

### 6.3 Project Objectives

The oblectives of the CFTP, which need to be considered in the formulation and evalivation of
altomatives, Include tie following: allomatives, include tre following:

* To provido taxiway improvements, nctuding a now taxiway, which will belp alloviate periodic and eficienoy ol aircrafl ground movernant during such fimes, and reduce aircal taxition and diey
- To provide a new clossfield laxdway designod to accommodate ADG VI aircuafl $0, e_{\text {, }}$, NLA such as the
Airbus $A 380$ and Boeing 747-B). recognizing that limiltod commercial operation of the A3B0 at LAX is schoouled to Degin in Octobar 2008 and is anticipated to increase substantailly by early 2012.
- To implement taxiway improvements and other nelitud arfieid operations area (AOA) improvements consistent with the design and intent of the approved LAX Master Plan, in a manner that is complementary to the aystematio phased implementation of the Mastier Plan.
- To provide for both neartierm and long-ierm anvironmentar baneris, particularly as related io reduced ail quably pollition, including greenhouse gas amissions, and feduced fuel consumplion.


### 6.4 Alternatives

A wide range of altarnatives to the airfield improvements proposed for LAX were formulated and evalualed fluring the course of developing and mpproving the LAX Master Plan. At pvidenced in reviewing the five airport concopls addrossed in the LAX Master Plan Finel EIR, including Altemalives A
through D and the No Action/No Prolect Alternative, each aipor concept includes taxivay connections through D and the No Action/No Project Alternativa, each aiport concept inciudes taxiway connections
between the north rumway pomplex and the south funway complex Each of the four tind allematives callod for new addlional crossfield laxiways, with the number and locallons of the taxiways being infuenced pirmarity by the number and placement of miefleld satalifie concoursea, with dual taxiways being proposed on each side of the concourse. As such, the laxiway syslem improvemenis such as those associated with the CFTP were formulated and defined particular to each of the airfeid concepts, based on applicable FAA requirements and slandards and professional airporf planning practicas. In ight
of several factors, including safoly, cost. operational officiency, and amvironmuntal concorns, if was ullimatasy doternined by the Los Angeles City Counol that the LAX Naster Plan (Aitemative D) best met the project objactives. Untike certain oanoeplual plans for airpor lacilites, alitield canfigurations wero developed and designed af a preciso levol of detai to satisfy FAA raquirarnents rolatod to airpor layout plans. As such, consideration hoss already been given to a mumber of aiternatives that included variations proposed CFTP, with particular emphasis on the construction impacta essociated with each altenative.
As described at the begining of this chapter, the significant impacts associated with the proposed CFTP pertain lo construdian actuvtias and include criteria air pollutant emissiona and greenhoube gas resourcea, which can be miligated to a lovel that is less than signiticant. Aliematives presented in thia sectian incude (1) polential allematives thal were inlially considered but were soreened-oul from turther consideration due to their infeasibaity or readily apparent insbilly to avoid or substantially raduce the CEOA, the "no proioct attemetive is also addressed in this seclion.

### 6.4.1 Potential Alternatives Screened-Out From Further Consideration <br> 6.4.1.1 Alternative Site

The proposed CFTP is, by name and design, intonded to provide an aircran laxiway connaction botwuur the north runway complex and the south rurway complex. The following discussion of alternative situs

Page: 317
 In mex win


CFTP-PC00002

Page: 327


## 6. Alternatives

With respect to tiological resources, implementallon of the Design Allemalive would avoid impacts to 29 Wouthesp tarphent individuals, a significant, but milgabile Mmpect associat od with the proposed poject.
Relative to other envifonmenta topics, implementation of me Design Attemative would rosult in impocta


Implementation of the Design Allamative would not meet ane of the key otijectives of the project ta provide a new crossfiola taxway designed lo occocmmodalo $A D C$ VI aiccall.
In light of the rensons above, the Design Alternative was rejected in favor of the currantly procosedt
6.4 .3

## "No Proiect" Alternative

Tre exising condilions wilitin which io consider a "no proiectr allernative would icclude we midfield erees as it airrenty exats: As desconbod in Socition 2, the existing confoyuration of the taxiway systern it the
 the toct that Fire Station MEO (exsting ARFF) is 14,000 square teet in sica, which doess not provide adequate space and laciites for the station to operale offecifively. Under the "no projper" altemalive, none of the ososstuction-related significant impactis descotibed in Chaplor 4 would occur: however, none of The basic otijectives of the CETP woid ba met oithor. Addilionaliy, none of he oporational beneitits of the
 alkrath in the midfoid area, with fower slopts and delays than under curtent consolions with periodic aicratil movernent congestion. Simizarif, the reduction in "slar and slop" laxiing movernents that would


## ©.4.4 Environmentally Superior Alternative

Baser on the analysis above, the 'no ordjecr altamative is considered to be the Environmentily Suparion Allemaltre dve to the fad thet a wowd not indude the extensive constructorn activities ansociated whth
 gats, and botic restources impercts if would not, however, provide the operational alic quality benofits assoclated with the proposed project.
Second ta the "no project" allemative. the Design Allernative is considerad to be the Envirormentally Superior Attomative in that it would avoid impacts to 29 southem taplant individuals and woulid result in
 proposed project. The differenco in air quaity and greenhouse gas generaton impactry between the clase to avoiding of substantialy lessening the significant anavoidable impacts of the propasiad project,
Aiso, implamentation of the Dosion Altonalivo wovid nat meot ona of ihe key objedivos of the project, Also implamentation of the Dasion Atitamalivo wowd nol meet ons of the key objedivos af the project. that beng to provido a new crossfled taxway designed to accommodato ADC VI aiccrait:
7. List of Preparers, Persons/Agoncles Consulted, Parties to Whom NOP was Sent, References, NOP Comments, and List of Acronyms

### 7.2 List of Parties to Whom NOP was Sent

Apra California   7265 Worid Way West   Los Angeles, CA 90045	Cailfornia Deparemant of Toxic Substance Controi Guenther Moskai CEQA Tracking Center
Acronaulical Redio Inc 700t World Way West Los Angeles, CA 90044	Box 806   10011 Street   Sacramento, CA 95812
Air France 7100 World Way West Los Angeles, CA 90045	Califomia Department of Transporfation - Distrial?   Vin Kumar   100 S. Main Street   Los Angoles, CA 10012
Aircrall Service International Group   7286 World Way West   Los.Angeles, CA 90045	Cailornia Department of Transportation - Diviston of Aaronautics Sandy Hesnard
American Airlines   $7000,7100,7200$ World Way Weat	1120 N. Sireot - Reom 3300   Sacramento, CA 94274
Los Angolas, CA 80045   Americat Airlines   7001 Worid Way Weat   Los Angoles. CA 90045	California Department of Water Renources   Nadell Gayou, Serior Engineer   901 P Straet   2nd Street   Sacramento, CA 95814
Amprican Airinas 7265 World Way West Los Angeles, CA. 90045	Callorrise Emvironenontal Frofection: Agency   Air Resources Board   Jim Lemer. Airoor Projects
American Eagle 7000 Worid Way West Los Angeles, CA. 80045	1001 IStreet - PTSDAOTPB Sacramento, CA 95814
ATA   7051 Word Way Wesl   Los Angetes, CA g0045	Culitomia Environmental Prolection Agency Regional Water Ouality Control Board Toresa Rodgers, Los Angeles Region (4) 320 W. 4th Streed - Suito 200
Allas Aríloc	Los Angeles, CA 90013
7001 World Way West Los Angeles, CA 90045	California Govemor's Giffice of Emergency Services
Califomia Deparfment of Consiarvation Sharon Howell B21KStreet	Dennis Castilio 3650 Schniever Avirnue Mather, CA 95655
Socramento, CA 95814	Cailfornia Governor's Office of Planning und
Caffornia Deparment of Fish and Game-Region 5 Don Chadwick, Habitat Conservation Program 4949 Viewridge Avenue San Diego, CA 92123	Research Scoll Morgan 1400 10tr Straet/P.O. Box 3044 Stcremerlo, CA 95814
Calfornia Department of Parks and Recreation   Envirorimental Stewardship Section   P.O. Box 942896   Sacramento, CA 94206	Galitornia Highway Patro)   Shirley Kelly, Office of Speciol Projecis 2555 ist Avanue Sacramento, CA B5818
Lon Angeles International Airport	74 LAX Crosaffeld Taxiway Profoct Drait EIR Seplember 2008

Page: 332


ARSAC Alliance for a Regional Solutien to Airport Congestion 322 Culver Bhal, H231 Playa del Rey, CA 90293

## www RegionalSolution,arg

## Jane 17,2008

Mr. Herb Glasgow
Senior City Plamer
City of Los Angeles Los Angeles World Aipports
City of Los Angeles Los A
I World Way, Room 218
Los Angeles, CA 90045
Comments re: Notice of Preparation of a Draft Environmental Impact Report (SCH No. 1997061047), Los Angeles International Airport (LAX) Master Plan Specific, Plan Restudy
Dear Mr. Glasgow:
The Alliance for a Regional Solution to Airport Congestion (ARSAC) appreciates this opportunity to comment on the Notice of Preparation for the Specific Plan Amendment Study. In addition to these comments, ARSAC has adopted the attached "Petitioners' Overview of Guiding Principles for Environmental Analysis: LAX Specific Plan Amendment Study EIR."

## A. The Proposed Reflance on Tiering is Problematic,

The NOP ( $p, 4$ ) indicates that " $[t]$ he SPAS EIR will be a Supplemental EIR that is tiered from the LAX Master Plan ETR.." This statement requires clarification, and the tiering approach requires reconsideration by LAWA. While tiering may be appropriate when a Lead Agency has already certified an EIR for a project, in this case ARSAC strongly cautions against relying too heavily on the previous Master Plan EIR. Tiering is only appropriate when the fater project is "consistent with the program, plan, policy, or ordinance for which an envirommental impact report has been prepared and certified." Pub. Res. Code $\$ 21094$ (b). Case law also stresses the need for consistency between the subsequent project and previously certified EIR. See Koster v. Conimty of Sar Joaquin (1996) 47 Cal . App. $4^{3} 29,36$. The very purpose of the project now proposed is to change some of the key onderlying assumptions of the Master Plan EIR. Therefore, it is change some of the key onderlying assumptions of the Master Plan EIR. Therefore, it is
very difficult to argue that the SPAS EIR project could be consistent with the previously very difficult to argue that
certified Master Plan EIR.

The NOP for the SPAS EIR proposes significant changes to the Master Plan,
and soils, hazards and hazardous materials, hydrology and water quality, land use and planning, noise, population and housing, public services, recreation, transportation/circulation, and utilities.

1. The list of impacts proposed for study is incomplete.

## 3. Geology/Soils.

Although LAWA bas not checked off plans to study geology and soils, population and housing and recreation, LAWA should include these in the EIR. Gsology and soils are critical concems with any construction project. Several projects and/or ongoing geology/soils concerns should be considered in the EIR. Presently, there are proposals tobuild a ground water runoff retention basin on the northwest comer of the LAX airfield. An underground storage facility is also proposed. LAWA should examine the potential An underground storage facitity is also proposed. LAWA should examine the potential
for leaks, and to the Impacts on the soil above. As this location is near the EI Segundofor leaks, and to the Impacts on the soil above. As this location is near the EI Segun
Duries, the soil tends to contain more sand than the eastern boundaries of the LAX Dunes, the soil tends to contain more sand than the eastern boundaries of the LAX
property. Additionally, there are old sewer lines rumning undemeath LAX dating back to the 1920's. Some of these lines in Playa del Rey (such as on Zitola Terrace) have collapsed, and the City of Los Angeles has had to buy out certain homeowners (e.g. James Marcinkus). Another proposed project could affect LAX is the Woodside Natural Gas pipeline that will use part of LAX property in the EI Segundo Dunes and will traverse underneath Westchester Parkway to a facility near $98^{\text {th }}$ Street and Bellanci. The EIR should address potential cumulative geology/soils impacts.

## b. Population/Hoosing.

Population and housing are expected to increase in the Westchester/Playa del Rey/Playa Vista community plan area. Although this area presently has over 50,000 residents, Playa Vista will be adding more housing stock as will the hew apartment complex on the corner of Manchester and Lincoln (former Furama Hotel site). Furthermore, the proposed revision to the Housing Etement to the City of Los Angeles General Plan seeks to double housing in the Westchester/Playa del Rey/Playa Vista area. With increased housing and population come increased traffic and pollution impacts as well as additional stresses on infrasfructure such as roads, water usage, power consumption and sanitation (trash pick-up and sewer). The EIR should address any cumulative impacts.

## c. Recreation.

Recreation is another area that must be studied. For nearly two decades, LAWA has promised to restore the 3 holes removed from Westchester Golf Course when Westehester Parkway was constructed. The Westehester Golf Course is one of the most heavily used
golf courses in the Ciry of Los Angeles. Earlier this year, LAWA also held a public meeting at Loyola Marymount University to gather ideas for uses of the LAX Northside property. Many of these uses that garnered positive responses were recreation uses, Furthermore, LAWA may be deficient in producing this EIR if LAX Northside land use issues were not discussed. The FAA's 2005 Record of Decision on the LAX Master Plan specifically exeluded approval of the LAX Northside from the Airport Layout Plan on the basis of inconsistency due to, "markedly different assumptions underlying the analysis of environmental impacts that may be expected to result forn the LAX Northside portion of the LAX Master Pian."

We request that each of these potential impact areas be thoroughly addressed, evet when LAWA feels that impacts can be avoided or reduced by feasible mitigation measures or alfernatives.

## 2. Specific Concerns Regarding Particular Impacts.

## a. Traffic Impacts.

Sources of pollution outside of those from LAX operations are currulatively significant and must be included in the study. In addition to pollution sources from vehicular traftic, aircraft flying in the skies surrounding LAX are also expected to have increased impacts. Additionally, pollution from local refineries, treatment plants, and other sources should be considered additive when determining impact significance.

The communities surrounding LAX are generally used as thoroughfares for north-south traftic and few alternative routes exist. The 405 freeway, Vista del Mar and Pershing on the west, Lincoln Blvd., Sepulveda Blvd., and La Cienega all bear heavy traffic, including that associated with LAX operatives. The envirommental impact analysis must include those above and beyond the notmal operations of LAX, but also the impacts on traffic by travelers and cargo operntions forced to go long distances within Sourhern California to get to LAX Traffic on the 405 treeway can become bumper-lo-bumper at any time of the day or evening. The 405 traffic "spill off" can cause level E and F service on the few other major routes or other alternative routes through the communities. The economic impacts and health impacts of these delays should be identified and quantified.

Community growh is increasing the number of people within the communities surrounding LAX. We want to ensure that any related impacts to the commounity growth are included in the total impact: Population growth and traftic increases resulting from all further land utilization allowed by zoning within community plans must also be considered. LAWA should use maximum use zoning in their analysis, not just those projects that have been approved. City Community Plans call for substantial increases in bousing density with resultant traftic and increased numbers of people who will be impacted by airport related

ARSAC Comments to NOP No. 1997061047 6-17-2008
Page 4 of 12
CFTP-PC00002
operations and Over-Ocean operations. Safety impacts of the varied scenarios must be assessed. Furthermore, other operational scenarios using outboard runways for take-offs and inboard runways for landings need to be considered, as well as parallel landings on the north or the soluth runway complexes. Further, any changes in facilities should trigger the north or the solth runway complexes. Further, any changes in facilities should trigger
personnel safety reviews to identify and mitigate potential hazards on both the landside personnel safety revi
ard airside of LAX.

## C. Specific Questions that Should be Addressed.

ARSAC's comments in the attached "Table of NOP Comments" pose questions that should be addressed in the course of the EIR preparation. The comments have been made to correspond with the NOP document organization.

We understand project impacts deleted from Alternative D by the Stipulated Settlement, and designated as "yellow light projects," will not be analyzed, exeept for the no action aflemative. However, the EIR should analyze the worst case for each of the individual projects impacts. Further, if a derivative of a yellow light project is proposed in one of the alternatives (eg. moving rumway 24 L . 340'south), the impacts shall be segregated and not tied to a requirernent to impose other yellow light elements, but any worst-case alternative use must be included.

In 2004, LAWA took credit for the reduction in development at the Northside Development area from the 4.5 million square feet assumed in the 1982 EIR to 1.5 feet 5 million square of light industrial and commercial space. However, the ROD excluded the Northside Developonent. The DEIR should elearly specify what is planned at this time, and the full impact of such development. Similarly, all proposed uses of the Belford Square area should be delineated in the assumptions used to assess the impacts.

The new altematives all contain a new transportation center at Century and Imperial Changes to traffic flows and pollution impacts should be highlighted along with those from any automated people movers (APM) that would go from that facility to the central terninal arca. The stops of the APM can have a significant impact on ground traffe. The locations assumed for stops must be identified in detail.

Although the Consolidated Rental Car facility location was approved for project analysis by the Stipulated Sertiement in the Lot C location, it is our understanding that alternative locations have been considered. The impacts on ground traffic should be assessed separately for each altomative location.

One altemative discussed modifications to the ingress/egress along the $98^{\text {i6 }}$ Street bridge for the Central Terminal Area near the present Terminal 1. This proposed solution called for a structure in the area where Park One currently is located. This proposal allows people going to the north terminal, especially Terminal 1, an opportunity for drop
pollution. The numbers projected by the Westchester-Playa del Rey Community Plan EIR should be used after modification for further increases enabled by other LA City ordinances such as transit corridor bonoses and affordable housing bonuses and the Housing Element of the LA City General Plan,

LAX physical layout changes and/or operations at LAX should be considered when determinimg ground traffic pollation contribations.

## b. Air Quality tmpacts and Public Health.

Recent studies of pollution sources have identified serious impacts by air pollution on human health. LAWA should consider the latest air quality information from AQMD and Calfomia Air Resources Board to assess the various project alternatives for pollution impacts. Average pollution over a long period of time should be determined, but also pollution concentrations in any four-hour period since air and ground traffic tend to have peak hours.

Please see and analyze in the EIR the attached reports from the following websites as examples of the air impacts that have been studied.

## htip:/www.arb.ca.gov/newsrel/mr052208.htm <br> http://www, arb,cs.gov/rescarch/health/pm-mort/pm-morthtm http://wwwarb.ca.gov/research/health/pm-mort/pm-mortdraft.pdf

LAWA is conducting an air pollution contribution apportionment study to fulfill a Settlement promise. Along with an air pollution contributions analysis, LAWA will be following up a study contract ("Monitoring and Modeling of Ultrafine Partictes and Black Carbon at Los Angeles International Airport," Froines, John, ARB Contract 04-325, 3-52007 ) in which ultra fine particle studies smaller than those normally measured were correlated with aireraft operations. Additionally a 2000 report by McD onnell (http://www nature.com/jes/journal/v10/n5/pdf/7500095a.pdf) highlighted a method to investigate particle impacts on health that should be followed in the assessment of air quality impacts. "This study did not have direct measures of PM2. 5 but relied on TSP and PM10 data, In a follow-up analysis (McDonnell et al, 2000), visibility data were used to estimate PM2.5 exposures of a subset of males who lived near an airport" We ask that ais quality measurements be taken on LAX property and in surrounding communities that are in close proximity to LAX

## c. Operations Analysis.

In examining all alternatives, LAWA must examine the use of, and the impact of, operating the LAX in various configurations including Westerly operations, Easterly

ARSAC Cumments to NOP No. 1997061047 6-17-2008
Page 5 of 12
CFTP-PC00002
off without entering the major CTA traffic loop. The bencfitis from this potential project shoold be segregated so that they mary be added to any of the alternatives.

Each of the new alternatives contains a Midfield Terminal and the addition of gates To the backside of Tom Bradley International Airpor. LANA stould specify the locations of the taxiways and taxiway intersections. All ground and air impacts of this sel of projects must be included in the analysis of each of the alternatives.

In examining all aiternatives, LAWA must examine the use of, and the mpact of. operating LAX in various configurations including Westerly operations, Easterly operations and Over-Ocean operations. Safety impacts of the varied scenarios must be assessed. Furthernore, other operational scenarios using outboard runways for take-offs and inboard runways for landings need to be considered, 35 well as parallel landings on and inboard runways for landings need to
the north or the south runway complexes.

## D. Analysis of Alternatives.

## 1. The Proposed Alternatives.

The NOP identifies two no project alternatives and four alternatives. ARSAC is unalterably opposed to the alternative of moving the rumway 24 R 340 feet to the north. and strongly supports analysis of the alternative of keeping the existing runways at the present location and implementing operational improvements to enhance safety. Only if safety risks remain after such operational improvements have been implemented can the costs and disruption of runway movement be justified. LAWA has demonstrated the capability of landing Group VI aircraft on both the north and south conplexes, albeit with some adjacent taxiway use restrictions. When the Soutl Airfield Project was presented for approval, LAWA indicated that it would be capable of handling the Group VI aircaaft and it is our understanding that a ground terminal access route using the south runway 25L has been formally approved for use by the FAA. In the ground air traffic analysis, LAWA should consider the benefits of moving the runways south, and how that would improve the deficient (but legal) taxiways near the terminal gates.

When analysis is performed on the north and south runway complexes, we want the assumptions for operational efficiency and safety impacts of the Runway Status Lights to include both the proposed Pilot Program, which is promised to be instatled in 2009, and a complete systom which includes the other runways and taxiway intersections which have not been included.

In addition to the alternatives already under consideration, ARSAC reguests that an additional alternative, moving runway 24L, 340 feet to the south with the revised terminal configuration described in the attachment to this letter, be analyzed as part of
this EIR. This alternative reduces the impacts on Westchester and Playa del Rey, while improving airport efficiency.

Besides analyzing alternative runway configurations and diverting flights to other airports, the EIR must consider and provide a quantification of all airfield operational scenarios in evaluating the alternatives-westerly operations, easterly operations and overoceari operations. The noise, pollution and safety impacts on the surrounding communities differ depending upon the operational state. For example, during easterly operations, aircraft taking off on the north runway complex have cul across parts of Westchester such as Westport Heights that are normally not over flown by aircraft at very low altitudes.

The February 2006 Stipulated Settlement specified in SECTION V, LAX SPECIFIC PLAN AMENDMENT STUDY PROCESS, Item C states a goal of ". minimizing environmental impacts on the surounding communities, and creating conditions that encourage airlines to go to other airports in the region, particularly those owned and operated by LAWA." In particular we want detailed analysis of the north runway complex impacts io show that they are less than that of the current condition of no runway change or in the worst case, Alternative D that was previously approved.

When any of the altematives are examined for impacts, a key element that must be assessed is the quality of life. Will a runway protection zone require the removal of bomes and businesses? The analysis should include all cost factors of eminent domain and loss of values for the surrounding communities that might lose their cornmunity serving businesses.

In terms of ground traffic analysis, petitioners are allowed to add up tols additional intersections for review, and these intersections may require additional mitigation in several communities. Regardless, the Settlement does not limit the intersections and highways that must be mitigated to accommodate LAX projects.

## 2. Consideration of Additional Atternatives.

The NOP provides the opportunity for the submittal of additional reasonable alternatives to be studied within the EIR. ARSAC submits two additional proposals to be included in the EIR and the North Runway Complex Safety Study. ARSAC has generated these proposals to increase the range of alternatives that may be considered. The narratives of both proposals are included as attachments. A short summary is below, ARSAC feels that it imperative that no alternative be selected as a preferred alternative until after the North Runway Safety Studies and analysis have been completed and examined. Furthermore, ARSAC requests data from the South Airfield Improvement Program to detennine the effectiveness of those improvements, such as the centerline taxiway, in reducing incursions.

ARSAC Comments to NOP No 1997061047 6-17-2008
Page 8 of 12
CFTP-PC00002

International (ONT) and LA/Palmdale Regional Airport (PMD), as opposed to expanding LAX. There is precedent for this kind of study. During the late 1990's, in the LAX Terminal 4 EIR to modernize the American Airlines terminal a cursory examination was made of shifting some flights to ONT and/or PMD. The failmre of the Terminal 4 EIR was that it did not fully examine all of the environmental effects through increased utilization of ONT and PMD, versus LAX. ONT and PMD are large investments for LAWA and they both have the potential for greater cconomic, operational and environmental value if properly marketed. For example, the "Fly Ontario" marketing campaign did increase the publie's awareness of ONT and seyeral new flights were added to ONT, with the notable addition of Expressjet's west coast hub.

The EIR should analyze all of the enyironmental benefits to the area surrounding LAX that would occur if some international flights were shifted to ONT. ONT eurrently has staffed Federal Inspection Facilities (FIS- Inumigration, Customs,
Agriculture). Additionally, LAWA should analyze the benefits of shifting some cargo flights from LAX to ONT.

LAWA should also consider the impacts of benefits of shifting some domestic flights to PMD, as was identified in the 2001 TriStar Marketing report on PMD and subsequent destination studies. LAWA should also diseuss the LAWA/US Air Force Plant 42 Joint Use Agreement (JUA) for PMD, and how the JUA could be revised to accommodate more flights, allow for development of the LAWA owned property, and remove the domestic flight restriction to allow for intemational traffic at PMD,

LAWA should discuss how a "multi-airport discount rate" system could encourage the shift of flights or the addition of new flights to ONT and PMD. The "Multi-Airport Discoumt Rate" would give airlines that operate at LAX, ONT and PMD more favorable landing fees and terminal retuts than operating solely at LAX. Airlines that operate solely nt ONT and/or PMD would get even better rates for not operating to LAX. The "multiairport discount rate" plan should be available to intemational carriers, as well as domestic carriers, For international flights, there would have to be parity between those international flights operated by domestic and foreigu airlines.

LAWA should examine changing the financing model an LAX (residual vs compensatory) to allow for cross-subsidization of ONT and PMD to support the "multiairport discount rate" system.

European and Asian airlines have expressed interest in operiting out of ONT. Please discuss bow new, smaller, highly efficient widebody aircraft such as the Boeing 787 Dreamliner and the Airbus A350XWB can help make ONT more viable for international flights, while lessening the impact on the environment. Many foreign airlines have ordered these aircraft. Continental and Northwest are the only U.S. airline customers for the Boeing 787, while US Airways and Hawaiian Airlines are the only U.S airlines to order the Airbus A350 XWB. Domestic airlines are adding intemational routes

## a. One Single Safe North Runway Alternative.

This proposal was presented at the Specific Plan Advisory Committec meeting where it was agreed by the Petitioners that all coneepts submitted to the LAX Master Plan EIR would be studied, troluding new one such as the one runway concept. This concept would reduce the number of runways on the north runway complex from to two runways to one runway. Rumway crossings are the leading oause of runway incursions. Airports that have renway layouts where aircraff do not have to cross one runway to access another numway have very low incidences of runsway incursions. Munich Airport (MUC) in Germany has one runway on each side of the terminal complex. One runway is used for landings and the other runway for takeoffs. Since its opening in 1992, MUC had only one runway incursion. London Heathrow Airpori (LHR), the world's third busiest passenger airport, has a similar rumway layout and is able to handle 70 miltion annual passengers.

## b. 340 feet south / Airline Alliance Plant

This plan, presented to LAWA Executive Director Gina Marie Lindsey on May 7 2008, is similar to Alternative D except that in place of replacing Terminals 1, 2 and 3 with a concourse for widebody aircrift, Low Cost Carrier terminals would be constructed Airlines that have airline alliances would be relocated to terminals with their domestic airline partners, or to the Tom Bradley International Terminal for most foreign airlines The Central Terminal Area (CTA) parking garages would not be forn down in this plan. The Consolidated Rent-A-Car (RAC) facility would be located in Manchester Square and connected to the CTA by an Automated People Mover. An clevated roadway would connect the 405 freeway to the RAC and CTA.

## 3. The Need for Development of a Regional Plan.

ARSAC continues to believe in a regional solution to airport congestion. The Stipulated Senlement provided that "The first regionial strategic planning initiative will be prepared by December 31, 2006." Unfortmately, this commitment was not kept. Not only was the Plan only recently submitted to the County of Los Angeles, but it has now been withdrawn. ARSAC is disturbed by LAWA's failure to ageressively pursue developmert of a Regional Strategic Plan, and asks that members of the SPAC have an opportumity to comment upon the draft plan prior to the time it is fimalized and adopted by the Board of Airport Commissioners, and that this effort be treated as a high priority by LAWA.

Regardless of what is done with the Regional Strategic Plan, LAWA should examine in the DEIR the increased utilization of LAW A controlled airports at LA/Ontarim

ARSAC Comments to NOP No. 1997061047 6-17-2008
to meet demand for more non-stop services between new cities, and to feed their domestic networks. Also, please discuss how new multi-lateral and bi-lateral agreements, such as the United States-Earopean Union Open Skies Agreement and the new US-Australia Bilateral Air Services Agreement, can provide ONI with more opportunities for international air service development. Discuss LAWA's past, current and future efforts to attract more air service to ONT and PMD.

Finally, LAWA needs to address the issue of Orange County residents using LAX for their air travel needs. It has been estimated that one-third of the passenger traffic through LAX is destined for Orange County, and that LAX handles $90 \%$ of Orange County's air cargo. LAWA should discuss the possibibity of working with the Walt Disney Company to rename LA/Ontario International Airport to Walt Disney Intermational Aurport and then re-package the airport as the gateway airport to the Disneyland Resort, and the primary international gateway aitport for the Orange County and Inland Empire regions. In your analysis, please assume that the Right of Way can be obtained for a monorail or bigh-speed rail between ONT and the Disneyland Resort and/or the Anaheim Transportation Center. This way, ONT will be provided with the necessary critical mass for ground transportation. The rail line could be operated by LAWA, Disney, or in cooperation with the California-Nevada Super Speed Rail Commission.

## E. Enhancing Airport Security.

Security is another matter thai needs to be carefully examined in the EIR. RAND performed two security studies on the LAX Master Plan. The first was done at the request of Congresswoman Jane Harman. The second study was commissioned by the Board of Airport Commissioners (BOAC). To date, the public is unaware of how, if at all, LAWA is implementing the RAND recommendations. Please discuss what, if any, follow up with RAND has been occurred, and the status of implementation of its recommendations.

## F. Processing of the EIR.

Although the NOP has been released, ARSAC believes the NASA study should be completed and evaluations conducted by the selected members of the academic community have been published before the Draft EIR is released so that the studies will inform the selection of a preferred altemative. This would also allow LAWA to first have experience with operations at the South Runways before selecting a preferred alternative.

When the Draft EIR is released, ARSAC requests that it, and all related documents, be provided electronically in searchable format, as well as in hard copies.

To the extent that the new EIR relies upon the 2004 LAX Master Plan Environmental Impact Report, that EIR contained many conflicting comments within its 17,000 pages, and numerous deficiencies that were identified by ARSAC and other petitioners in the lawsuit that resulted the Stipulated Settlement of 2006. To assure greater clarity, and avoid some of the problems that occurred in the past, whenever any of the prior documentation is referenced in the upcoming EIR, we request that specific paragraphs and page number references be included for documents referenced in the DEIR. We also strongly request that the EIR and all supporting documents be provided in a format that is searchable electronically.

Finally, so that the best possible public review and participation will occur, we also ask that the Draft EIR circulation time be increased from 45 to 120 days. Forty-five days for review of an extremely complex and technical document is simply inadequate.

Please feel free to follow up with any questions you may have about these comments or recommendations.


Demy Schneider, President

Attachments:

1. Environmental Review: Table of NOP Comments
2. One nubby option overview
3. Low cost carrier option overview

ARSAC Comments to NOP No. 1997061047 6-17-2008



Attachment to ARSAC Comments to SPAC Environmental Review: Table of NOP Comments:


ARSAC Comments to NOP No. 1997061047 6-17-2008 Attachment 1 Page 1 of 14
CFTP-PC00002


[^14]| Transportation Center at Manchester Square and Aviation/lmperial and new Terminal 1 drop-off where Park One is located | 9 | A connection to the APM or a moving sidewalk can provide acecss to all of the north side terminals. How many and what percentage of people do you expect to be served by this new socess? Would this increase total access capacity? By bow much? |
| :---: | :---: | :---: |
| 3.2 No Action Alternatives | 11 | Given that thete are two different "no project" alternatives one with all of the yellow-light projects of Alternative D and one based on the existing configuration with several non-Master Plan improvement projects that are underway. The second paragraph segregates the "no project" into two conditions; when all yellow light projects are assumed to have been built and when none are built. How will the EIR ussess the overall impacts of these two "baselines" if some yellow-light projects are subsequently built? If the yellow-light projects oyerlap with other project elements that have been approved and are therefore part of the "other" base bow will the other alternatives be assessed in comparison to the buseline? If, for instance, a newly designated internodal transportation were built at Century/Avjation to accommodue a Green Line extension would all of the inpacts of the totality of the baseline projects be used to assess other project impacts in addition to the yellow-project designated ones? |
| 3.3 Probable Environmental Effocts | 13 | Undet aesthetics, the NOP acknowledges excessive lighting is a potential issuc. Does this include runway lights if moved north? Are Northside development impacts included? If yes, what version (s) of the Norliside development? <br> What new Manchester Square development is ussumed" Are there any other projects such as APMs and where would they stop and Ølowito from? This could impact local conmunities with noise, pollution and traffic in various ways depending upon the paths used and the locations of the stops. <br> This is another concern for neighbars and also for the flora and fauna. Introduction of new species from LAX arrival flights? Although good faith attempts to stop the arrival of foreign plants and animals is made. the locations of the aircraft and the handing of baggage and cargo can inpact how an unwanted species can be spread to the surrounding areas outside of LAX. <br> What about impacts on Riverside Fairy shrimp locations? LAWA was caught filling in Continental City with asphalt-laden dirt about 2003. LA Building \& Safety halted the non-pernitted filling. Whete are all of the areas impacted by the 2003 action? What sensitive species are in surrounding areas? Why did the relocation area for the Riverside |

ARSAC Comments to NOP No. 1997061047 6-17-2008 Aftachment i Page 4 of 14
CFTP-PC00002

Figure 12-Runway $340^{\circ}$ North		See comment for Figure 11 above.
Initial Study and Check List-CEQA Lead Defermimation	IS-2	Please provide a matrix of which enviroumental impact sundies are being reassessed and which are being renin and conrelate each impact study to the bascline 2004 FEIR puragruph numbers.
Evaluation 6)	IS-3.	The document acknowledges the requirement to document source reference in detail. Anything less makes it difficall wo identify what has been done and its validity.


Environmental factors potentially affected	IS-3	Three additional impact areas should have been checked.   Geology/roils. Proposals to move the nuways could be in areas where there are sand dumes and other soil with bigh liquefaction potential.   Transportation/Traffic. To accomplish some of the projects in the LAWA $340^{\circ}$ norib ulternative what housing would be impacted as well as the community serving businesses. Please identify all units that are subject to removal by any federal ot state law regardess of whether it is belicved that these laws would be enforced.   Population/Housing. To accomplish some of die projects in the LAWA $340^{\circ}$ north alternative housing would be impacted as well as the commanity serving businesses. Please identify all anits that are subject to removal by any fedoral or state law regardless of whether it is believel that these laws would be enforced.
VI. Geology \& Soils (a)	IS-6	There is some seismic potential. A plume of the Inglewood/San Andreas faults is near some of the areas where projects have been suggested along Century, for instance. We call on LAWA to review the most current USGS maps to assess earthquake susceptibility. The $340^{\prime} \mathrm{N}$ altemative, for instanice, calts for moving Lincoln Boulevard and burying its connection to Sepulveda. Additionally we call upen LAWA to address the sandy soil conditions toward the Northside development along Westchester/Plays del Rey and westem sections of LAX property for impacts from building any tunnels or from impacts from existing tunnels, underground utilities or sewer lines.
VII Hazards \& Hazardous Matls. (a)	IS-7	Could rus off with fuel and rubber off the runways create a hazard?
VII Hazards \& Hazardous Matls. (f)	15-7	The ability to get medical care can be impaired since the Medical Center on Sepulveda could be closed off within the boundarics of LAX if an emergency occurs. Insufficient trauma facilities are available within the local area if a medical imergency occurs. The closest is UCLA that would be impossible to get to during most of the day due to heavy iraffic on the 405 .


		Fairy Shrimp change from the former EIToro Marine Corp Air Station to an area in Redondo Beach? Can LNWA simply leave the Riverside Fairy Shrimp in tact at LAX and place some sort of retting or fishing lines over the shrimp habiat so that the shrimp will not have to be moved?   Whete are the earthquake prone areas?   What are the amounts and rypes of pollutants from aircraft? How will these pollutauts be mitigated? What will be done to reduce the greenhouse gases from L/XX operations?
3.4 Comments and Next Steps	13	45 days circulation for reviow is inadequate. This should bo as much as 120 days so that the maximum time will elapse to obtain South Airfield incursion experience,   The NASA study should also be complete before this conment period begins.   Figure 1- Project Location Nonc The grayed area shows all of LAX, but also lands that wese transferred from the Westchester-Playa del Rey Community Plan to the LAX Plan during Alt D approval. Not all of this is being considered for cumulative impacts during the EIR reviews of the SPAS airport projects. Please delineate which areas are specifically incloded in the impact studies.
Figure 2-Existing Aipport		What is the date of this photo? On what date is the existing airport based? This photo does not show the completed the SAIP project, but we assume that it is part of the existing aimport. Earlier in the document, Paragraph 3.2 identified two different no action altornatives. Please detail what airport elements are pare of the two "no action" altennatives and their relationship to the baseline conditions against which new projects are being judged.
Figure 9-Potential Aternative-Rumway 6R124L $100^{\circ}$ South		Green Line stop is shown along Cantury instead of in Intermodal Transportation Center. How much traffic of each transport mode is expected? How would the traffic impact the type and quantity of mitigations required?
Figure 11-Romway $100^{\prime}$ North		Green Line stop is shown along Century instead of in Intermodal Transportation Center. Athough ARSAC supports the extension this is not part of the approved. Master Plan or existing condition. Enyironmental improvements from this project are not part of the baseline and should be included in the assessment accordingly.

ARSAC Commants to NOP No. 1997061047 6-17-2008 Attachment I Page 5 of 14
CFTP-PC00002

$\begin{array}{\|l\|} \hline \text { VII Hnzards \& } \\ \text { Harardous Matls. (g) } \end{array}$	IS-7	See comments for element (i) above.
VIII Hydrology \& Water Quality (i)	15.8	There was some question about the 100 -year flood plain satuctures in the last ERR due to the drainage canalis being fed with much greater runoif due to all of the lecal developments surfounding LAX. Anew urban nui-off facility bas been suggested for construclion at the northwest corner of the LAX nirfield. What effeet will dis facility have on LAX avd water quality issues? The sewer lines near and underneath $L A X$ date back to the 1920s. Are these sewers adequate and struchirally soumd? If not, what hazards do these sewer lines presem?
$\begin{aligned} & \hline \text { XII Population A } \\ & \text { Hoosing (a) } \end{aligned}$	15.9	LAX traftic causes severe impacts on the local communities. Westchester-Playa del Rey and the othr surrounding cormmuities have become thoroughfarts for people traveling from the South Bay and further south and the L.A Westside. LAX raffic exacerbates this. Has the new LA City Gencral Plan iraffic increases duc to changes in the housing element been taken into consideration?
XIV Recreation	15-9	Holes were removed from the Westchester Golf Course to accommodate previous LAX expansion in the 19705. Restoration of these holes has been a LAX promised mitigation ever since. When will this be accomplished and what other recreation oppothinities will be ereated for the surounding sommunities?
Attachment A V Cultural Resources (a)	A-4	Under historic elements, other buildings that are impacted such as the Paradise Building, Centinela Adobe, Randy's donuts should also be addressed due to off airport projecis that facilitate these projects. Others items such as the LAX Theme Building and the "Sea to Shining Sea" mosaic tilc air travel mural in Terminal 3 shouild also be addressed.
Attachment A V Cultural Resources (b)	A-5	Have any burial sites been identificd? What aboun pottery or other Indiañ relice?   What about prehistoric bones on the west and noth areas in and around $L A X$ due to the high incidence of oil reserves in the area? Prion LAX layouts have included N-S runways such as the one that existed in the area behind Tom Bradley International Terminal. Are any of these old strictures historically significant? Are there any historic elements from the Bennet Ranch or previous ranch owners
Attachment A V   Cultural Resources (c)   Mitigation CR2	A-6	The NOP says that mitigation reduces the impact to less than significant and therefore nothing else will be done. Please ideatify which areas are subject to higher potential impact mitigation per tine

ARSAC Comments so NOP No. 1997061047 6-17-2009 Attachment 1 Page 7 of 14

		existing palcontology mitigation program.
VI Geology and Soils:	A-7	What about the water filtration system that is being proposed for the Northside development area? How could this filtration project interface with the potential building set for the entire Northside development area?   The prior EIR claimed that earthquake susceptibility was not significant, but at an SPAC meeting it was ackuowiedged that there carthquake fault ureas that would impact the tumel that was approved in Atremative D . Where else would earthquake faults impact building or construction?   Soil condtions under the north runway may or may net be significant but more detail is required to ensure against construction ot mainteriance issues.
VI Geology \& Soils (a) ii.	A-8	Seismic ground shaking. During the Northridge quake several back up power systems failed at LAX. Are alternative energy supplies available? What are the evacuation procedures to be followed for the airport in casc of an carthquake, and how will this impact the local communities?
VT Gcology \& Soils (a) iin	A-8	Seismic related ground failure. Several major water runoff and saritation processing lines go under LAX. If any of these are seriously damaged what is the potential for sinkholes or other damage to structures at the surface?   Since the LAX area was built on a Coastal plain, what impacts would liquefaction bave? Is there potential for natural gas leakage pathways along faule lines from natural sources since the entire Playa del Rey atea was once an oil field? Can gas leakage occur at LAX along a fiult line from the Gas Company reservoir that is under the bluff in Playa del Rey and under the wetlands neat Playa Vista?   What effect, if any, would the proposed Woodside Energy Natural Gas project have on LAX? Please describe how each of the components may affect LAX - gas line connection in or through the coastal bluff, high pressure lines rumning mderneath Westchester Parkway, distribution Facility at $98^{\text {di }}$ Strect and Bellanca near the Neutrogena offices, and WallyPark parking garage.

ARSAC Comments to NOP No. 1997061047 6-17-2008 Atachment I Page 8 of 14
CFTP-PC00002

VII Hazards \& Hazardous MatL (b)	A-14	Although LAWA noted the lack of concern for wild fires etc. there is still concern that an air accident could cause a major fire due to the amount of fuel held by aircraft. We expect that a valid plan will be identifiod and any access issues will be resolved. At least one of the plans calls for relocation of Lincoln Blyd that includes a portion of the rond inside of a tumel. A fire in this ares could be very disststrous, as would poisonous gas clouds. We are aware of several radioactive contatners that have been damaged before or after arrival at LAX There needs to be very specific plans on how to handle such incidents.
VII Hydrology and Water Quality (a)	人-14	A-14 A master plan for grey water usage should be ceated to work with Hyparion even though LAWA has a good record in this area. As aircruft and support equipment are producod with new exotic materials there can be a potential runoff issue when repairs are initiated or during maintenance.
VII Hydrology and Water Quality (c)	A-15	There are independent plaus being established currently for projects to supplement drainage filtration by the LA Sanitation Dept in the north quadrant of LAX and in the Northside Developmery area.   Another potential issuc is damaging of critical sewage and dry/wet water runoff control channels during construction and adversely impacting the gravity feed requirements of that system.
IX Land Use and Planning (a)	A-17	If eminent domain is exercised on a significart portion of the business district there could be separation of businesses into less than a critical tnass io draw local community support. Also, if the runway protection zones are enforced and homes are taken on the northeast cad of LAX, small pockets of remaining homes could be created. This porential must be fully diselosed.
EX Land Use and Planuing (b)	A-17	There is some question as to how homes will be impacted if the runways move north. Several large apartment complexes and some schools will be mach closer to runway activity with attendant boise and pollation as well as safely issues. A 1980 study on LAX area school children showed that airport noise affected leaming abilities. Newer, more effective metbods for mitigating noise have been developed since soundproofing was providod to impacted schools. Does LAWA plan to offer sound proofing upgrades and ait conditioning to LAUSD, private, and public schools to those located within the 1992 Noise Impacted Contour or for any who will sustain a 1.5 dB increase in nioise? Whell new noise contouns are estimared using updated aircruft mix estimates LAWA should assess the impacts.


XIII Puhlic Serviess (a-c)	A-21	The EIR for the Westchester-Playa del Rey Plan states that a substantial increase in fire and police protection manpower is required to meot current zoming estimates. Much of the communiry to the norih relies on Fire Station 5 for rapid community rexponse. This station deploys both the Manchester Boulevard and Westchester Parkway. This dual aceess must be maintained. For emergency services at LAX there must be a good emergency bealth care plan in place with capacity to meeting both L AX and community needs.   If in event eccurs at LAX that causes airport closure this facility will be unavailablo to the surrounding community. The nearest urgent care for local residents is located on Sepulveda north of ${ }^{-}$ Century. In view of the closure of several emergency rooms and Daniel Freeman Hospital does the nceded capacity still exist? If not, what solution is proposed?   Several schools will be subjected to increased noise and pollution. Air pollution especially must be assessed for not only 10 and 2.5 microu size but also smaller (i.e. 0.1 as done in the 2007 CABB sudy of L/AX particle pollution). Although several schools have been previously sound proofed daring carlier programs, determination should be made if another found of soundproofing is appropriate. Several churches and schools may be subjected to enough noise to cause learning impaiment ander EPA or other standards (i.c. NIH).
XIII Public Services (d)	A-22	Some airport land, such as Niclson Field and the Westelester Goff Course, is cerrently used for open spaco. If this use is diminished or if promised elements (i,e. Golf Course) is not restored the negative impacts of this should be analyzed and mitigated.
XIII Public Services (e)	A-22	Sonnc other govermmental uses should be investigatod, as well af new housing opportunities for Manchester Square. Certainly the need for additional road access is evident due to the increases of traffic from current levels to the "nominal" 78.9 MAP . Also cargo and other related canses of traffic need to be assessed fully. Traffic should be diverted away from residential communities. Even if there are only moderate increases in traffic from LAX the overall impact may still be substantial due to major incresses in present und authorized development zoning changes.

ARSAC Comments to NOP No. 1997061047 6-17-2008 Attachmeat I Page 12 of 14
CFTP-PC00002

		determine more efficient ways to handie ground aircraft movement to redise noise and pollution promulgated into the surrounding communitics.
XVI Uitilites.	A-25	Utility systems should be assessed to determine where additional capacity is required and where back-up systems are required.
XVIU(ilities	A-26	Athough sufficient solid waste capacity is presumed, there are many opportunities for reducing the generation of solid waste. If We continue the same methods of disposal to Sunshine Casyon and other remote landfills, and there is a substantial increase in waste, we will be adding much pollution and noise due to the long haul disposals:
XVIL Mandatory findings of Significance	A-27	The cumulative effocts of fincreased traffic will increase pellution and has scrious adverse cconomic impacts in terms of reduced productivity along with adverse heathi impacts.

Alrfleld Balance. In the NOP, LAWA indicates that under the LAX Master Plan, one of its goals is $\omega$ " "provide a betrer balance in operations between the North Airfield and the South Airfied Petitioners support thas gosl and urge LAWA to conduct a full analysis of whether balance. Petitioners agree that total fight operation balance can lend to less operational crowding, which is good for all.

Regional Approach. Petitioners strongly support in regional approach to accommodating passenger and cargo aviation demand throughout Southem California. Becauto the arda around LAX is fully developed, and because we must reduce vehicle milles triveled to improve air quarity, decrease groenhouse gases, and increase productivity, a regional solution to serving aviation demasd is essential. The regional approach, which is fully supported by the Southem Califormia Association of Govermments, muat be a key component of everything LAWA does, including in the SPAS process. LAWA should vigorously pursoe accommodating aviation demand a Palmdale and Ontario, and work ageresaively with other airport operalicss and local

DEIR Publle Review Period, The NOP indicates that LAWA intends to provide just 45 days for public review and comment on the Dratt SPAS EIR. In lighi of the complexity of this projeet and LAWA's tendency to prohuce lengthy CEQA doctiments, Petitiopers anticipate that 45 dayn will pot be sufficient.

## One Safe Single North Runway Proposal

Background: The Stipulated Seulement Agreement provided for a re-examination of Yellow Lighi projects such as the north runway complex by the Specific Plan Advisory Committee and to come upwith othet efficient and community friendly aliematives. The One Safe Single North Runway proposal aims to address saiety, efficiency and being conmunity friendly.
Runway incursions continuc to be cited as a reason for making improvement to the north airfield complex at LAX. Despite numerous requests, one idea that has not and should be included and fully studied in the NASA north airfield safety snidy and in the LAX Master Plan NOP and EIR/EIS is this "One Safo Single North Rumay" This proposal can provide safety and keep $\mathrm{L} \Lambda \overline{\mathrm{X}}$ within the desired 78.9 Million Annual Passenger (MAP) limit

The only runway designs in the world that have beca most effective in preventing ramway incursions are designs where aircraff do not have to cross one runway to get to another. Murich Franz Joser Strauss Airport (MUC) it Germany was designed with one runway on each side of the ferminal complex as a wiy to prevent nunway incursions. Since MUC opened in 1992, there has been only onc runway incursion (2006). MUC handled 34 MAP in 2007.
London Heathrow Airpon (LHR) in the United Kingdom, the world's busiest international airport, has a similar runway layout with one runway on each side of the terninal complex. LHR has traffic signals operated by two tower controllers, at each runway to permit aircraft to enter the runways. LHR has not had incutsion probiems, AL LHR, one rupway is used for take-offs and one runway is used for landings. This is known as Single Mode Operation. $\ln 2007$, LHR handled 68 MAP

London Gatwick Airport (LGW) is a single runway airport that operates in Multi-Mode Operation. In 2007, LGW bandled 35 MAP. According to its operator, BAA. "Gatwick is the busiest single-runway airport in the world, the second largest aipport in the UK and the sixth busiest international airport in
the world:" Clearly, a single rinway airficld can be successfult

## Requirements for all concepts:

RunWay 24 Right closed and either covered with fill dirt or remaved

- Enhanced numway/axiway lighting, striping and signage on Rimway 24 Left

ASDE-X and Runway Status Lights on Runway 24 Lef

- Noise contours cannot increase in Westchester/Playa del Rey
- No taking of land in Westchester/Playa det Rey
- No nortbward runway movement and no placement of taxiways north of runway

Concept 1:

* Use Runway 24 Left in its existing conflguration.

Concent 2: "Super Ruaway"

- Rebuild Runway 24 Left in its current location to a now 200-foot wide runway and 10,000 feet in longth. The runway would be extended up to 1,000 to the cast, The associated taxiways near Terminals 1,2 and 3 and the Tom Bradicy International Tcrmital would be rebuit required Moventert towani the centor of die (wo existing runways facilitates the least
oxpensive upgrades to the presert inadequate, congestion producing taxjways and taxilanes axpensive upgrades to the
adjacent to the terminals.

Questions or comments? Contact Robert Acherman at (310) 927-2127, racherman (gmetvip. Dom



CFTP-PC00002


CFTP-PC00002


CFTP-PC00002



CFTP-PC00002
LCC Terminal Design Ro
4th floor--


- 4th floor- TSA passenger screening
- 3rd floor- ticket counters
2nd floor-TSA inline
- 1st floor (ground level)baggage claim


CFTP-PC00002

No changes to the CTA

- Parking garages in the CTA will be unchanged
- Access to the CTA will remain open to private
vehicles, busses and taxis
- Passenger convenience is maintained with curb
front drop-off and pick-up

CFTP-PC00002


CFTP-PC00002


CFTP-PC00002


CFTP-PC00002


CFTP-PC00002



CFTP-PC00002



CFTP-PC00002


Los Angeles International Airport Advisory Committee

Novernber 10,2008

## Mr. Dennis Quilliam, City Planner <br> Los Angeles World Airponts <br> Airports and Facilities Planning <br> 301 World Way West 3rd Floor <br> cos Angeles. CA $90045-5803$ <br> Re: LAX Crossfield Taxiway Project Chy File No AD-034-0E

Dear Mr, Quilliam:
The members of the LAX Area Advisory Committee (LAXAAC) are concerned about severa spects of the proposed LAX Crossfield Taxiway Project (CFTP), as descnibed in the Drah Environmental Impact Report (EIR), issued in late September

Aithough we, as airport neighbors, are encouraged by the expected improvements to air qually projected once the CFTP is operational due to improved traffic flow and less aircraft iding. we are concerned about the insufficient plans to mitigate the environmental impacts from the construction of the CFTP. Although the Draff EIR proposes to require construction measures to moltigate air pollution, noise, dust, hours of operation, construction workers' parking and ansportation, and disturbance for neighboring communities, the methods and procedures esigned to ensure compliance with these directives should be made more clear

This is particularly significant given that the Draft EiR anticipates that without such mitigation measures, an additional four of every million residents near the airport will develop cancer as a esull of the construction of the CFTP and that even with such mitigation measures, two additional peopla in every million nearby residents are likely to develop cancer

Other health impacts aiso will be significant, and the Drah EIR does not adequately account for ill of them. For example, the high incidence of asthma in communities adjacent to the airport is not discussed in the Draft EIR We are also concerned that the project's effects on atr pollution are not examined thoroughly enough, particularly because the Draft EIR did niot address particulate matter smaller than the $\mathrm{PM}_{25}$ level. Inasmuch as technology is now available to look at this smaller particulate matter, we believe LAX should do so

To insulate the communuies from noise and air polution mpacts, operation plan (in conjunction wath the FAA Tower) inat would ensure the preferential runway sage (lakeolis on inboard runways and landings on outboard runways on boer the North and south Alrfields) during all construction phases. This could be a concern if runways need to be closed during the construction. We see no discussion of this in the Dratt Eir

Ir appears that the Air Traffic Controllers in the FAA Tower will not have line-of-sight access the entire Crosslield Taxiway at all times, but we see no discussion of that in the Draft EIR.


From wabs7791@mypacks net [mailto wabs7791@mypacks net]
Sent Monday, November 10, 2008800 PM
To Cross Field Project
Subject Public Comments Entry on CFTP

Hello,
Here are my comments for this project(S)

1) First and most important that no runways are to be extended North impinging onto Westchester parkway WE DO NOT WANT ANY EXPANSION OF THE NORTH RUNWAY
2) The Airport infrastructure is a mess I fly all over the world and this airport is in extreme disrepair Gates and terminals are run down, Baggage terminals are a nuisance to get to, TSA security setup and passanger handling is the worst I have seen in any airport
3) Understanding the secondary runways are undersized to handle aircraft as the A380 This aircraft should be able to be serviced in existing terminals Again we do not want any expansion of runways to mpinge upon existing businesses or roads
4) General transportation is terrible at this airport Very little public transportation exists (rail or buses) The 105 freeway should have been extended into the airport and NOT dumped ontpo Sepulveda The train parallel to the 105 needs to have a spur added to the airport as well Why terminate it at the current position of Imperial Highway? This make little sense
5) The fire station and fire fighting facility should be done since the existing facility is outdated

Gary Schivley
Westchester, Ca

This Page Intentionally Left Blank.


[^0]:    1 The emissions of volatile organic compounds (VOC) and reactive organic gases (ROG) are essentially the same for the combustion emission sources that are considered in this EIR This EIR will typically refer to organic emissions as ROG.
    ${ }^{2}$ The concentration threshold for attainment pollutants ( CO and $\mathrm{NO}_{2}$ ) is the CAAQS, which is at least as stringent as the NAAQS. The concentration threshold for nonattainment pollutants (PM10 and PM2.5) has been developed by SCAQMD for project construction impacts only.
    3 ppm = parts per million
    $\mathrm{mg} / \mathrm{m}^{3}=$ milligrams per cubic meter $u g / m^{3}=$ micrograms per cubic meter

[^1]:    6 Settement, IV.C.. p.8.

[^2]:    7. $4 .$. the new crossfield taxiway and associated improvements will belp relieve existing aircraft congestion and reduce delays that periodically occur on the existing crossfield taxiway system and on adjacent taxiways. . ." DEIR.pp. 2-21.2-22.
[^3]:    1 In preparing the Final EIR，it should be noted that A380 operations have in fact begun at LAX

    2 The purpose of the preferential runway policy is to place arrivals on LAX＇s outboard runways（Runways 25L and 24R）and place noisier departures on LAX＇s inboard runways（Runways 25 R and 24 L ），farther from the communities north and south of the airport．

    3 The DEIR does not provide any specific cifations to the Master Plan or its EIR／EIS to illustrate whether and to what extent those documents assumed NLA would depart from Runway 25L．El Segundo respectfully requests that LAWA provide that information in the Final EIR for the Crossfield Taxiway Project．

[^4]:    
    
    a the rorth nan
    
    
    
     or zecrasa
    

[^5]:    

[^6]:    
    
    
    mi Me mome minden sion are mionser end trackef．

[^7]:    
    
    

[^8]:    
    
    not in shssios. This would netecomily undentate the empats memen they are in sexive.

[^9]:    
    
    
    
    

[^10]:    
    
    
    
    
    Los Angeles intornationial Airport $4-85$ LAX Crossfeid Taxiway Project Dratt EIR
    September 2008

[^11]:    
    

    - Gotloma Gas ard Elictic Ueeno.
    
    
    
    
    
    $\begin{aligned} \text { Los Angelas Internalional Aurport } & \text { 5-34 } & \text { LAX Crossield Taxiway Project Drall ERR } \\ & & \text { September 2008 }\end{aligned}$

[^12]:    
    
    

[^13]:    
    
    
    

[^14]:    ARSAC Comments to NOP No. 1997061047 6-17-2008 Attachment I Page 3 of 14

