Results of ACRP Project 02-44, “Guidance for Helicopter Community Noise Prediction”

May 11, 2016
What is ACRP?

Airport Cooperative Research Program

• Focuses on research to serve airport needs
• Managed by the Transportation Research Board of the National Academies of Sciences, Engineering, and Medicine
• Sponsored by the FAA, but the FAA does not endorse and is not bound by any research results
Why Was ACRP 02-44 Started?

There is no peer-reviewed document describing modeling techniques for helicopter and tiltrotor noise.

Photos from:
- https://en.wikipedia.org/wiki/MD_Helicopters_MD_500
Key ACRP 02-44 Tasks

• Document current helicopter modeling methods

• Recommend peer-reviewable improvements to FAA regulatory noise model for greater accuracy

• Recommend implementation steps for model improvements

The project does not recommend what noise metric to use for modeling helicopter noise
Aircraft Noise Modeling Data

Source Noise
Noise generated by the aircraft

Operational Characteristics
How and where the aircraft flies

Propagation
How noise interacts with air and ground

Noise Metrics
Ways of expressing noise levels using numbers

- DNL
- SEL
- CNEL
The Project Compared 3 Models

- **AEDT / INM**
 - FAA Aviation Environmental Design Tool / Integrated Noise Model
 - AEDT replaced INM in 2015 for most aviation projects

- **AAM**
 - US Department of Defense Advanced Acoustic Model
 - Higher fidelity than AEDT/INM

- **HELEN A**
 - HELicopter Environmental Noise Analysis model
 - Developed and maintained in Europe
 - Higher fidelity than AEDT/INM

The project primarily compared AAM and INM
ACRP 02-44 Recommendations

ACRP 02-44 made recommendations to improve AEDT in several key areas:

• Directional noise
• Low-frequency noise
• Operational characteristics
• Sound propagation
• Tiltrotors
Directional Noise

Increase AEDT fidelity to better capture how noise changes with angle between helicopter and listener

AAM Example: Noise Level vs. Angle

- Loudest from the front right
- Quietest from the tail

- Directionality of noise depends on how the helicopter is operated
- For forward flight, AEDT/INM only includes noise data for:
 - Directly underneath
 - 45 degrees from the left side
 - 45 degrees from the right side
- For hover and idle, AEDT/INM only includes noise data for helicopter front and back

Image from ACRP 02-44 Final Report
Low-Frequency Noise

Add data to AEDT to extend sound frequency range down to 10 Hertz (Hz)

- Helicopters produce a high degree of sound energy below 50 Hz
- Low frequencies travel further than high frequencies
- Frequencies below 20 Hz can be perceived as “rumble”
Operational Characteristics

Include methods to model how maneuvers and climb / descent angle affect helicopter noise

• Certain maneuvers and climb / descent angles cause “blade slap” (rotor blades colliding with their own wake turbulence), which can increase noise by over 10 decibels
• An increase of 6 – 10 decibels is perceived as a doubling of loudness

Image from https://www.nas.nasa.gov/SC12/demos/demo1.html
Sound Propagation

Model changes in sound propagation due to varying weather, terrain, and buildings

- Weather affects how sound travels, and AEDT/INM only use airport average weather data
- AEDT/INM can only model all hard ground (e.g., water) or all soft ground (e.g., grass), but not both simultaneously
- AEDT/INM cannot model the effects of buildings on sound propagation

Buildings affect noise levels at example airport in research study

Image from ACRP 02-44 Final Report
Tiltrotors

Incorporate techniques for modeling tiltrotor “transition” mode

- Noise from tiltrotors during transition is different from noise during “helicopter” and “airplane” modes
- AEDT/INM has no transition mode data

Images from:
- https://commons.wikimedia.org/wiki/V-22_Osprey
- https://en.wikipedia.org/wiki/Bell_Boeing_V-22_Osprey
Implementation Steps

• Develop and validate a method of expanding the AEDT helicopter database

• Exercise the method for a variety of helicopters

• Update AEDT modeling using the recommendations in this project

The FAA does not endorse and is not bound by ACRP results
The FAA decides whether AEDT will be updated
Questions?