Educational Series: Sound Propagation and Noise Contours

March 2023

Sound Propagation (How Sound Travels)

- Geometric spreading of sound
- Meteorological effects
- Ground effects
- Barrier Effects

Sound Propagation

Spherical Spreading:

- Sound level decreases by 6 dB per doubling of distance
- Additional losses due to atmospheric absorption

Ground Effect:

 Sound levels are lower when reflected off soft ground vs. hard ground

Sound Propagation

Refraction due to Temperature:

- Gradients in temperature cause the bending of sound paths
- Sound bends upward during a temperature lapse (cool air over warm)
- Sound bends downward during a temperature inversion (warm air over cool)

Sound Propagation

Refraction due to Wind:

- Gradients in wind speed cause the bending of sound paths
- Sound bends upward causing sound shadows in the upwind direction
- Sound bends downward increasing sound levels in the downwind direction
- Differences between upwind and downwind directions can be 20 dB

Sound Propagation Fog/Light Rain

Sound "carries" well due to:

- Low winds, no sun
- Very little upward refraction
- Thus no sound "shadows"

Sound Propagation Ground Effects

Sound propagation over ground is affected by reflective or absorptive properties of the ground: soft vs hard

- This effect is important when aircraft are on or near the ground (elevation angle < 30 degrees)
- Hard ground (including water) is reflective and can increase sound levels
- Soft ground is absorptive and attenuates noise – depends on distance
- Freshly-fallen snow absorbs sound well

Sound Propagation Barrier Effects

- Obstacles can attenuate and/or reflect sound
- Barriers are effective when they
 - Block line of sight between source and receiver
 - Are made of dense materials with no gaps
 - Are close to source or receiver
- Barriers' effectiveness can be reduced by winds
- Barriers are not effective for airborne sound sources

Noise Exposure Contours (Federal vs. State Requirements)

- Development
- Use
- Updating

Applicable Federal and State Regulations

- Federal Regulation
 - Title 14 of the Code of Federal Regulations <u>Part 150</u> "Airport Noise Compatibility Planning"
 - Noise Exposure Map (NEM) documents the noise exposure from aircraft operations and the resulting land use compatibility – all land use compatible outside the 65 DNL (CNEL) contours
 - Voluntary program for airports to participate to be eligible for federal funding to support the implementation of land use compatibility measures, e.g., sound insulation

- State Regulation
 - <u>Title 21</u> subchapter 6 California Airport Noise Standards, Department of Aeronautics within Caltrans (California Department of Transportation)
 - County designates an Airport as having a "Noise Problem" and then must submit quarterly noise reports to the State with:
 - A map showing the noise impact boundary (65 CNEL)
 - The annual noise impact area (incompatible land uses w/in 65 CNEL)
 - Daily CNEL measurements
 - Form DOA 617 (inventory of aircraft operations, number of people exposed to 65 CNEL and above, etc.)

Noise Contour Development

- Federal (Part 150)
 - Use FAA noise model AEDT
 - Input annual-average day of aircraft operations
- State (Title 21)
 - Use noise model¹
 - Input annual-average day of aircraft operations
 - Use annual CNEL noise measurements to determine the extent (closure points) of the 65 CNEL contour

¹Title 21 states to use noise measurements *OR* use a noise model and noise measurements to determine the noise impact boundary (65 CNEL contour).

Noise Contour Use

- Federal (Part 150)
 - Assess incompatible land use
 - Implement noise mitigation measures to address incompatible land use (e.g., sound insulation)
- State (Title 21)
 - Determine noise impact boundary
 - Determine noise impact area
 - Area of incompatible land use within the noise impact boundary

Noise Contour Updates

- Federal (Part 150)
 - Every <u>five years</u> or sooner if a significant change to noise exposure is expected
 - Significant change is 1.5 dB in terms of DNL (CNEL in California)

- State (Title 21)
 - Prepare <u>Quarterly</u> Noise Report including an updated 65 CNEL contour with a full one year of measurements (rolling year ending in the quarter of the Report)

Noise Contour Summary

- Federal (Part 150)
 - *Developed* using AEDT for annualaverage day of aircraft operations
 - No adjustments allowed based on noise measurements
 - Used to assess incompatible land uses and to implement noise mitigation measures
 - *Updated* every <u>five years</u> or sooner if significant change is expected

Note: federal funds available to implement noise mitigation programs

- State (Title 21)
 - Developed using noise measurements OR using a noise model and noise measurements
 - Contour extents determined using noise measurements
 - *Used* to determine the noise impact boundary and noise impact area (incompatible land uses)
 - Updated every <u>quarter</u> (three months) based on 12 months of data

Note: no funding mechanism to assist with noise mitigation

Questions/Discussion

Educational Series – Sound Propagation and Noise Contours

